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Abstract

Latent variable models are an elegant frame-
work for capturing rich probabilistic depen-
dencies in many applications. However, cur-
rent approaches typically parametrize these
models using conditional probability tables,
and learning relies predominantly on local
search heuristics such as Expectation Max-
imization. Using tensor algebra, we pro-
pose an alternative parameterization of latent
variable models (where the model structures
are junction trees) that still allows for com-
putation of marginals among observed vari-
ables. While this novel representation leads
to a moderate increase in the number of pa-
rameters for junction trees of low treewidth,
it lets us design a local-minimum-free algo-
rithm for learning this parameterization. The
main computation of the algorithm involves
only tensor operations and SVDs which can
be orders of magnitude faster than EM al-
gorithms for large datasets. To our knowl-
edge, this is the first provably consistent pa-
rameter learning technique for a large class
of low-treewidth latent graphical models be-
yond trees. We demonstrate the advantages
of our method on synthetic and real datasets.

1 Introduction

Latent variable models such as Hidden Markov Models
(HMMs) (Rabiner & Juang, 1986), and Latent Dirich-
let Allocation (Blei et al., 2003) have become a popular
framework for modeling complex dependencies among
variables. A latent variable can represent an abstract
concept (such as topic or state), thus enriching the
dependency structure among the observed variables
while simultaneously allowing for a more tractable
representation. Typically, a latent variable model is
parameterized by a set of conditional probability ta-
bles (CPTs) each associated with an edge in the la-

tent graph structure. For instance, an HMM can be
parametrized compactly by a transition probability ta-
ble and an observation probability table. By summing
out the latent variables in the HMM, we obtain a fully
connected graphical model for the observed variables.

Although the parametrization of latent variable mod-
els using CPTs is very compact, parameters in this
representation can be difficult to learn. Compared to
parameter learning in fully observed models which is
either of closed form or convex (Koller & Friedman,
2009), most parameter learning algorithms for latent
variable models resort to maximizing a non-convex ob-
jective via Expectation Maximization (EM) (Demp-
ster et al., 1977). EM can get trapped in local optima
and has slow convergence.

While EM explicitly learns the CPTs of a latent vari-
able model, in many cases the goal of the model is
primarily for prediction and thus the actual latent pa-
rameters are not needed. One example is determining
splicing sites in DNA sequences (Asuncion & Newman,
2007). One can build a different latent variable model,
such as an HMM, for each type of splice site from
training data. A new sequence is then classified by de-
termining which model it is most likely to have been
generated by. Other examples include supervised topic
modelling such as (Blei & McAuliffe, 2007; Lacoste-
Julien et al., 2008; Zhu et al., 2009) and collaborative
filtering (Su & Khoshgoftaar, 2009).

In these cases, it is natural to ask whether there ex-
ists an alternative representation/parameterization of
a latent variable model where parameter learning can
be done consistently and the representation remains
tractable for inference among the observed variables.
This question has been tackled recently by Hsu et al.
(2009), Balle et al. (2011), and Parikh et al. (2011)
who proposed spectral algorithms for local-minimum-
free learning of HMMs, finite state transducers, and
latent tree graphical models respectively. Unlike tra-
ditional parameter learning algorithms such as EM,
spectral algorithms do not directly learn the CPTs of
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Figure 1: Our algorithm for local-minimum-free learning of latent variable models consist of four major steps. (1) First,
we transform a model into a junction tree, such that each node in the junction tree corresponds to a maximal clique
of variables in the triangulated graph of the original model. (2) Then we embed the clique potentials of the junction
tree into higher order tensors and express the marginal distribution of the observed variables as a tensor-tensor/matrix
multiplication according to the message passing algorithm. (3) Next we transform the tensor representation by inserting
a pair of transformations between those tensor-tensor/matrix operations. Each pair of transformations is chosen so that
they are inversions of each other. (4) Lastly, we show that each transformed representation is a function of only observed
variables. Thus, we can estimate each individual transformed tensor quantity using samples from observed variables.

a latent variable model. Instead they learn an alter-
native parameterization (called the observable repre-
sentation) which generally contains a larger number
of parameters than the CPTs, but where computing
observed marginals is still tractable. Moreover, these
alternative parameters have the advantage that they
only depend on observed variables and can therefore
be directly estimated from data. Thus, parameter
learning in the alternative representation is fast, local-
minimum-free, and provably consistent. Furthermore,
spectral algorithms can be generalized to nonparamet-
ric latent models (Song et al., 2010, 2011) where it is
difficult to run EM.

However, existing spectral algorithms apply only
to restricted latent structures (HMMs and latent
trees), while latent structures beyond trees, such as
higher order HMMs (Kundu et al., 1989), factorial
HMMs (Ghahramani & Jordan, 1997) and Dynamic
Bayesian Networks (Murphy, 2002), are needed and
have been proven useful in many real world prob-
lems. The challenges for generalizing spectral algo-
rithms to general latent structured models include the
larger factors, more complicated conditional indepen-
dence structures, and the need to sum out multiple
variables simultaneously.

