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Abstract

We introduce a method to learn a mixture
of submodular “shells” in a large-margin set-
ting. A submodular shell is an abstract sub-
modular function that can be instantiated
with a ground set and a set of parameters to
produce a submodular function. A mixture
of such shells can then also be so instanti-
ated to produce a more complex submodular
function. What our algorithm learns are the
mixture weights over such shells. We pro-
vide a risk bound guarantee when learning in
a large-margin structured-prediction setting
using a projected subgradient method when
only approximate submodular optimization is
possible (such as with submodular function
maximization). We apply this method to the
problem of multi-document summarization
and produce the best results reported so far
on the widely used NIST DUC-05 through
DUC-07 document summarization corpora.

1 Introduction

Submodular functions [10] are those that satisfy the
property of diminishing returns: given a finite ground
set V , for any A ⊆ B ⊆ V \v, a submodular function f
must satisfy f(A∪{v})−f(A) ≥ f(B∪{v})−f(B), i.e.,
the incremental “value” of v decreases as the context in
which v is considered grows from A to B. Submodular
functions share a number of properties in common with
convex and concave functions [29], including their wide
applicability, their generality, their multiple options
for their representation, and their closure under a
number of common operators (including mixtures,
truncation, complementation, and certain convolu-
tions). For example, the weighted sum of a collection
of submodular functions {fi}i, f =

∑
i wifi where wi

are nonnegative weights, is also submodular. While
they have a long history in operations research, game
theory, econometrics, and electrical engineering, they
are still beginning to be studied in machine learning for
a variety of tasks including sensor placement [19, 20],
structure learning of graphical models [34], document
summarization [27, 28] and social networks [18].

The problem of learning submodular functions has
also recently been addressed. For example, in [15], it is
asked “can one make only polynomial number of queries
to an unknown submodular function f and constructs
a f̂ such that f̂(S) ≤ f(S) ≤ g(n)f̂(S) where n is the
ground set size and for what function g : N→ R is the
possible?”. Among many results, they show that even
with adaptive queries and monotone functions, one can-
not learn better than an Ω(

√
n/ log n) approximation

of a given fixed submodular function. Similarly, [1]
addressed the submodular function learning problem
from a learning theory perspective, given a distribution
on subsets. They provide strong negative results in-
cluding that one can not approximate in this setting to
within a constant factor. In general, therefore, learning
submodular functions is hard.

While learning over all possible submodular functions
may be hard, this does not preclude learning submod-
ular functions with known forms with unknown pa-
rameters. For example, given a finite set of M fixed
submodular components {fi}Mi=1 where fi : 2V → R is
submodular over V , then learning a conical mixture∑M
i=1 wifi, where (w1, w2, . . . , wM ) = www ∈ RM+ , has

not in the above been ruled out to have approximate
guarantees. Such mixtures might span a very large set
of submodular functions, depending on the diversity of
the component set. We call such a problem “learning
submodular mixtures.”

In this paper we extend this one step further, to an ap-
proach we call learning “submodular shells.” An instan-
tiated submodular shell is a function fα,(V,β) : 2V → R
indexed by a pair of parameter vectors α, β and a



ground set V . The parameters β are associated with a
particular ground set V but the parameters α of the
shell apply to any ground-set vector pair (V ,β). A
shell has the form fᾱ,(·,·), which does not have (V ,β)
instantiated. We might learn, for example, that a par-
ticular value ᾱ produces a good shell fᾱ,(·,·) for any
instantiation of that shell with a particular (V, β). In
this sense, a submodular shell might be seen as a form
of “structured submodularity.” Moreover, we might
learn www in a mixture of such shells

∑
i wifαi,(·,·) based

on data consisting only of training tuples of the form
{((V (t), β(t)), S(t))}t where S(t) ⊆ V (t) and which can
be used in an objective that involves the instantiated
mixture of shells. Note that here, training tuples may
consist of a sequence of different ground sets, and the
goal is from these training tuples, and given a finite
and fixed set of shells parameterized by {αi}, identify
the conical weights www that optimize an objective. Of
course, if all training ground sets are identical, then
learning submodular shell mixtures reduces to learn-
ing submodular mixtures. In practice, however, the
training ground sets are not usually identical. E.g., in
extractive document summarization, the training data
could be a set of documents and the corresponding
human summaries, where the ground sets, those sen-
tences that constitute the documents, are not identical
between training samples. In particular, for a docu-
ment t, the ground set V (t) = {1, · · · , nt} where nt is
the number of sentences in document t, and β(t) could
be the term-frequency vectors for the sentences (see
Section 5.2 for more instances of this).

We introduce a method whereby submodular shell
mixtures may be learnt in a max-margin structured-
prediction setting, and provide a risk-bound guarantee
under approximate submodular maximization (Theo-
rem 1). We apply our method to the extractive doc-
ument summarization problem and, as mentioned in
the abstract, this yields extremely good results.

