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Abstract

Decentralized partially observable Markov de-
cision processes (Dec-POMDPs) are rich mod-
els for cooperative decision-making under uncer-
tainty, but are often intractable to solve optimally
(NEXP-complete). The transition and observa-
tion independent Dec-MDP is a general subclass
that has been shown to have complexity in NP,
but optimal algorithms for this subclass are still
inefficient in practice. In this paper, we first pro-
vide an updated proof that an optimal policy does
not depend on the histories of the agents, but only
the local observations. We then present a new
algorithm based on heuristic search that is able
to expand search nodes by using constraint opti-
mization. We show experimental results compar-
ing our approach with the state-of-the-art Dec-
MDP and Dec-POMDP solvers. These results
show a reduction in computation time and an in-
crease in scalability by multiple orders of magni-
tude in a number of benchmarks.

1 Introduction

There has been substantial progress on algorithms for mul-
tiagent sequential decision making represented as decen-
tralized partially observable Markov decision processes
(Dec-POMDPs) [18, 20, 7, 2]. Algorithms that are able to
exploit domain structure when it is present have been par-
ticularly successful [24, 1, 25]. Unfortunately, because the
general Dec-POMDP problem is NEXP-complete [8], even
these methods cannot solve moderately sized problems op-
timally.

The decentralized Markov decision process (Dec-MDP)
with independent transitions and observations represents
a general subclass of Dec-POMDPs that has complexity
in NP rather than NEXP [5]. A few algorithms for solv-
ing this Dec-MDP subclass have been recently proposed

[5, 21, 22]. While these approaches can often solve much
larger problems than Dec-POMDP methods, they cannot
solve truly large problems or those with more than 2 agents.

In this paper, we present a novel algorithm for optimally
solving Dec-MDPs with independent transitions and obser-
vations that combines heuristic search and constraint opti-
mization. We show that one can cast any Dec-MDP with in-
dependent transitions and observations as a continuous de-
terministic MDP where states are probability distributions
over states in the original Dec-MDP, which we call state
occupancy distributions. This allows us to adapt continu-
ous MDP techniques [6, 4] to solve decentralized MDPs.
Following this insight, we designed an algorithm where
the state occupancy exploration is performed similarly to
learning real-time A∗ [13] and the policy selection is in ac-
cordance with decentralized POMDP techniques [10, 15].
The result is an approach that is able to leverage problem
structure through heuristics, limiting the space of policies
that are explored by bounding their value and efficiently
generating policies with the use of constraint optimization.
This algorithm (termed Markov policy search or MPS), is
shown to be a much more efficient algorithm than any other
approach that can be used in Dec-MDPs with independent
transitions and observations.

The remainder of this paper is organized as follows. First,
we provide some motivating examples utilizing properties
of Dec-MDPs with independent transitions and observa-
tions. Next, we describe the Dec-MDP framework and
discuss the related work. We then present theoretical re-
sults, showing that the optimal policy for Dec-MDPs with
independent transitions and observations does not depend
on the agent histories. While this has been proven before,
we offer a more general proof that permits additional in-
sights. Next, we describe the decentralized Markov policy
search algorithm, which combines constraint optimization
and heuristic search to more efficiently produce optimal so-
lutions for Dec-MDPs with independent transitions and ob-
servations. Finally, we present an empirical evaluation of
this algorithm with respect to the state-of-the-art solvers
that apply in decentralized MDPs, showing the ability to
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Figure 1: A meeting-grid under uncertainty scenario on a
8 × 8 grid, inspired from Seuken and Zilberstein [24].

solve problems that are multiple orders of magnitude larger
and those that include up to 10 agents.