The goal of this paper is to develop a new represen-
tation for latent variable models with structures be-
yond trees, and design a spectral algorithm for learning
this representation. We will focus on latent junction
trees; thus the algorithm is suitable for both directed
and undirected models which can be transformed into
junction trees. Concurrently to our work, Cohen et al.
(2012) proposed a spectral algorithm for Latent Prob-
abilistic Context Free Grammars (PCFGs). Latent
PCFGs are not trees, but have many tree-like prop-
erties, and so the representation Cohen et al. (2012)
propose does not easily extend to other non-tree mod-
els such as higher order/factorial HMMs that we con-
sider here. Our more general approach requires more

complex tensor operations, such as multi-mode inver-
sion, that are not used in the latent PCFG case.

The key idea of our approach is to embed the clique
potentials of the junction tree into higher order tensors
such that the computation of the marginal probabil-
ity of observed variables can be carried out via tensor
operations. While this novel representation leads only
to a moderate increase in the number parameters for
junction trees of low treewidth, it allows us to design
an algorithm that can recover a transformed version of
the tensor parameterization and ensure that the joint
probability of observed variables are computed cor-
rectly and consistently. The main computation of the
algorithm involves only tensor operations and singu-
lar value decompositions (hence the name “spectral”)
which can be orders of magnitude faster than EM al-
gorithms in large datasets. To our knowledge, this is
the first provably consistent parameter learning tech-
nique for a large class of low-treewidth latent graph-
ical models beyond trees. In our experiments with
large scale synthetic datasets, we show that our spec-
tral algorithm can be almost 2 orders of magnitude
faster than EM while at the same achieving consid-
erably better accuracy. Our spectral algorithm also
achieves comparable accuracy to EM on real data.

Organization of paper. A high level overview of
our approach is given in Figure 1. We first provide
some background on tensor algebra and latent junc-
tion trees. We then derive the spectral algorithm by
representing junction tree message passing with ten-
sor operations, and then transform this representation
into one that only depends on observed variables. Fi-
nally, we analyze the sample complexity of our method
and evaluate it on synthetic and real datasets.

2 Tensor Notation

We first give an introduction to the tensor nota-
tion tailored to this paper. An Nth order tensor is
a multiway array with N “modes”, i.e., N indices



{i1, i2, . . . , iN} are needed to access its entries. Sub-
arrays of a tensor are formed when a subset of the
indices is fixed, and we use a colon to denote all
elements of a mode. For instance, A(i1, . . . , in−1, :
, in+1, . . . , iN ) are all elements in the nth mode
of a tensor A with indices from the other N −
1 modes fixed to {i1, . . . , in−1, in+1, . . . , iN} respec-
tively. Furthermore, we also use the shorthand ip:q =
{ip, ip+1, . . . , iq−1, iq} for consecutive indices, e.g.,
A(i1, . . . , in−1, :, in+1, . . . , iN ) = A(i1:n−1, :, in+1:N ).

Labeling tensor modes with variables. In con-
trast to the conventional tensor notation such as the
one described in Kolda & Bader (2009), the ordering of
the modes of a tensors will not be essential in this pa-
per. We will use random variables to label the modes
of a tensor: each mode will correspond to a random
variable and what is important is to keep track of this
correspondence. Therefore, we think two tensors are
equivalent if they have the same set of labels and they
can be obtained from each other by a permutation of
the modes for which the labels are aligned.

In the matrix case this translates to A and A> being
equivalent in the sense that A> carries the same in-
formation as A, as long as we remember that the rows
of A> are the columns of A and vice versa. We will
use the following notation to denote this equivalence

A ∼= A> (1)

Under this notation, the dimension (or the size) of a
mode labeled by variable X will be the same as the
number of possible values for variableX. Furthermore,
when we multiply two tensors together, we will always
carry out the operation along (a set of) modes with
matching labels.

Tensor multiplication with mode labels. Let
A ∈ RI1×I2×···×IN be an Nth order tensor and B ∈
RJ1×J2×···×JM be an Mth order tensor. If X is a com-
mon mode label for both A and B (w.l.o.g. we assume
that this is the first mode, implying also that I1 = J1),
multiplying along this mode will give

C = A×X B ∈ RI2×···×IN×J2×···×JM , (2)

where the entries of C is defined as

C(i2:N , j2:M ) =
∑I1

i=1
A(i, i2:N )B(i, j2:M )

Similarly, we can multiply two tensors along multiple
modes. Let σ = {X1, . . . , Xk} be an arbitrary set of
k modes (k variables) shared by A and B (w.l.o.g. we
assume these labels correspond to the first k modes,
and I1 = J1, . . . , Ik = Jk holds for the correspond-
ing dimensions). Then multiplying A and B along σ
results in

D = A×σ B ∈ RIk+1×...×IN×Jk+1×...×JM , (3)

where the entries of D are defined as

D(ik+1:N , jk+1:M ) =
∑
i1:k

A(i1:k, ik+1:N )B(i1:k, jk+1:M ).

Multi-mode multiplication can also be interpreted as
reshaping the σ modes of A and B into a single mode
and doing single-mode tensor multiplication. Further-
more, tensor multiplication with labels is symmetric
in its arguments, i.e., A×σ B ∼= B ×σ A.