2 Structured Prediction

A main goal of learning is to identify a function h :
X → Y, that maps from an input domain X to an
output domain Y. Structured prediction problems
[51, 50, 14] are those where these domains may consist
of combinatorial structures. Often, given an input
xxx ∈ X , only a subset of Y, say Yxxx, is valid. For
example, if xxx is a sentence, and Y is the set of all parse
trees, than only a subset of possible parse trees Yxxx
might be valid. This offers little solace, however, as Yxxx
is typically still exponentially large. Usually, one forms
a score function s : X × Y that measures how good an
output yyy is for a given input xxx. The decision problem
is, given an xxx, find one of the outputs with the highest
score, i.e., yyy∗ ∈ argmaxyyy∈Yxxx s(xxx,yyy).

One of the primary challenges of structured prediction
is that one needs to handle Yxxx, whose cardinality is fi-
nite but exponentially large. A common way to address
this issue is to make assumptions on both Y and s. For
instance, if s decomposes over the parts of Y and more-
over only depends on “local” parts, one could employ
dynamic programming or integer programming algo-
rithm to find the optimal solution. Another approach is
to explore combinatorial structures upon which efficient
algorithms are available. Examples of this sort include
the Hungarian method [21] for maximum weighted bi-
partite matching and the Chu-Liu-Edmonds algorithm
[6, 9] for optimal branchings. Alternatively, as we do in
the sequel, one could resort to approximate solutions
with approximation guarantees.

3 Submodular Shell Scores

In this paper, we propose to explore the structured pre-
diction problem using submodular shell score functions.
That is, given xxx, s(xxx, ·) : Yxxx → R is a submodular
function where Yxxx is considered to be the finite ground
set associated with xxx — there is a finite ground set Vxxx
associated with xxx where Yxxx ⊆ 2Vxxx . There are at least
two benefits of using such submodular score functions.
First, submodular functions are natural and expressive
with the capability of modeling decisions beyond local
or linear interactions among parts. That is, submodular
functions may allow for global direct interactions over
a structured object unlike score functions that must
decompose in some way. Second, this expressive power
does require prohibitive computation as would an arbi-
trary score function. The reason is that the submodular
maximization problem, even under many constrained
settings, can be solved efficiently and near-optimally
with rigorous performance guarantees [36, 13, 25, 2, 11].

The hypothesis function we consider takes the following
linear discriminant form:

h(xxx;www) = argmax
yyy∈Yxxx

s(xxx,yyy) = argmax
Y ∈Yxxx

www>fffxxx(Y )

= argmax
Y ∈Yxxx

∑
i

wifαi,(Vxxx,βxxx)(Y )

where www ∈ R+ is a non-negative weight vector, and
fα,(V,β) : 2V → R is submodular over subsets of V for
every valid value of α and (V, β). Since the weights
are non-negative, the score function is also submodular.
We call fα,(V,β) a submodular shell, abstracting a set
of submodular functions characterized by some α, β
and a ground set V . The score function is called a
submodular shell mixture, and each fαi,(V,β) is a shell
component of the mixture. Note that the parameters β
are associated with a particular ground set V but the
parameters α of the shell apply to any pair of ground
set V and β value.



While we discuss our learning process in Section 4,
we introduce the learning problem here to improve
clarity. We are given a set of training instances S =
{(xxx(t), yyy(t))}Tt=1 drawn independently from a distribu-
tion D over pairs (xxx,yyy) ∈ X×Y restricted in such a way
that yyy ∈ Yxxx for any pair (xxx,yyy). xxx(t) corresponds to a
finite ground set Vxxx(t) and a set of parameters βxxx(t) and
so we say that xxx(t) = (Vxxx(t) , βxxx(t)). We also have a finite
collection of M submodular shells {fαi,(·,·)}Mi=1 each of
which is instantiated into a submodular function for any
xxx ∈ X . That is, fαi,xxx(t) : 2Vxxx(t) → R is a submodular
function. We are also given a loss function and `xxx,yyy(ŷyy)
that measures the loss of predicting ŷyy ∈ Yxxx when the
true label is yyy ∈ Yxxx. The empirical risk minimization
problem then is to find a conical mixture www ∈ RM+ such
that the risk E(xxx,yyy)∼D[`xxx,yyy(h(xxx;www))] is minimized. It is
important to realize that what is learnt is the mixture
coefficients www over a set of shells that may be instan-
tiated into a weighted sum of submodular functions.

Before we discuss learning in detail, we consider the
expressive power of mixtures of such submodular shells.

3.1 Submodular Shell Mixtures

A fairly rich subclass of submodular functions can be
instantiated from submodular shell mixtures with com-
ponents being simpler submodular shells. Consider,
for example, truncation functions, mixtures of which
can represent many submodular functions of interest.
Given a modular function1 c : 2V → R, define a trun-
cation function tα,(V,c) : 2V → R as

tα,(V,c)(A) = min

{
c(A), αmax

B⊆V
c(B)

}
,

which is submodular, where α ∈ R is the truncation
threshold. A modular function can also be written
as a truncation function with α = ∞. We note that
(V, β) above takes the form (V, c) here, and we might
have a collection of such functions {tαi,(V,c)}i, and
learning a mixture www would mean that wi indicates the
importance of truncation threshold αi.