2 Motivating examples

To illustrate the characteristics of decentralized partially
observable Markov decision processes (Dec-POMDPs)
that we are interested in, consider a simple two-agent
“meeting-in-a-grid under uncertainty” domain in Figure 1.
In this scenario, two agents want to meet as soon as possi-
ble on a two-dimensional grid. In this world, each agent’s
possible actions include moving north, south, west, east
and staying in the same place. The actions of a given agent
do not affect the other agents. After taking an action, each
agent can sense some information, which in this case cor-
responds to its own location. Here, each agent’s own par-
tial information is insufficient to determine the global state
of the world. This is mainly because agents are not per-
mitted to explicitly communicate their local locations with
each other. However, if this (instantaneous and noise-free)
communication were allowed the agents’ partial informa-
tion together would reveal the true state of the world, (i.e.,
the agents’ joint location). It is the presence of this joint full
observability property that differentiates Dec-MDPs from
Dec-POMDPs.

More generally, in partially observable models including
Dec-POMDPs, the agents’ partial information together can
map to multiple different states of the world. As a con-
sequence, decisions in such models depend on the entire
past histories of actions and observations that the agents
ever experienced. In the meeting-in-a-grid under uncer-
tainty problem, since both transitions and observations are
not affected by the other agents, each agent’s decision de-
pends only on its last piece of partial information, (i.e., the
agent’s own location) [5]. These characteristics appear in
many real-world applications including:

Mars exploration rovers. The meeting-in-a-grid domain

was motivated by a real problem of controlling the opera-
tion of multiple space exploration rovers, such as the ones
used by NASA to explore the surface of Mars [27].

Distributed sensor net surveillance. The sensor net do-
main [17], where a team of stationary or moveable UAVs,
satellites, or other sensors must coordinate to track targets
while sensors have independent transitions and observa-
tions, is particularly suited to our model.

Distributed smart-grid domains. This application aims
at finding the optimal schedules and amounts of generated
power for a collection of generating units, given demands,
and operational constraints over a time horizon.

3 Background and Related Work

In this section, we review the decentralized MDP model,
the assumptions of transition and observation indepen-
dence, the associated notation, and related work.

Definition 1 (The decentralized MDP) A n-agent decen-
tralized MDP (S,A, p, r) consists of:

• A finite set S = Z1 × Z2 × · · ·Zn of states s =
〈z1, z2, · · · , zn〉, where Zi denotes the set of local ob-
servations zi of agent i = 1, 2, . . . , n.

• A finite setA = A1×A2×· · ·An of joint actions a =
〈a1, a2, · · · , an〉, where Ai is the set of local actions
ai of agent i = 1, 2, . . . , n.

• A transition function p(s, a, s′), which denotes
the probability of transiting from state s =
〈z1, z2, . . . , zn〉 to state s′ = 〈z′1, z′2, . . . , z′n〉 when
taking joint action a = 〈a1, a2, . . . , an〉

• A reward function r : S × A 7→ R, where r(s, a) de-
notes the reward received when executing joint action
a in state s

As noted above, decentralized MDPs are distinguished by
the state being jointly fully observable. This property en-
sures that the global state would be known if all agents
shared their observations at a given step (i.e., there is no
external uncertainty in the problem) and follows trivially
from the definition of states as observations for each agent.
The Dec-MDP is parameterized by the initial state distribu-
tion η0. When the agents operate over a bounded number of
steps (typically referred to as the problem horizon) T , the
model is referred to as a finite-horizon decentralized MDP.
Solving a decentralized MDP for a given planning horizon
T and start state distribution η0 can be seen as finding n
individual policies that maximize the expected cumulative
reward over the steps of the problem.



3.1 Additional Assumptions

We are interested in decentralized MDPs that exhibit two
properties. The first is the transition independence assump-
tion where the local observation of each agent depends only
on its previous local observation and the local action taken
by that agent.

Definition 2 (The transition independent assumption)
An n-agent decentralized MDP is said to be transition
independent if there exists local transition functions
p1 : Z1 × A1 × Z1 7→ [0, 1], p2 : Z2 × A2 × Z2 7→ [0, 1],
. . . , pn : Zn ×An × Zn 7→ [0, 1] such that

p(s, a, s′) =
∏

i=1,...,n

pi(zi, ai, z′
i
),

where s = 〈z1, z2, . . . , zn〉 and s′ = 〈z′1, z′2, . . . , z′n〉
and a = 〈a1, a2, . . . , an〉.