Mode-specific identity tensor. We now define our
notion of identity tensor with respect to a set of modes
σ = {X1, . . . , XK}. Let A be a tensor with mode la-
bels containing σ, and Iσ be a tensor with 2K modes
with mode labels {X1, . . . , XK , X1, . . . , XK}. Then
Iσ is an identity tensor with respect to modes σ if

A×σ Iσ ∼= A. (4)

One can also understand Iσ using its matrix repre-
sentation: flattening Iσ with respect to σ (the first
σ modes mapped to rows and the second σ modes
mapped to columns) results in an identity matrix.

Mode-specific tensor inversion. Let F ,F−1 ∈
RI1×···×IK×IK+1×···×IK+K′ be tensors of order K +
K ′, and both have two sets of mode labels σ =
{X1, . . . , XK} and ω′ = {XK+1, . . . , XK+K′}. Then
F−1 is the inverse of F w.r.t. modes ω if and only if

F ×ω F−1 ∼= Iσ. (5)

Multimode inversion can also be interpreted as re-
shaping F with respect to ω into a matrix of size
(I1 . . . IK)× (IK+1 . . . IK+K′), taking the inverse, and
then rearranging back into a tensor. Thus the exis-
tence and uniqueness of this inverse can be character-
ized by the rank of the matricized version of F .

Mode-specific diagonal tensors. We use δ to
denote an N -way relation: its entry δ(i1:N ) at po-
sition i1:N equals 1 when all indexes are the same
(i1 = i2 = . . . = iN ), and 0 otherwise. We will
use �d to denote repetition of an index d times. For
instance, we use P(�dX) to denote a dth order ten-
sor where its entries at (i1:d)th position are specified
by δ(i1:d)P(X = xi1). A diagonal matrix with its
diagonal equal to P(X) is then denoted as P(�2X).
Similarly, we can define a (d + d′)th order tensor
P(�dX|�d′Y ) where its (i1:dj1:d′)th entry corresponds
to δ(i1:d)δ(j1:d′)P(X = xi1 |Y = yj1).

3 Latent Junction Trees

In this paper, we will focus on discrete latent vari-
able models where the number of states, kh, for each
hidden variable is much smaller than the number of
states, ko, for each observed variable. Uppercase let-
ters denote random variables (e.g., Xi) and lowercase
letters their instantiations (e.g., xi). A latent variable
model defines a joint probability distribution over a
set of variables X = O ∪H . Here, O denotes the set
of observed variables,

{
X1, . . . , X|O|

}
. H denotes the

set of hidden variables,
{
X|O|+1, . . . , X|H |+|O|

}
.

We will focus on latent variable models where the



structure of the model is a junction tree of low
treewidth (Cowell et al., 1999). Each node Ci in
a junction tree corresponds to a subset (clique) of
variables from the original graphical model. We will
also use Ci to denote the collection of variables con-
tained in the node, i.e. Ci ⊂ X . Let C denote the
set of all clique nodes. The treewidth is then the
size of a largest clique in a junction tree minus one,
that is t = maxCi∈C |Ci| − 1. Furthermore, we asso-
ciate each edge in a junction tree with a separator set
Sij := Ci ∩ Cj which contains the common variables
of the two cliques Ci and Cj it is connected to. If we
condition on all variables in any Sij , the variables on
different sides of Sij will become independent.

Without loss of generality, we assume that each in-
ternal clique node in the junction tree has exactly 3
neighbors.1 Then we can pick a clique Cr as the root
of the tree and reorient all edges away from the root
to induce a topological ordering of the clique nodes.
Given the ordering, the root node will have 3 children
nodes, denoted as Cr1 , Cr2 and Cr3 . Each other inter-
nal node Ci will have a unique parent node, denoted
as Ci0 , and 2 children nodes denoted as Ci1 and Ci2 .
Each leaf node Cl is only connected with its unique
parent node Cl0 . Furthermore, we can simplify the
notation for the separator set between a node Ci and
its parent Ci0 as Si = Ci ∩Ci0 , omitting the index for
the parent node. Then the remainder set of a node
is defined as Ri = Ci \ Si. We also assume w.l.o.g.
that if Ci is a leaf in the junction tree, Ri consists of
only observed variables. We will use ri to denote an
instantiation of the set of variables in Ri. See Figure 2
for an illustration of notation.

Given a root and a topological ordering of the nodes
in a junction tree, the joint distribution of all variables
X can be factorized according to

P(X ) =
∏|X |

i=1
P(Ri|Si), (6)

where each CPT P(Ri|Si), also called a clique poten-
tial, corresponds to a node Ci. The number of param-
eters needed to specify the model is O(|C|kto), linear
in the number of cliques but exponential in the tree
width t. Then the marginal distribution of the ob-
served variables can be obtained by summing over the
latent variables,

P(O) =
∑

X|O|+1

. . .
∑

X|O|+|H |

|X |∏
i=1

P(Ri|Si)

 , (7)

where we use
∑
X φ(X) to denote summation over all

possible instantiations of φ(x) w.r.t. variable X. Note
that each (non-leaf) remainder set Ri contains a small
subset of all latent variables. The presence of latent

1If this is not the case, the derivation is similar but
notationally much heavier.
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Figure 2: Example latent variable models with variables
X = {A,B,C,D,E, F,G,H, I, . . .}, the observed variables
are O = {F,G,H, . . .} (only partially drawn). Its corre-
sponding junction tree is shown in the middle panel. Cor-
responding to this junction tree, we also show the general
notation for it in the rightmost panel.

variables introduces complicated dependency between
observed variables, while at the same time only a small
number of parameters corresponding to the entries in
the CPTs are needed to specify the model.