In fact, many submodular functions can be written as
mixtures of truncation functions. For example, cover-
age type functions, canonical examples of submodular
functions, can be written as submodular mixtures. Pre-
cisely, let a collection of sets be {Ai}i∈{1,··· ,|V |} on a
ground set E. Then the set cover function becomes

f : 2V → R+, f(B) =

∣∣∣∣∣⋃
i∈B

Ai

∣∣∣∣∣ .
We can define costs ci,j = 1 if Ai contains j ∈ E and

1f is modular if both f and −f are submodular.

ci,j = 0 otherwise. We then have

f(B) =

∣∣∣∣∣⋃
i∈B

Ai

∣∣∣∣∣ =

|E|∑
j=1

min

{∑
i∈B

ci,j , 1

}
,

which is a mixture of truncation functions. Moreover
sums of concave functions applied to cardinality func-
tions [47] can be represented as mixtures of truncation
functions — any sum of such functions can be expressed
as a sum of a modular function and nonnegative linear
combinations of truncation functions.

Another interesting class is weighted matroid rank
functions [32]. Given matroids [56, 38] Mi = (V, Ii),
and modular functions mi : 2V → R+, we get:

M∑
i=1

wif
i
mi,(V,Mi)

=

M∑
i=1

wi max{mi(I) : I ⊆ S, I ∈ Ii}

which includes cover-like functions and many others.

The submodular functions introduced in [28] for docu-
ment summarization can also been seen as a mixture of
submodular shells, with components being either the
coverage or the diversity shell that can be instantiated
for a particular document.

In general, by using rich enough families of shell com-
ponents, a submodular shell mixture could be very
expressive, representing a very large family of submod-
ular functions. Moreover, another advantage of using
submodular shell mixture representations is that, since
we assume each component is given and only the com-
ponent weights are unknown, the learning problem
can be addressed by using well-established methods.
And by learning shell mixtures, we can then apply
the learnt mixture to structured problems even over
different underlying ground sets.

4 Learning Submodular Shell
Mixtures

While there might be many ways of learning shell mix-
tures, in this paper we take a large-margin approach,
standard in structured prediction. In other words, we
want to minimize the risk of making predictions (deci-
sions) when using the submodular shell mixture as a
score function. Of course, the standard maximization
in learning structured prediction is only approximate
in this case, since maximizing submodular functions
in NP-hard (although constant-factor approximable).
Moreover, we need to identify a valid loss function that
dose not violate submodularity. We wish also to en-
sure that the learnt parameters have quality guarantees
(e.g., a risk bound). All of this is done in the below.



4.1 Large Margin Learning

We consider the learning problem defined in Section 3.
For concision, we denote

Yt , Yxxx(t) , fff t(yyy) , fffxxx(t)(yyy), and `t(yyy) , `xxx(t),yyy(t)(yyy).

We follow the maximum margin approach [51] to learn
the component weights www, where the goal is to find
a score function that scores yyy(t) higher than all other
yyy ∈ Y \ yyy(t) by some margin. Formally, the learning
problem is as follows:

min
www≥0

1

T

T∑
t=1

ˆ̀
t(www) +

λ

2
‖www‖2, (1)

where the generalized hinge loss

ˆ̀
t(www) , max

yyy∈Yt

(
www>fff t(yyy) + `t(yyy)

)
−www>fff t(yyy(t)) (2)

and a quadratic regularizer is minimized.

Algorithm 1: Projected subgradient descent for learn-
ing submodular shell mixtures.

Input : S = {(xxx(t), yyy(t))}Tt=1 and a learning rate
sequence {ηt}Tt=1.

www0 = 0;
for t = 1, · · · , T do

Approximate loss augmented inference:
ŷyyt ≈ argmaxyyy∈Yt

www>t−1fff t(yyy) + `t(yyy);
Compute the subgradient:
gggt = λwwwt−1 + fff t(ŷyyt)− fff t(yyy(t));
Update the weights with projection:
wwwt = max(000,wwwt−1 − ηtgggt);

Return : the averaged parameters 1
T

∑
twwwt.

Many algorithms have been proposed for the large
margin learning problem, including those based on the
exponentiated gradient method [7], the dual extragadi-
ent method [52], the cutting-plane algorithm [54], and
the subgradient descent method [42, 43]. We adopt
a subgradient descent algorithm to learn submodular
shell mixtures, as illustrated in Algorithm 1, where
max of two vectors takes dimension-wise maximum,
i.e. max{aaa,bbb} = (max(a1, b1), · · · ,max(an, bn)) where
aaa,bbb ∈ Rn.

Note, to preserve submodularity, the component
weights must be non-negative. We thus simply project
the weights to the non-negative orthant whenever doing
the updates, and it is easy to show that updates fol-
lowed by projection onto a non-negative region do not
affect the convergence or correctness of the algorithm
as when a point is projected back into the convex set,
it is moved closer to every point in the set including
the optimal points.

Second, whether the learning can be done efficiently
depends on whether the so called loss augmented in-
ference (LAI) problem,

max
yyy∈Yt

www>fff t(yyy) + `t(yyy), (3)

can be solved efficiently. The LAI problem has a term
that precisely matches the prediction problem whose
parameters we are trying to learn but also has an
additional term corresponding to the loss. Tractability
of LAI therefore not only depends on the tractability
of the prediction problem but also on the form of loss
functions. When using submodular shell mixtures as
the score function, we use approximate inference with
a performance guarantee. Therefore, we must perform
approximate inference for the LAI problem as well. We
thus in general refer to this as approximate learning.