We also implicitly assume observation independence,
which states that the observation function of each
agent does not depend on the dynamics of the other
agents. That is, P (z′

1
, z′

2
, . . . , z′

n|s, a1, a2, . . . , an) =

×i P (z′
i|s, ai). Because we are assuming a Dec-

MDP with the state factored into local observations
then this becomes the same as transition independence:∏
i P (z′

i|zi, ai).

3.2 Preliminary Definitions and Notations

The goal of solving a Dec-MDP is to find a decentral-
ized deterministic joint policy π = 〈π1, . . . , πn〉. An in-
dividual policy πi is a sequence of decision rules πi =
〈σi0, . . . , σiT−1〉. In addition, we call decentralized decision
rule στ at time τ an n-tuple of decision rules (σ1

τ , . . . , σ
n
τ ),

for τ = 0, 1, . . . , T − 1. In this paper, we distinguish be-
tween history-dependent and Markov decision rules.

Each history-dependent decision rule σiτ at time τ maps
from τ -step local action-observation histories hiτ =
〈ai0, zi1, . . . , aiτ−1, z

i
τ 〉 to local actions: σiτ (hiτ ) = aiτ , for

τ = 0, 1, . . . , T − 1. A sequence of history-dependent de-
cision rules defines a history-dependent policy.

In contrast, each Markov decision rule σiτ at time τ maps
from local observations ziτ to local actions: σiτ (ziτ ) = aiτ ,
for τ = 0, 1, . . . , T − 1. A sequence of Markov decision
rules defines a Markov policy. Moreover, it is worth notic-
ing that decentralized Markov policies are exponentially
smaller than decentralized history-dependent ones.

The state occupancy is another important notion in this pa-
per. The τ -th state occupancy of a system under the con-
trol of a decentralized Markov policy 〈σ0, σ1, · · · , στ−1〉,
denoted σ0:τ−1, and starting at η0 is given by: ητ (s) =
P (s|σ0:τ−1, η0), for all τ ≥ 1. Moreover, the cur-
rent state occupancy ητ depends on the past decentral-
ized Markov policy σ0:τ−1 only through previous state

occupancy ητ−1 and decentralized Markov decision rule
στ−1. That is, ητ (s′) =

∑
s p(s, στ−1(s), s′) · ητ−1(s),

for all τ ≥ 1. Following [11], this update-rule is denoted
ητ = χτ (ητ−1, στ−1) for the sake of simplicity. We also
denote 4τ the state occupancy space at the τ -th horizon,
that is the standard |S|-dimensional simplex.

Distinction with belief states. The state occupancy may
be thought of as a belief state, but there are differ-
ences. Formally, a belief state bτ is given by bτ (s) =
P (s|hτ , σ0:τ−1, η0), for all τ ≥ 1 [3]. That is, in be-
lief states, the information agents have about states is typ-
ically conditioned on a single joint action-observation his-
tory hτ . From the total probability property, we then have
that ητ (s) =

∑
hτ

P (s|hτ , σ0:τ−1, η0) ·P (hτ |σ0:τ−1, η0).
Overall, the τ -th state occupancy summarizes all the infor-
mation about the world states contained in all belief states
at horizon τ . In other words, the doubly exponentially
joint action-observation histories are summarized in a sin-
gle state occupancy that does not make use of local infor-
mation.

3.3 Related Work

In this section, we focus on approaches for solving Dec-
MDPs with independent transitions and observations as
well as other relevant solution methods. For a thorough in-
troduction to solution methods in Dec-POMDPs, the reader
can refer to [24, 20, 7, 2].

Becker et al. [5] were the first to describe the transition
and observation independent Dec-MDP subclass and solve
it optimally. Their approach, called the coverage set algo-
rithm, consists of three main steps. First, sets of augmented
MDPs are created which incorporate the joint reward into
local reward functions for each agent. Then, all best re-
sponses for any of the other agent policies are found us-
ing these augmented MDPs. Finally, the joint policy that
has the highest value from all agents’ best responses is re-
turned. While this algorithm is optimal, it keeps track of the
complete set of policy candidates for each agent, requiring
a large amount of time and memory.