The process of eliminating the latent variables in (7)
can be carried out efficiently via message passing.
More specifically, the summation can be broken up into
local computation for each node in the junction tree.
Each node only needs to sum out a small number of
variables and then the intermediate result, called the
message, is passed to its parent for further process-
ing. In the end the root node incorporates all messages
from its children and produces the final result P (O).
The local summation step, called the message update,
can be generically written as2

M(Si) =
∑

Ri

P(Ri|Si)M(Si1)M(Si2) (8)

where we use M(Si) to denote the intermediate re-
sults of eliminating variables in the remainder set Ri.
This message update is then carried out recursively
according the reverse topological order of the junction
tree until we reach the root node. The local sum-
mation step for the leaf nodes and root node can be
viewed as special cases of (8). For a leaf node Cl,
there is no incoming message from children nodes,
and hence M(Sl) = P(rl|Sl); for the root node Cr,
Sr = ∅ and Ri = Ci, and hence P(O) = M(∅) =∑
∀X∈Cr

P(Cr)M(Sr1)M(Sr2)M(Sr3).

Example. The message update at the internal node
CBCDE in Figure 2 is

M({C,E}) =
∑

B,D
P(B,D|C,E)P(f |B,C)P(g|B,D).

4 Tensor Representation for Message
Passing

Although the parametrization of latent junction trees
using CPTs is very compact and inference (message
passing) can be carried out efficiently, parameters in
this representation can be difficult to learn. Since the
likelihood of the observed data is no longer convex in
the latent parameters, local search heuristics, such as

2For simplicity of notation, assume Ci = Si ∪ Si1 ∪ Si2 .



EM, are often employed to learning the parameters.
Therefore, our goal is to design a new representation
for latent junction trees, such that subsequent learning
can be carried out in a local-minimum-free fashion.

In this section, we will develop a new representation
for the message update in (8) by embedding each CPT
P(Ri|Si) into a higher order tensor P(Ci) . As we will
see, there will be two advantages to the tensor form.
The first is that tensor multiplication can be used to
compactly express the sum and product steps involved
in message passing. As a very simplistic example, let
PA|B = P(A|B) be a conditional probability matrix
and PB = P(B) be a marginal probability vector.
Then matrix-vector multiplication, PA|BPB = P (A),
sums out variable B. However, if we put the marginal
probability of B on the diagonal of a matrix, then B
will not be summed out: e.g., if P�2B = P(�2B), then
PA|BP�2B = P(A,B) (but now B is no longer on the
diagonal). We will leverage these facts to derive our
tensor representation for message passing.

Moreover, we can then utilize tensor inversion to con-
struct an alternate parameterization. In the very
simplistic (matrix) example, note that P(A,B) =
PA|BP�2B = PA|BFF

−1P�2B . The invertible trans-
formations F will give us an extra degree of freedom
to allow us to design an alternate parameterization of
the latent junction tree that is only a function of ob-
served variables. This would not be possible in the
traditional representation (Eq. 8).

4.1 Embed CPTs to higher order tensors

As we can see from (6), the joint probability distri-
bution of all variables can be represented by a set
of conditional distributions over just subsets of vari-
ables. Each one of this conditionals is a low order
tensor. For example in Figure 2, the CPT correspond-
ing to the clique node CBCDE would be a 4th order
tensor P(B,D|C,E) where each variable corresponds
to a different mode of the tensor. However, this rep-
resentation is not suitable for deriving the observable
representation since message passing cannot be defined
easily using the tensor multiplication/sum connection
shown above. Instead we will embed these tensors into
even higher order tensors to facilitate the computation.
The key idea is to introduce duplicate indexes using
the mode-specific identity tensors, such that the sum-
product steps in message updates can be expressed as
tensor multiplications.

More specifically, the number of times a mode of the
tensor is duplicated will depend on how many times
the corresponding variable in the clique Ci appears in
the separator sets incident to Ci. We can define the
count for a variable Xj ∈ Ci as

dj,i = I[Xj ∈ Si] + I[Xj ∈ Si1 ] + I[Xj ∈ Si2 ], (9)

where I[·] is an indicator function taking value 1 if its
argument is true and 0 otherwise. Then the tensor
representation of the node Ci is

P(Ci) :=
P(. . . , (�dj,iXj), . . .︸ ︷︷ ︸

∀Xj∈Ri

| . . . , (�dj′,iXj′), . . .︸ ︷︷ ︸
∀Xj′∈Si

), (10)

where the labels for the modes of the ten-
sor are the combined labels of the separator
sets, i.e., {Si, Si1 , Si2}. The number of times a variable
is repeated in the label set is exactly equal to dj,i.