4.2 Approximate learning

Since some form of inference is a dominant subroutine
in many learning algorithms for structured prediction,
it is natural to use good approximate inference tech-
niques to make the learning problem tractable. When
learning submodular shell mixtures, we inevitably must
use approximate learning since, by using a more expres-
sive class of score functions that need not decompose,
the inference problem is intractable to do exactly. Us-
ing approximate inference as a drop-in replacement for
exact inference in learning, however, could mislead the
learning algorithm and result in poorly learnt models.
This is analyzed in [24], where it is pointed out that ap-
proximate learning could fail even with an approximate
inference method having approximation guarantees. In
general, therefore, it is problematic to assume that
an arbitrary choice of approximate inference method
will lead to useful results when the learning method
expects exact feedback. Choosing compatible inference
and learning procedures is therefore crucial.

In the following, we aim to leverage the approximation
guarantees of submodular optimization such that the
performance of approximate learning of submodular
shell mixtures can be bounded in some way. One
possible way of bounding is to investigate the degree to
which we can approximate the parameterswww that would
be obtained by exact learning, since the parameters
themselves offer little utility if good prediction cannot
be made from them. Alternatively, we can focus on the
quality of prediction obtained from an approximately
learned model. In particular, we seek to bound the
risk gap. That is, the difference between the expected
loss of predictions from an approximate (but efficient)
scheme and from exact (but intractable) methods.



4.3 Analysis

Hence, we must further analyze whether using
good approximate inference will lead us to good
approximate learning in our case. Before doing so,
we note that there are two types of approximation
inference algorithms, namely undergenerating and
overgenerating approximations.

Consider a maximization problem

max
yyy∈Y

f(yyy) , f∗.

Undergenerating approximation algorithm always find
a solution yyy ∈ Y such that f(yyy) ≤ f∗, while overgener-
ating approximation algorithm always find a solution
yyy ∈ Ȳ ⊇ Y such that f(yyy) ≥ f∗. A greedy algo-
rithm or the loopy belief propagation [40] are instances
of undergenerating approximation algorithms. Relax-
ation methods, e.g. linear programming relaxation,
are overgenerating approximation algorithms. Note
that undergenerating algorithms usually produce solu-
tions that are within the feasible region of the problem.
Overgenerating algorithms, on the other hand, gener-
ate solutions that might lie outside this feasible region.
Therefore, solutions found by overgenerating algorithms
sometimes need to be mapped back to the feasible re-
gion (e.g., rounding of linear programming produced
solutions) in order to produce a feasible solution, dur-
ing which the approximation guarantee no longer holds
in some cases [44]. For learning submodular shell mix-
tures, we are particularly interested in undergenerating
algorithms since the greedy algorithm, one of the un-
dergenerating algorithms, offers near-optimal solutions
for submodular maximization under certain (e.g., car-
dinality, budget, and matroid) constraints [36, 13].

Generalization bounds for approximate learning with
cutting-plane algorithms, with either undergenerating
or overgenerating inferences, have been shown in [12].
For subgradient descent methods, generalization anal-
ysis is available, but only for overgenerating cases, in
[30, 22]. As far as we know, no generalization analyses
are available for approximate learning with undergen-
erating subgradient methods. We fill this gap and offer
risk bounds for approximate learning with undergener-
ating subgradient methods.

We need two definitions before moving on.

Definition 1 (ρ-approximate algorithm). Given f :
Y → R+ and a maximization problem maxyyy∈Y f(yyy) ,
f∗, we call an (undergenerating) algorithm a ρ-
approximate algorithm if it finds a solution yyy ∈ Y
such that f(yyy) ≥ ρf∗, where 0 ≤ ρ ≤ 1.

Definition 2 (γ-approximate subgradient). Given f :
RM → R, a vector ggg ∈ RM is called a γ-subgradient of
f at www if for all www′, f(www′) ≥ f(www)+ggg>(www′−www)−γf(www)
where 0 ≤ γ ≤ 1 and www,www′ ∈ RM .

In Algorithm 1, one needs to solve the LAI in Eqn (3).
Note that if ` is modular (e.g. hamming loss) or sub-
modular (e.g. see Section 5.3), a ρ-approximate infer-
ence algorithm can also apply to this loss augmented
inference to find a near-optimal solution efficiently.
However, as mentioned above, when an approximate
inference algorithm is used in a learning algorithm, a
good approximation of the score might not be sufficient,
and it is possible that the learning can fail even with
rigorous approximate guarantees [24]. On the other
hand, Ratliff et al. [43] show that the subgradient al-
gorithm is robust under approximate settings, and the
risk experienced during training with γ-approximate
subgradients can be bounded.

Note that a ρ-approximate LAI does not necessary im-
ply any γ-subgradient because the approximate ratio
does not apply to the term −www>ft(yyy(t)). To analyze
the actual impact of ρ-approximate LAI in the learn-
ing procedure when compared with the exact formula-
tion, then, we provide risk bounds for the approximate
learner in Theorem 1.