Petrik and Zilberstein [22] reformulated the coverage set al-
gorithm as a bilinear program, thereby allowing optimiza-
tion approaches to be utilized. The bilinear program can
be used as an anytime algorithm, providing online bounds
on the solution quality at each iteration. The representation
is also better able to take advantage of sparse joint reward
distributions by representing independent rewards as linear
terms and compressing the joint reward matrix. This results
in greatly increased efficiency in many cases, but when the
agents’ rewards often depend on the other agents the bilin-
ear program can still be inefficient due to lack of reward
sparsity.

In general Dec-POMDPs, approximate approaches have at-



tempted to scale to larger problems and horizons by not
generating the full set of policies that may be optimal.
These approaches, known as memory-bounded algorithms,
were introduced by Seuken and Zilberstein [24] and then
successively refined [10, 15]. Memory-bounded algorithms
sample forward a bounded number of belief states, and
back up (i.e., generate next step policies for) one decen-
tralized history-dependent policy for each belief state. To
avoid the explicit enumeration of all possible policies, Ku-
mar and Zilberstein [15] perform the backup by solving
a corresponding constraint optimization problem (COP)
[9], that represents the decentralized backup. Although,
memory-bounded techniques are suboptimal, the decentral-
ized backup can be applied in exact settings as we demon-
strate in our algorithm.

More specifically, the decentralized backup can build a
horizon-τ decentralized policy that is maximal with respect
to a belief state and horizon-(τ + 1) policies available for
each agent. The associated COP is given by: a set of vari-
ables, one for each local observation of each agent; a set of
domains, where the domain for the variables corresponding
to an agent is the set of horizon-(τ + 1) policies available
for that agent; a set of soft constraints, one for each joint
observation. The soft constraint maps assignments to real
values. Intuitively, these values represent the expected re-
ward accrued when agents together perceive a given joint
observation and follow a given horizon-(τ + 1) decentral-
ized policy. Since horizon-τ decentralized policies consist
of horizon-(τ+1) policies, it is easy to see that maximizing
the sum of the soft constraints yields a maximal horizon-τ
decentralized policy.

Closer to our model is the ND-POMDP framework [19]. It
aims at modeling multiagent teamwork where agents have
strong locality of interaction, often through binary interac-
tions. That is, the reward model in such domains is de-
composed among sets of agents. There has been a substan-
tial body of work that extend general Dec-POMDP tech-
niques (discussed above) to exploit the locality of interac-
tion [19, 14, 16]. Nair et al. [19] introduced the only opti-
mal algorithm for this model, namely the General Optimal
Algorithm (GOA). When the domain does not contain bi-
nary interactions, there is no reason to expect GOA to out-
perform general Dec-POMDP algorithms, as all methods
use similar strategies in selecting policy candidates. How-
ever, when the domain contains primarily binary interac-
tions (or more generally when each agent’s rewards are not
dependent on many other agents), GOA is likely to outper-
form general Dec-POMDP algorithms.

It is worth noting that ND-POMDPs and transition and ob-
servation independent Dec-MDPs make the same assump-
tions about transition and observation independence, but
make different assumptions about the reward model and
partial observability. More specifically, ND-POMDPs as-
sume the reward can be decomposed into the sum of local

reward models for sets of agents, while the reward model
for transition and observation independent Dec-MDPs is
more general, allowing global rewards for all agents (i.e.,
considering all agents to be in one set). Dec-MDPs assume
that the state is jointly fully observable (i.e., that the state
is fully determined by the combination of local observa-
tions of all agents), while ND-POMDPs do not make this
limiting assumption. Both models therefore make different
assumptions to address complexity and the choice of model
depends on which assumptions best match the domain be-
ing solved.

4 Theoretical Properties

In this section, we demonstrate the main theoretical results
of this paper.