Essentially, tensor P(Ci) contains exactly the same
information as the original CPT P(Ri|Si). Further-
more, P(Ci) has a lot of zero entries, and the entries
from P(Ri|Si) are simply embedded in the higher or-
der tensor P(Ci). Suppose all variables in node Ci
are latent variables each taking kh values. Then the

number of entries needed to specify P(Ri|Si) is k
|Ci|
h ,

while the high order tensor P(Ci) has kdih entries where

di :=
∑
j:Xj∈Ci

dj,i which is never smaller than k
|Ci|
h .

In a sense, the parametrization using higher order ten-
sor P(Ci) is less compact than the parametrization
using the original CPTs. However, constructing the
tensor P this way allows us to express the junction
tree message update step in (8) as tensor multipli-
cations (more details in the next section), and then
we can leverage tools from tensor analysis to design a
local-minimum-free learning algorithm.

The tensor representation for the leaf nodes and
the root node are special cases of the representation
in (10). The tensor representation at a leaf node
Cl is simply equal to its CPT P(Cl) = P(Rl|Sl).
The root node Cr has no parent, so P(Cr) =
P(. . . , (�dj,rXj), . . .), ∀Xj ∈ Cr. Furthermore, since
dj,i is simply a count of how many times a variable in
Ci appears in each of the incident separators, the size
of each tensor does not depend on which clique node
was selected as the root.

Example. In Figure 2, node CBCDE corresponds to
CPT P(B,D|C,E). Its high order tensor representa-
tion is P(CBCDE) = P(�2B,D| �2 C,E), since both
B and C occur twice in the separator sets incident to
CBCDE . Therefore the tensor P({B,C,D,E}) is a
6th order tensor with mode labels {B,B,D,C,C,E}.

4.2 Tensor message passing

With the higher order tensor representation for clique
potentials in the junction tree as in (10), we can ex-
press the message update step in (8) as tensor multipli-
cations. Consequently, we can compute the marginal
distribution of the observed variables O in equation (7)
recursively using a sequence of tensor multiplications.
More specifically the general message update equation



for a node in a junction tree can be expressed as

M(Si) = P(Ci)×Si1
M(Si1)×Si2

M(Si2). (11)

Here the modes of the tensor P(Ci) are labeled by the
variables, and the mode labels are used to carry out
tensor multiplications as explained in Section 2. Es-
sentially, multiplication with respect to the duplicated
modes of the tensor P(Ci) will implement some kind
of element-wise multiplication for the incoming mes-
sages and then summation over the variables in the
remainder set Ri.

The tensor message passing steps in leaf nodes and the
root node are special cases of the tensor message up-
date in equation (11). The outgoing message M(Sl)
at a leaf node Cl can be computed by simply setting all
variables in Rl to the actual observed values rl, i.e.,

M(Sl) = P(Cl)Rl=rl = P(Rl = rl|Sl). (12)

In this step, there is no difference between the aug-
mented tensor representation and the standard mes-
sage passing in junction tree. At the root, we arrive
at the final results of the message passing algorithm,
and we obtain the marginal probability of the observed
variables by aggregating all incoming messages from
its 3 children, i.e.,

P(O) = (13)
P(Cr)×Sr1

M(Sr1)×Sr2
M(Sr2)×Sr3

M(Sr3).

Example. For Figure 2, using the following tensors

P({B,C,D,E}) = P(�2B,D | �2 C,E)
M({B,C}) = P(f |B,C)
M({B,D}) = P(g|B,D),

we can write the message update for node CBCDE in
the form of equation (11) as

M({C,E}) = P({B,C,D,E})×{B,C}M({B,C})
×{B,D}M({B,D}).

Note how the tensor multiplication sums out B and
D: P({B,C,D,E}) has two B labels, and it appears
in the subscripts of tensor multiplication twice; D ap-
pears once in the label and in the subscript of ten-
sor multiplication respectively. Similarly, C is not
summed out since there are two C labels but it appears
only once in the subscript of tensor multiplication.

5 Transformed Representation

Explicitly learning the tensor representation in (10) is
still an intractable problem. Our key observation is
that we do not need to recover the tensor represen-
tation explicitly if our focus is to perform inference
using the message passing algorithm as in (11)–(13).
As long as we can recover the tensor representation up
to some invertible transformation, we can still obtain
the correct marginal probability P(O).

More specifically, we can insert a mode-specific iden-
tity tensor Iσ into the message update equation
in (11) without changing the outgoing message. Sub-

sequently, we can then replace the mode-specific iden-
tity tensor by a pair of tensors, F and F−1, which are
mode-specific inversions of each other (F ×ω F−1 ∼=
Iσ). Then we can group these inserted tensors with
the representation P(C) from (10), and obtain a trans-

formed version P̃(C) (also see Figure 1). Furthermore,
we have the freedom in choosing these collections of
tensor inversion pairs. We will show that if we choose
them systematically, we will be able to estimate each
transformed tensor P̃(C) using the marginal proba-
bility of a small set of observed variables (observable
representation). In this section, we will first explain
the transformed tensor representation.

As an illustration, consider a sequence of matrix mul-
tiplications with two identity matrices I1 = F1F

−1
1

and I2 = F2F
−1
2 inserted

ABC = A(F1F
−1
1 )B(F2F

−1
2 )C

= (AF1)︸ ︷︷ ︸
Ã

(F−11 BF2)︸ ︷︷ ︸
B̃

(F−12 C)︸ ︷︷ ︸
C̃

.