Theorem 1. Assume wi, fi, i = 1, · · · ,M are all
upper-bounded by 1, ˆ̀

t(www) ≤ B, and ‖gggt‖ ≤ G. Let www∗

and ŵww be the solutions returned by Algorithm 1 using
exact and ρ-approximate LAI, respectively, with learn-

ing rate ηt = 2
λt and λ = G

M

√
2(1+log T )

T . Then for any

δ > 0 with probability at least 1− δ,

E(xxx,yyy)∼D[`yyy(h(xxx; ŵww))] ≤ 1

ρ

(
1

T

T∑
t=1

ˆ̀
t(www
∗)

)
+ S(T ),

where

S(T ) =
MG

ρ

√
2(1 + log T )

T
+B

√
2

T
log

1

δ
+

1− ρ
ρ

M.

The proof is given in the supplementary material. Note
that there are three terms in S(T ). While the first
two terms vanish as T →∞, the third term does not.
Therefore, the additional risk incurred due to the use
of ρ-approximate LAI for learning is (R∗+(1−ρ)M)/ρ,

where R∗ = limT→∞
1
T

∑T
t=1

ˆ̀
t(www
∗) and can be seen as

the risk of predictions using models learnt with exact
inference. Thus, the better (larger ρ) the approxima-
tion, the less the additional risk there will be when
using an approximate LAI. And when exact inference is
used (ρ = 1), the additional risk shrinks to zero. Note
that Theorem 1 applies to any loss function and any
score function which is not necessary to be submodular.
When addition assumptions are made (e.g., assumption
that the loss function is linearly realizable as in [57]),
a better bound might be possible where the additional
risk shrinks to zero as T grows. On the other hand,
when the LAI objective is monotone submodular, a



simple and efficient greedy algorithm performs near-
optimally with approximation factor 1− 1/e [36]. In
practice, moreover, as the approximation factor of the
greedy algorithm on submodular maximization is usu-
ally very close to 1 [27], one could expect very little
additional risk when using Algorithm 1 with approxi-
mate inference on learning submodular shell mixtures.

To the best of our knowledge, Theorem 1 is the first
approximate learning bound for subgradient algorithms
with undergenerating (greedy) inference.

5 Application to Document
Summarization

Submodular mixtures could be applied to many struc-
tured prediction problems of practical interest. In this
paper, we apply submodular shell mixture learning to
extractive document summarization as a case study.

5.1 Submodularity in Document
Summarization

Extractive document summarization can be seen as a
subset selection problem [27]. Given a ground set of
sentences V , the task of extractive document summa-
rization is selecting a subset of sentences, say S, that
best represents the whole document. In other words,
we want to find A ⊆ V such that

A ∈ argmax
B⊆V

f(B) subject to:
∑
i∈B

ci ≤ b, (4)

where ci ∈ R+ is the cost of sentence i (e.g., it could
be the number of words in the sentence), b ∈ R+ is the
total budget (e.g., it could the largest number of words
allowed in a summary), and f : 2V → R is a set function
that models the quality of a summary. Eqn (4) is known
as the problem of submodular maximization subject
to knapsack constraints [31] which NP-complete [35].
However, when f is monotone submodular, Eqn (4)
can be solved efficiently and near-optimally with a
theoretical guarantee via greedy algorithms [48, 27].

One can always force f to be submodular, leading
to an objective function that can be optimized well
but might on the other hand poorly represent a given
problem. One attractive property of submodularity,
like convexity in continuous domain, is that it arises
naturally in many applications. One such applications
is document summarization. As pointed out in [28],
many well-established methods, including the widely
used maximum margin relevance method [3], actually
correspond to submodular optimization. Moreover, it
is shown that the commonly used ROUGE score [26] for
automatic summarization evaluation is monotone sub-
modular [28], giving further evidence that submodular

functions are natural for document summarization.

In this paper, we further show that not only is the
ROUGE score submodular, the score used in the Pyra-
mid method [37], one of the manual evaluation metrics
that has been used in recent TAC summarization track2,
is also monotone submodular.

Theorem 2. The modified score in Pyramid method
is monotone submodular.

The proof is in Appendix C in the supplement.

The remaining question is how to design (or ideally
learn) a good submodular function for summarization.
Lin and Bilmes [28] proposed a class of submodular
functions that models the coverage as well as the diver-
sity of summary. In this paper, we further generalize
their class of submodular functions and propose to use
submodular shell mixtures for document summarization.

5.2 Submodular shells for summarization

Diversity shell components

We define a diversity shell component as

fdiversity
(a,K,A),(V,rrr)(S) =

∑K
k=1

(∑
i∈S∩Pk

ri
)a∑K

k=1

(∑
i∈Pk

ri
)a , (5)

where 0 ≤ a ≤ 1 is the curvature, K ∈ Z+ is the num-
ber of clusters (partitions), A is a clustering algorithm,
and {Pk}k=1,··· ,K is a partition of the ground set V

generated by A, and rrr = {ri}|V |i=1 with ri ∈ [0, 1] is
the vector of singleton reward of element i ∈ V . The
diversity component models the diversity of a summary
set S, by diminishing the benefit of choosing elements
from the same cluster.