4.1 Optimal Policies

A decentralized MDP solver aims to calculate an optimal
decentralized policy π∗ that maximizes the expected cu-
mulative reward:

π∗ = arg maxπ E[
∑T−1
τ=0 r(sτ , aτ )|π, η0]. (1)

The following theorem proves that decentralized Markov
policies yield the optimal performance in decentralized
MDPs with independent transitions and observations.
Goldman et al. [12] established the optimality of Markov
policy for an agent under the assumption that the other
agents choose Markov policies. Here, we state the opti-
mality of Markov policies for an agent no matter what its
teammates’ policies are. We also construct the proof in a
manner that more directly relates policies to values (rather
than information sets). This may be more clear to some
readers.

Theorem 1 (Optimality of decentralized Markov policies)
In Dec-MDPs with independent transitions and observa-
tions, optimal policies for each agent depend only on the
local state and not on agent histories.

Proof Without loss of generality, we construct a proof by
induction for two agents, 1 and 2, from agent 1’s perspec-
tive. We first show that in the last step of the problem, agent
1’s policy does not depend on its local history.

Agent 1’s local policy on the last step is:
σ1∗

T−1(h1
T−1) = arg maxa1

∑
h2
T−1

P (h2
T−1|h1

T−1) ·
R(s, a1, σ2

T−1(h2
T−1)), which chooses a local action

to maximize value based on the possible local his-
tories of agent 2 and resulting states of the system
s = 〈z1

T−1, z
2
T−1〉.

Based on transition and observation independence and
the use of decentralized policies, it can be shown that
P (h2

T−1|h1
T−1) = P (h2

T−1). Due to space limitations, we



do not include full proof of this claim. Intuitively it holds
because each agent does not receive any information about
the other agents’ local histories due to transition indepen-
dence. Therefore, we can represent agent 1’s policy on the
last step as σ1∗

T−1(h1
T−1) = arg maxa1

∑
h2
T−1

P (h2
T−1) ·

R(s, a1, σ2
T−1(h2

T−1)) which no longer depends on the his-
tory h1

T−1. Therefore, the policy on the last step for either
agent does not depend on history.

This allows us to define the value function on the last step
as υT−1(s, σ1

T−1(z1
T−1), σ2

T−1(z2
T−1)).

Then for the induction step, we can show that if the policy
at step τ + 1 does not depend on history, then the policy at
step τ also does not depend on its local history. Again, we
show this from agent 1’s perspective.

Agent 1’s policy on step τ can be represented
by: σ1∗

τ (h1
τ ) = arg maxa1

∑
h2
τ
P (h2

τ |h1
τ ) ·

υτ+1(s, a1, σ2
τ (h2

τ )), where the value function υτ+1

is assumed to not depend on history. We can again
show that P (h2

τ |h1
τ ) = P (h2

τ ) because of transition
independence and represent agent 1’s policy on step τ as:

σ1∗

τ (h1
τ ) = arg maxa1

∑
h2
τ
P (h2

τ ) · υτ+1(s, a1, σ2
τ (h2

τ ))

which no longer depends on the local history h1
τ .

Therefore, the policy of either agent does not depend on
local history for any step of the problem.

We now establish the sufficient statistic for the selection of
decentralized Markov decision rules.

Theorem 2 (Sufficient Statistic) The state occupancy is a
sufficient statistic for decentralized Markov decision rules.

Proof We build upon the proof of the optimality of decen-
tralized Markov policies in Theorem 1. We note that an
optimal decentralized Markov policy starting in η0 is given
by:

π∗ = arg maxπ
∑
τ

∑
hτ
P (hτ |σ0:τ−1, η0) · r(sτ , στ [sτ ])

The substitution of hτ by (hτ−1, aτ−1, sτ ) plus the sum
over all pairs (hτ−1, aτ−1) yields

π∗ = arg maxπ
∑
τ

∑
sτ
P (sτ |σ0:τ−1, η0) · r(sτ , στ [sτ ]),

We denote ηπτ = P (sτ |σ0:τ−1, η0) the state occupancy dis-
tribution that decentralized Markov policy π produced at
horizon τ . And hence,

π∗ = arg maxπ
∑
τ

∑
sτ∈S ηπτ (sτ ) · r(sτ , στ [sτ ])

So, state occupancy ηπτ summarizes all possible joint
action-observation histories hτ decentralized Markov pol-
icy π produced at horizon τ for the estimate of joint deci-
sion rule στ . Thus, the state occupancy is a sufficient statis-
tic for decentralized Markov decision rules since their esti-
mates depend only upon a state occupancy, and no longer
on all possible joint observation-histories.