We see that we can equivalently compute ABC using
their transformed versions, i.e., ABC = ÃB̃C̃.

Moving to the tensor case, let us first consider a node
Ci and its parent node Ci0 . Then the outgoing message
of Ci0 can be computed recursively as

M(Si0) = P(Ci0)×Si
M(Si)︸ ︷︷ ︸

P(Ci)×Si1
M(Si1 )×Si2

M(Si2 )

× . . .

Inserting a mode specific identity tensor ISi
with la-

bels {Si, Si} and similarly defined mode specific iden-
tity tensors ISi1

and ISi2
into the above two message

updates, we obtain

M(Si0) = P(Ci0)×Si (ISi ×Si M(Si)︸ ︷︷ ︸
P(Ci)×Si1

(ISi1
×Si1

M(Si1 ))×Si2
(ISi2

×Si2
M(Si1

))

)× . . .

Then we can further expand ISi using tensor inver-
sion pairs F i, F−1i , i.e., ISi = F i ×ωi F

−1
i . Note

that both F and F−1 have two set of mode labels,
Si and another set ωi which is related to the observ-
able representation and explained in the next section.
Similarly, we expand ISi1

and ISi2
using their corre-

sponding tensor inversion pairs.

After expanding tensor identities I, we can regroup
terms, and at node Ci we have

M(Si) =(P(Ci)×Si1
F i1 ×Si2

F i2) (14)

×ωi1
(F−1i1 ×Si1

M(Si1))

×ωi2
(F−1i2 ×Si2

M(Si2))

and at the parent node Ci0 of Ci

M(Si0) =(P(Ci0)×Si F i × . . .) (15)

×ωi
(F−1i ×Si

M(Si))× . . .
Now we can define the transformed tensor representa-
tion for P(Ci) as

P̃(Ci) := P(Ci)×Si1
F i1 ×Si2

F i2 ×Si F
−1
i , (16)

where the two transformations F i1 and F i2 are ob-



tained from the children side and the transformation
F−1i is obtained from the parent side. Similarly, we
can define the transformed representation for a leaf
node and for the root node as

P̃(Cl) = P(Cl)×Sl
F−1l (17)

P̃(Cr) = P(Cr)×Sr1
Fr1 ×Sr2

Fr2 ×Sr3
Fr3 (18)

Applying these definitions of the transformed repre-
sentation recursively, we can perform message passing
based purely on these transformed representations

M̃(Si0) = P̃(Ci0)×ωi M̃(Si)︸ ︷︷ ︸
P̃(Ci)×ωi1

M̃(Si1
)×ωi2

M̃(Si2
)

× . . . (19)

6 Observable Representation

In the transformed tensor representation in (16)-(18),
we have the freedom of choosing the collection of ten-
sor pairs F and F−1. We will show that if we choose
them systematically, we can recover each transformed
tensor P̃(C) using the marginal probability of a small
set of observed variables (observable representation).

We will focus on the transformed tensor representa-
tion in (16) for an internal node Ci (other cases fol-
low as special cases). Due to the recursive way the
transformed representation is defined, we only have
the freedom of choosing F i1 and F i2 in this formula;
the choice of F i will be fixed by the parent node of
Ci. The idea is to choose

• F i1 = P(Oi1 |Si1) as the conditional distribution
of some set of observed variables Oi1 ⊂ O in the
subtree rooted at child node Ci1 of node Ci, con-
ditioning on the corresponding separator set Si1 .

• Similarly, we choose F i2 = P(Oi2 |Si2) where
Oi2 ⊂ O and it lies in subtree rooted at Ci2 .

• Following this convention, F i is chosen by the
parent node Ci0 and is fixed to P(Oi|Si).

Therefore, we have

P̃(Ci) = P(Ci)×Si1
P(Oi1 |Si1)×Si2

P(Oi2 |Si2)

×Si P(Oi|Si)−1, (20)

where the first two tensor multiplications essentially
eliminate the latent variables in Si1 and Si2 .3 With
these choices, we also fix the mode labels ωi, ωi1 and
ωi2 in (14) (15) and (19). That is ωi = Oi, ωi1 = Oi1
and ωi2 = Oi2 .

To remove all dependencies on latent variables in
P̃(Ci) and relate it to observed variables, we need
to eliminate the latent variables in Si and the ten-
sor P(Oi|Si)−1. For this, we multiply the transformed

tensor P̃(Ci) by P(Oi,Oi−), where Oi− denotes some
set of observed variables which do not belong to the
subtree rooted at node Ci. Furthermore, P(Oi,Oi−)
can be re-expressed using the conditional distribution

3If a latent variable in Si1 ∪ Si2 is also in Si, it is not
eliminated in this step but in another step.

of Oi and Oi− respectively, conditioning on the sepa-
rator set Si, i.e.,

P(Oi,Oi−) = P(Oi|Si)×Si P(�2Si)×Si P(Oi−|Si).
Therefore, we have

P(Oi|Si)−1 ×Oi P(Oi,Oi−) = P(�2Si)×Si P(Oi−|Si),
and plugging this into (20), we have

P̃(Ci)×Oi
P(Oi,Oi−)

=P(Ci)×Si1
P(Oi1 |Si1)×Si2

P(Oi2 |Si2)

×Si
P(�2Si)×Si

P(Oi−|Si)
=P(Oi1 ,Oi2 ,Oi−), (21)

where P̃(Ci) is now related to only marginal prob-
abilities of observed variables. From the equivalent
relation, we can inverting P(Oi,Oi−), and obtain the

observable representation for P̃(Ci)

P̃(Ci) = P(Oi1 ,Oi2 ,Oi−)×Oi− P(Oi,Oi−)−1. (22)

Example. For node CBCDE in Figure 2, the choices
of Oi,Oi1 ,Oi2 and Oi− are {F,G}, G, F and H re-
spectively.