Note that the α parameter of a submodular shell here
takes the form (a,K,A). By using different values of
a and K, and different clustering algorithms A, we
can produce a variety of submodular shells. The (V, β)
parameter of a submodular shell takes the form of (V,rrr).
When a document (ground set) is given, rewards of each
sentence (i.e., ri) can be computed, and the diversity
shell component is then instantiated into a submodular
function that measures the diversity of a summary for
this particular document.

Clustered facility location shell components

We define clustered facility-location like components as

f c-facility
(K,A),(V,rrr)(S) =

1

K

K∑
k=1

max
i∈S∩Pk

ri, (6)

2http://www.nist.gov/tac/2011/Summarization/



where K ∈ Z+ is the number of clusters (partitions), A
is a clustering algorithm, and ri ∈ [0, 1] is the singleton
reward of element i ∈ V . This function has a similar
form to the well known submodular facility location
function, but defined on a partition of the ground set.
We thus call it clustered facility location. If a summary
contains multiple elements from a same cluster, the ele-
ment with largest singleton reward will be regarded as
the “representative” of this cluster, and only the reward
of this representative will be counted into the final score.
This again diminishes returns of choosing elements from
the same cluster and therefore f c-facility is submodular.

Fidelity shell components

Given a ground set V , we define fidelity components as

ffidelity

α,
(
V,{Ci}|V |i=1

)(S) =
1

|V |
∑
i∈V

min

{
Ci(S)

Ci(V )
, α

}
, (7)

where 0 < α ≤ 1 is a saturation threshold and
Ci : 2V → R is a monotone submodular function model-
ing how S covers the information contained in i. This
function is the normalized version of the coverage func-
tion defined in [28]. Basically, the saturation threshold
controls how much of a given element i ∈ V should be
covered; once Ci(S) is large enough such that the ratio
of it over its largest possible value (Ci(V )) is above
threshold, covering more of i does not further increase
the function value. Therefore, a larger value of ffidelity

tends to have more i ∈ V well covered. When a docu-
ment is given, we can instantiate different submodular
shells using a variety of Ci.

5.3 A Submodular Loss Function

The most widely used evaluation criteria for summa-
rization is the ROUGE score, which is basically a sub-
modular function that counts n-gram recall rate over
human summaries. Let S be the candidate summary
(a set of sentences extracted from the ground set V ),
ce : 2V → Z+ be the number of times n-gram e occurs
in summary S, and Ri be the set of n-grams contained
in the reference summary i (suppose we have K refer-
ence summaries, i.e., i = 1, · · · ,K). Then ROUGE-N
[26] can be written as the following set function:

fROUGE-N(S) ,

∑K
i=1

∑
e∈Ri

min(ce(S), re,i)∑K
i=1

∑
e∈Ri

re,i
,

where re,i is the number of times n-gram e occurs in
reference summary i. fROUGE-N(S) is submodular, as
shown in [28], but cannot be used as a loss function
since it basically measures “accuracy” rather than loss.

An alternative is to use 1 − fROUGE-N(S) as a loss
function, but this is supermodular. Note that in order

to have the risk of the approximated learned model
bounded, performance guarantees are required for the
approximation algorithms used in loss augmented in-
ference. When using 1 − fROUGE-N, which is super-
modular as a loss function, in the objective function
for loss augmented inference (Eqn. (3)) along with a
submodular shell mixture as the score function, the
resulting objective function for LAI is then a submod-
ular function plus a supermodular function. While an
algorithm (e.g., submodular-supermodular procedure
[33, 17]) is available to approximately optimize the sum
of a submodular function and a supermodular function,
performance guarantees usually do not exist for these
algorithms (although this strategy might work well in
practice and should ultimately be tested). Therefore,
when using one-minus-ROUGE as the loss function,
the greedy algorithm no longer provides a near-optimal
solution when applied to the non-submodular objective,
and the risk bound shown in Theorem 1 no longer holds.

To address this issue, we propose a ROUGE-like loss
function that measures the “complement recall”:

`ROUGE(S) ,

∑
e∈R̄ ωece(S)∑
e∈R̄ ωere

, (8)

where R̄ = N\
⋃
iRi, and N is the set of all the

n-grams occur in the set of documents, and re = ce(V )
is the number of times n-gram e occurs in all the
documents, ωe is a non-negative weight for e, and R̄ is
the set of n-grams that are not covered by any human
reference summary. Instead of counting with respect
to a reference summary, `ROUGE counts the n-grams
of a candidate summary S w.r.t. the complement of
reference summaries.

Intuitively, we want a summary S to cover as many
reference n-grams as possible so that it will get a high
ROUGE-score; this is similar to having S be large and
overlapping as little as possible with the n-grams that
are not in human references. In this sense, `ROUGE

measures the portion of how many n-grams in the
complement of the reference n-grams set are covered,
and when comparing summaries with the same size, the
smaller `ROUGE is, the better. The best case, i.e., the
human reference itself, will have `ROUGE equal to 0.