States, belief states, and multi-agent belief states are all suf-
ficient to select directly actions for MDPs, POMDPs, and
decentralized POMDPs, respectively. This is mainly be-
cause all these statistics summarize the information about
the world states from a single agent perspective. The
state occupancy, instead, summarizes the information about
the world states from the perspective of a team of agents
that are constrained to execute their policies independently
from each other. In such a setting, joint actions cannot
be selected independently, instead, they are selected jointly
through decentralized Markov decision rules.

4.2 Optimality Criterion

This section presents the optimality criterion based on the
policy value functions.

We first define the τ -th expected immediate reward func-
tion rτ (·, στ ) : 4τ 7→ R that is given by rτ (ητ , στ ) =
Es∼ητ [r(s, στ [s])]. This quantity denotes the immediate
reward of taking decision rule στ when the system is in
state occupancy ητ at the τ -th time step.

Let υπ(η0) represent the expected total reward over the de-
cision making horizon if policy π is used and the system is
in state occupancy η0 at the first time step τ = 0. For π
in the space of decentralized Markov policies, the expected
total reward is given by:

υπ(η0) ≡ E(η1,··· ,ηT−1)

[∑T−1
τ=0 rτ (ητ , στ ) | η0, π

]
We say that a decentralized Markov policy π∗ is opti-
mal under the total reward criterion whenever υπ∗(η0) ≥
υπ(η0) for all decentralized Markov policies π.

Following the Bellman principle of optimality [23], one
can separate the problem of finding the optimal policy π∗

into simpler subproblems. Each of these subproblems con-
sists of finding policies στ :T−1 that are optimal for all
τ = 0, · · · , T − 1. To do so, we then define the τ -th value
function υστ:T−1

: 4τ 7→ R under the control of decentral-
ized Markov policy στ :T−1 as follows:

υστ:T−1
(ητ ) = rτ (ητ , στ ) + υστ+1:T−1

(χτ+1(ητ , στ ))

where quantity υστ:T−1
(ητ ) denotes the expected sum of

rewards attained by starting in state occupancy ητ , taking
one joint action according to στ , taking the next joint ac-
tion according to στ+1, and so on. We slightly abuse nota-
tion and write the τ -th value function under the control of
an “unknown” decentralized Markov policy στ :T−1 using
υτ : 4τ 7→ R.

We further denote Vτ to be the space of bounded value
functions at the τ -th horizon. For each υτ+1 ∈ Vτ+1, and
decentralized Markov decision rule στ , we define the linear
transformation Lστ : Vτ+1 7→ Vτ by

[Lστυτ+1](ητ ) = rτ (ητ , στ ) + υτ+1(χτ+1(ητ , στ )).



As such, the τ -th value function υτ can be built from a
(τ + 1)-th value function υτ+1 as follows:

υτ (ητ ) = maxστ [Lστυτ+1](ητ ),
υT (ηT ) = 0.

(2)

In our setting, Equations (2) denote the optimality equa-
tions. It is worth noting that the decentralized Markov
policy solution π = 〈σ0, · · · , σT−1〉 of the optimal-
ity equations is greedy with respect to value functions
υ0, . . . , υT−1.

5 Markov Policy Search

In this section, we compute optimal decentralized Markov
policy 〈σ∗0 , · · · , σ∗T−1〉 given initial state occupancy η0 and
planning horizon T . Note that while state occupancies
are used to calculate heuristics in this algorithm, the final
choices at each step do not depend on the state occupan-
cies. That is, the result is a nonstationary policy for each
agent mapping local observations to actions at each step.