There are many valid choices of Oi−. In the supple-
mentary, we describe how these different choices can
be combined via a linear system using Eq. 21. This
can substantially increase performance.

For the leaf nodes and the root node, the derivation
for their observable representations can be viewed as
special cases of that for the internal nodes. We provide
the results for their observable representation below:

P̃(Cr) = P(Or1 ,Or2 ,Or3), (23)

P̃(Cl) = P(Ol,Ol−)×Ol− P(Ol,Ol−)−1. (24)

If P(Ol,Ol−) is invertible, then P̃(Cl) = IOl
. Oth-

erwise we need to project P(Oi,Oi−) using a tensor
U i to make it invertible, as discussed in the next sec-
tion. The overall algorithm is given in Algorithm 1.
Given N i.i.d. samples of the observed nodes, we sim-
ply replace P(·) by the empirical estimate P̂(·).

Algorithm 1 Spectral algorithm for latent junction tree

In: Junction tree topology and N i.i.d. samples{
xs
1, . . . , x

s
|O|
}N
s=1

Out: Estimated marginal P̂(O)
1: Estimate P̂(Ci) for the root, leaf and internal nodes

P̂(Cr) = P̂(Or1 ,Or2 ,Or3)×Or1
Ur1 ×Or2

Ur2 ×Or3
Ur3

P̂(Cl) = P̂(Ol,Ol−)×Ol− (P̂(Ol,Ol−)×Ol
U l)
−1

P̂(Ci) = P̂(Oi1 ,Oi2 ,Oi−)×Oi1
U i1 ×Oi2

U i2

×Oi− (P̂(Oi,Oi−)×Oi U i)
−1

2: In reverse topological order, leaf and internal nodes
send messages

M̂(Sl) = P̂(Cl)Ol=ol

M̂(Si) = P̂(Ci)×Oi1
M̂(Si1)×Oi2

M̂(Si2)

3: At the root, obtain P̂(O) by

P̂(Cr)×Or1
M̂(Sr1)×Or2

M̂(Sr2)×Or3
M̂(Sr3)



7 Discussion

The observable representation exists only if there exist
tensor inversion pairs F i = P(Oi|Si), and F−1i . This
is equivalent to requiring that the rank of the matri-
cized version of F i (rows corresponds to modes Oi and
column to modes Si) has rank τi := kh×|Si|. Similarly.
the matricized version of P(O−i|Si) also needs to have
rank τi, so that the matricized version of P(Oi,Oi−)
has rank τi and is invertible. Thus, it is required that
#states(Oi) ≥ #states(Si). This can be achieved by
either making Oi consist of a few high dimensional ob-
servations, or of many smaller dimensional ones. In
the case when #states(Oi) > #states(Si), we need to
project F i to a lower dimensional space using a ten-
sor U i so that it can be inverted. In this case, we
define F i := P(Oi|Si) ×Oi

U i. For example, follow-
ing this through the computation for the leaf gives us
that P̃(Cl) = P(Ol,Ol−)×Ol− (P(Ol,Ol−)×Ol

U l)
−1.

A good choice of U i can be obtained by performing a
singular value decomposition of the matricized version
of P(Oi,Oi−) (variables in Oi are arranged to rows and
those in Oi− to columns).

For HMMs and latent trees, this rank condition can
be expressed simply as requiring the conditional prob-
ability tables of the underlying model to not be rank-
deficient. However, junction trees encode more com-
plex latent structures that introduce subtle considera-
tions. A general characterization of the existence con-
dition for observable representation with respect to
the graph topology will be our future work. In the
appendix, we give some intuition using a couple of ex-
amples where observable representations do not exist.

8 Sample Complexity

We analyze the sample complexity of Algorithm 1 and
show that it depends on the junction tree topology
and the spectral properties of the true model. Let di
be the order of P(Ci) and ei be the number of modes
of P(Ci) that correspond to observed variables.

Theorem 1 Let τi = kh × |Si|, dmax = maxi di, and
emax = maxi ei. Then, for any ε > 0, 0 < δ < 1, if

N ≥ O

((
4k2h
3β2

)dmax kemax
o ln |C|δ |C|

2

ε2α4

)
where στ (∗) returns the τ th largest singular value and

α = mini στi(P(Oi,O−i)), β = mini στi(F i)

Then with probability 1− δ,∑
x1,...,x|O|

∣∣∣P̂(x1, . . . , x|O|)− P(x1, . . . , x|O|)
∣∣∣ ≤ ε .