Obviously, a poor summary that would also have
`ROUGE equal to 0 is an empty summary. It is worth
noting that `ROUGE only makes sense when comparing
summaries that are close to the same budget. Fortu-
nately, most summarization algorithms try to consume
every bit of the budget in order to consume as much in-
formation as possible under the budget constraint. For
summaries produced in this way, `ROUGE offers a fair
indicator of their quality: the smaller the loss value,
the larger the number of reference n-gram overlaps
there are, and therefore the better the summary. We



use the greedy algorithm for solving the summarization
problems (Eqn. (4)). Due to its greedy nature, the
algorithm always outputs summary candidates whose
costs are close to the budget, and therefore `ROUGE can
serve as a reasonable surrogate loss function for learning
submodular shell mixtures for summarization tasks.

The major advantage of using `ROUGE as a loss
function, of course, is algorithmic. The submodular
learning analysis in Theorem 1 relies on the fact that
a ρ-approximation algorithm is available for the loss
augmented information. Since we use a submodular
score function for summarization, the above objective
will be submodular if the loss function is submodular.
Fortunately, similar to fROUGE-N, the proposed loss for
summarization, `ROUGE, is also monotone submodular
(in fact modular). Therefore, the LAI in submodular
shell mixture learning for summarization is exactly
the budgeted submodular maximization problem
(Eqn (4)), and efficient and near-optimal algorithms
are then available. Consequently, all the theoretical
analyses in Section 4.3 apply.

We will soon see (Section 7) that using the ROUGE-like
loss function proposed here empirically outperforms
using 1− fROUGE as a loss functions.

6 Related work

Recently, Yue and Guestrin [57] studied a linear sub-
modular bandits problem in an online learning setting
for optimizing a general class of feature-rich submod-
ular utility models in diversified retrieval, and their
theoretical result is based on the assumption that the
award function has a special (linear) form. Raman
et al. [41] also propose an online learning model and al-
gorithm for learning rankings that exploiting feedback
to maximize any submodular utility measure. While
our approach and analysis could also be applied to the
online setting, the focus and analysis in this paper are
more on the batch learning. The submodular utility
models in [57, 41], however, can both be seen as special
instances of submodular shell mixtures.

More closely related to our work is that of [46] where
large-margin learning of submodular score functions
for extractive document summarization is studied. The
representation of a submodular score function in [46],
again, turns out to be a special case of a submodular
shell mixture. Moreover, our submodular shell mixture
framework is more general and flexible than the frame-
work proposed in [46]. Although the authors claim
that their approach applies to all submodular summa-
rization models, there are many submodular functions
useful for summarization that are not linear on either
pairwise similarity or singleton importance. For exam-
ple, in the diversity reward function, we have a concave

function over the sums of singleton rewards, and even
if using linear model for singleton rewards, the score
function is non-linear over parameters since the weights
can not be linearly extracted, and thus the algorithms
in [46] do not apply. Viewing each feature as input to
a submodular component, on the other hand, preserves
the linearity on the parameters, whereas Algorithm 1
applies. Moreover, representing a score function using
a submodular shell mixture is expressive, as we have
shown in Section 3.1.

In [46], a cutting plane algorithm with one-minus-
ROUGE F-measure as loss function was used to
learn model weights. When doing the loss augmented
inference, they use the greedy algorithm introduced
in [27] to approximately optimize the objective. Their
objective function, however, is not submodular, due to
the non-submodular loss function they use. Therefore,
the LAI inference is no longer guaranteed to be
near-optimal, and the performance of approximate
learning with their cutting plane algorithm is no longer
guaranteed [12]. Also, Sipos et al. [46] apparently
neglect the fact that the learned similarity (or impor-
tance) should be non-negative, which is a necessary
ingredient to preserve the submodularity of the learned
score function. One simple way to ensure this is to
constrain the weights to be non-negative, as we do for
submodular shell mixtures by project the weights to
the non-negative orthant (Algorithm 1).

7 Experiments

We evaluated our approach on NIST’s DUC3 data 2003-
2007, and demonstrate results on both generic and
query-focused summarization. DUC data were created
by national institution of standard technology (NIST).
The DUC evaluation is one of the standardized bench-
mark evaluations for document summarization and re-
searchers continue to publish results on these data sets.

7.1 Query-independent summarization

Table 1: ROUGE-1 recall (R) and F-measure (F) results
(%) on DUC-04. DUC-03 was used as development set.

DUC-04 R F

Takamura and Okumura [49] 38.50 -
Wang et al. [55] 39.07 -

Lin and Bilmes [27] - 38.39
Lin and Bilmes [28] 39.35 38.90

Kulesza and Taskar [23] 38.71 38.27
Best system in DUC-04 (peer 65) 38.28 37.94

Submodular Shell Mixture 40.43 39.78

The summarization tasks in DUC-03 and DUC-04 are

3http://duc.nist.gov/



generic summarization tasks. We used DUC-03 as
the training set for submodular shell mixture learning.
There are in total 60 document clusters in the DUC-03
task, therefore we have 60 training examples in total.
We used a submodular shell mixture with 15 fidelity
components for this task. In particular, the Ci function
we used is Ci(S) =

∑
j∈V δi,j , where δi,j is the pairwise

sentence similarity between sentence i and j. We used
three types of sentence similarities. The first two are
cosine similarities with unigram and bigram TF-IDF
vectors respectively. The third similarity is again cosine
similarity but on the vector generated by latent seman-
tic analysis. For each of the similarity measures, we use
five different saturation thresholds (α = 0.01, · · · , 0.05),
and thus we have 15 fidelity components in total. We
used Algorithm 1 with the ROUGE-like loss (Eqn. (8))
with ωe = 1 for all e to learn this submodular shell mix-
ture. The ROUGE-1 results are shown in Table 1. As
we can see, the result of the learned submodular shell
mixture significantly outperforms all other previous
reported results. Note that the experiment in [46] used
a non-standard setup where DUC-04 data were divided
into training, development, and test sets with only 5
documents in their test set. Therefore, results reported
in [46] are not directly comparable to other results (e.g.,
our results) that follow standard DUC evaluation setup.

7.2 Query-focused summarization

Table 2: ROUGE-2 recall (R) and F-measure (F) results
on DUC-05 (%). We used DUC-06 and DUC-07 as
training sets.

DUC-05 R F
Daumé III and Marcu [8] 6.98 -

Lin and Bilmes [28] 7.82 7.72
Best system in DUC-05 (peer 15) 7.44 7.43

Submodular Shell Mixture 8.44 8.39

Table 3: ROUGE-2 recall (R) and F-measure (F) results
(%) on DUC-06, where DUC-05 and DUC-07 were used
as training sets.

DUC-06 R F
Celikyilmaz and Hakkani-tür [4] 9.10 -

Shen and Li [45] 9.30 -
Lin and Bilmes [28] 9.75 9.77

Best system in DUC-06 (peer 24) 9.51 9.51

Submodular Shell Mixture 9.92 9.93

Since 2004, DUC summarization evaluations have con-
centrated on query-focused summarization. We tested
our approach for summarization on DUC-05, DUC-06
and DUC-07 data. In particular, we used DUC-06,07
as the training set for the DUC-05 task, DUC-05,07 as
the training set for the DUC-06 task, and DUC-05,06
as the training set for the DUC-07 task.

Table 4: ROUGE-2 recall (R) and F-measure (F) results
(%) on DUC-07. DUC-05 and DUC-06 were used as
training sets. Note that the peer 15 system in DUC-
07 used commercial web search engine to expand the
queries.

DUC-07 R F
Toutanova et al. [53] 11.89 11.89

Haghighi and Vanderwende [16] 11.80 -
Celikyilmaz and Hakkani-tür [4] 11.40 -

Lin and Bilmes [28] 12.38 12.33
Best system in DUC-07 (peer 15) 12.45 12.29

Submodular Shell Mixture 12.51 12.40

We used diversity components, clustered facility loca-
tion components, and fidelity components to form the
submodular shell mixture for query-focused summariza-
tion. Three clusterings with different numbers of clus-
ters were created (K = 0.1|V |, 0.2|V |, 0.3|V |). As for
the singleton rewards, we used both query-independent
and query-dependent singleton rewards. The query-
independent reward for i is simply the summation of
the pairwise similarities of other elements in V to i.
For the query-dependent reward, we simply used the
number of terms (up to a bi-gram) that sentence j over-
laps the query Q, where the IDF weighting is not used
(i.e., every term in the query, after stop word removal,
was treated as equally important). Therefore, in total,
we have 6 clustered facility location components. We
further used three curvatures in diversity components
(α = 0.5, 0.6, 0.7), which gives 18 diversity components
in total. With one additional fidelity component, we
have 25 components in total. Compared to other results
reported in the literature (Table 2, Table 3 and Table 4),
as far as we know, our approach achieves the best re-
sults reported so far on DUC-05, DUC-06, and DUC-07.

8 Conclusions

In this paper, we propose the notion of learning sub-
modular shells, which abstract a set of submodular
functions that can be instantiated into submodular
functions given the input of a structured prediction
task. Given a set of training instances, we use subgradi-
ent descent to learn the mixture coefficients over a set
of submodular shells that may be instantiated into a
weighted sum of submodular functions. We show that
the submodular shell mixture is very expressive, and
the risk of learning can be bounded when only approx-
imate inference in possible. When applied to the task
of document summarization, our approach achieves the
best results reported so far on standardized benchmark
takes for query-focused extractive summarization tasks.
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Maximizing a submodular set function subject to
a matroid constraint. In Proc. of 12th IPCO, pages
182–196. Citeseer, 2007.

[3] J. Carbonell and J. Goldstein. The use of MMR,
diversity-based reranking for reordering docu-
ments and producing summaries. In Proc. of SI-
GIR, 1998.

[4] A. Celikyilmaz and D. Hakkani-tür. A hybrid hier-
archical model for multi-document summarization.
In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, pages
815–824, Uppsala, Sweden, July 2010. Association
for Computational Linguistics.

[5] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On
the generalization ability of on-line learning algo-
rithms. In NIPS, pages 359–366, 2001.

[6] Y.J. Chu and T.H. Liu. On the shortest arbores-
cence of a directed graph. Science Sinica, 14(1396-
1400):270, 1965.

[7] P.L.B.M. Collins and B.T.D. McAllester. Exponen-
tiated gradient algorithms for large-margin struc-
tured classification. In Advances in neural infor-
mation processing systems, volume 17, page 113,
2004.
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