See the supplementary for a proof. The result implies
that the estimation problem depends exponentially on
dmax and emax, but note that emax ≤ dmax. Fur-
thermore, dmax is always greater than or equal to the
treewidth. Note the dependence on the singular val-
ues of certain probability tensors. In fully observed

models, the accuracy of the learned parameters de-
pends only on how close the empirical estimates of the
factors are to the true factors. However, our spec-
tral algorithm also depends on how close the inverses
of these empirical estimates are to the true inverses,
which depends on the spectral properties of the matri-
ces (Stewart & Sun, 1990).

9 Experiments

We now evaluate our method on synthetic and real
data and compare it with both standard EM (Demp-
ster et al., 1977) and stepwise online EM (Liang &
Klein, 2009). All methods were implemented in C++,
and the matrix library Eigen (Guennebaud et al.,
2010) was used for computing SVDs and solving linear
systems. For all experiments, standard EM is given 5
random restarts. Online EM tends to be sensitive to
the learning rate, so it is given one restart for each
of 5 choices of the learning rate {0.6, 0.7, 0.8, 0.9, 1}
(the one with highest likelihood is selected). Conver-
gence is determined by measuring the change in the
log likelihood at iteration t (denoted by f(t)) over the

average: |f(t)−f(t−1)|
avg(f(t),f(t−1)) ≤ 10−4 (the same precision as

used in Murphy (2005)).

For large sample sizes our method is almost two or-
ders of magnitude faster than both EM and online
EM. This is because EM is iterative and every iter-
ation requires inference over all the training examples
which can become expensive. On the other hand, the
computational cost of our method is dominated by the
SVD/linear system. Thus, it is primarily dependent
only on the number of observed states and maximum
tensor order, and can easily scale to larger sample sizes.

In terms of accuracy, we generally observe 3 distinct
regions, low-sample size, mid-sample size, and large
sample size. In the low sample size region, EM/online
EM tend to overfit to the training data and our spec-
tral algorithm usually performs better. In the mid-
sample size region EM/online EM tend to perform bet-
ter since they benefit from a smaller number of param-
eters. However, once a certain sample size is reached
(the large sample size region), our spectral algorithm
consistently outperforms EM/online EM which suffer
from local minima and convergence issues.

9.1 Synthetic Evaluation

We first perform a synthetic evaluation. 4 different la-
tent structures are used (see Figure 3): a second order
nonhomogenous (NH) HMM, a third order NH HMM,
a 2 level NH factorial HMM, and a complicated syn-
thetic junction tree. The second/third order HMMs
have kh = 2 and ko = 4, while the factorial HMM and
synthetic junction tree have kh = 2, and ko = 16. For
each latent structure, we generate 10 sets of model pa-
rameters, and then sample N training points and 1000



test points from each set, whereN is varied from 100 to
100, 000. For evaluation, we measure the accuracy of

joint estimation using error = |P̂(x1,...,xO)−P(x1,...,xO)|
P(x1,...,xO) .

We also measure the training time of both methods.

Figure 3 shows the results. As discussed earlier, our
algorithm is between one and two orders of magnitude
faster than both EM and online EM for all the latent
structures. EM is actually slower for very small sample
sizes than for mid-range sample sizes because of over-
fitting. Also, in all cases, the spectral algorithm has
the lowest error for large sample sizes. Moreover, criti-
cal sample size at which spectral overtakes EM/online
EM is largely dependent on the number of parameters
in the observable representation compared to that in
the original parameterization of the model. In higher
order/factorial HMM models, this increase is small,
while in the synthetic junction tree it is larger.

9.2 Splice dataset

We next consider the task of determining splicing sites
in DNA sequences (Asuncion & Newman, 2007). Each
example consists of a DNA sequence of length 60,
where each position in the sequence is either an A, T ,
C, or G. The goal is to classify whether the sequence
is an Intron/Exon site, Exon/Intron site, or neither.
During training, for each class a different second or-
der nonhomogeneous HMM with kh = 2 and ko = 4 is
trained. At test, the probability of the test sequence is
computed for each model, and the one with the high-
est probability is selected (which we found to perform
better than a homogeneous one).

Figure 4, shows our results, which are consistent with
our synthetic evaluation. Spectral performs the best
in low sample sizes, while EM/online EM perform a
little better in the mid-sample size range. The dataset
is not large enough to explore the large sample size
regime. Moreover, we note that spectral algorithm is
much faster for all the sample sizes.

10 Conclusion

We have developed an alternative parameterization
that allows fast, local minima free, and consistent pa-
rameter learning of latent junction trees. Our ap-
proach generalizes spectral algorithms to a much wider
range of structures such as higher order, factorial, and
semi-hidden Markov models. Unlike traditional non-
convex optimization formulations, spectral algorithms
allow us to theoretically explore latent variable mod-
els in more depth. The spectral algorithm depends not
only on the junction tree topology but also on the spec-
tral properties of the parameters. Thus, two models
with the same structure may pose different degrees of
difficulty based on the underlying singular values. This
is very different from learning fully observed junction
trees, which is primarily dependent on only the topol-
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Figure 3: Comparison of our spectral algorithm (blue) to
EM (red) and online EM (green) for various latent struc-
tures. Both errors and runtimes in log scale.
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ogy/treewidth. Future directions include learning dis-
criminative models and structure learning.
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