We cast decentralized MDPs (S,A, p, r) as continuous and
deterministic MDPs where: states are state occupancy dis-
tributions ητ ; actions are decentralized Markov policies στ ;
the update-rules χτ (·, στ−1) define transitions; and map-
pings rτ (·, στ ) denote the reward function. So, techniques
that apply in continuous and deterministic MDPs also apply
in decentralized MDPs with independent transitions and
observations. For the sake of efficiency, we focus only on
optimal techniques that exploit the initial information η0.

The learning real-time A∗ (LRTA∗) algorithm can be used
to solve deterministic MDPs [13]. This approach updates
only states that agents actually visit during the planning
stage. Therefore, it is suitable for continuous state spaces.
Algorithm 1, namely Markov Policy Search (MPS), illus-
trates an adaptation of the LRTA∗ algorithm for solving
decentralized MDPs with independent transitions and ob-
servations. The MPS algorithm relies on lower and upper
bounds υτ and ῡτ on the exact value functions for all plan-
ning horizons τ = 0, . . . , T − 1.

We use the following definitions. Q-value functions
q̄τ (ητ , στ ) denote rewards accrued after taking decision
rule στ at state occupancy ητ and then following the policy
defined by upper-bound value functions for the remaining
planning horizons. We denote Ψτ (ητ ) = {στ} to be the set
of all stored decentralized Markov decision rules for state
occupancy ητ . Thus, ῡτ (ητ ) = maxστ∈Ψτ (ητ ) q̄τ (ητ , στ )
represents the upper-bound value at state occupancy ητ .
Formally, we have that q̄τ (ητ , στ ) = [Lστ ῡτ+1](ητ ).

Next, we describe two variants of the MPS algorithm. The
exhaustive variant replaces states by state occupancy dis-
tributions, and actions by decentralized Markov decision
rules in the LRTA∗ algorithm. The second variant uses a
constraint optimization program instead of the memory de-

manding exhaustive backup operation that both the LRTA∗

algorithm and the exhaustive variant use.

5.1 The exhaustive variant

The exhaustive variant consists of three major steps: the
initialization step (line 1); the backup operation step (line
5); and the update step (lines 6 and 8). It repeats the execu-
tion of these steps until convergence (ῡ0(η0)−υ0(η0) ≤ ε).
At this point, an ε-optimal decentralized Markov policy has
been found.

Algorithm 1: The MPS algorithm.
begin

1 Initialize bounds υ and ῡ.
2 while ῡ0(η0)− υ0(η0) > ε do
3 MPS-TRIAL(η0)

MPS-TRIAL(ητ ) begin
4 while ῡτ (ητ )− υτ (ητ ) > ε do
5 σgreedy,τ ← arg maxστ q̄τ (ητ , στ )
6 Update the upper bound value function.
7 MPS-TRIAL(χτ+1[ητ , σgreedy,τ ])
8 Update the lower bound value function.

Initialization. We initialize lower bound υτ with the
τ -th value function of any decentralized Markov pol-
icy, such as a randomly generated policy πrand =
〈σrand,0, . . . , σrand,T − 1〉, where υτ = υσrand,τ ,...,σrand,T − 1

.
We initialize the upper bound ῡτ with the τ -th value func-
tion of the underlying MDP. That is, πmdp =
〈σmdp,0, . . . , σmdp,T − 1〉, where ῡτ = υσmdp,τ ,...,σmdp,T − 1

.

The exhaustive backup operation. We choose decentral-
ized Markov decision rule σgreedy,τ , which yields the high-
est value ῡτ (ητ ) through the explicit enumeration of all
possible decentralized Markov decision rules στ . We first
store all decentralized Markov decision rules στ for each
visited state occupancy ητ together with corresponding val-
ues q̄τ (ητ , στ ). Hence, the greedy decentralized Markov
decision rule σgreedy,τ is arg maxστ q̄τ (ητ , στ ) at state oc-
cupancy ητ .

Update of lower and upper bounds. We update the lower
bound value function based on decentralized Markov poli-
cies πgreedy = 〈σgreedy,0, . . . , σgreedy,T−1〉 selected at each
trial. If πgreedy yields a value higher than that of the cur-
rent lower bound, υ0(η0) < υπgreedy(η0), we set υτ =
υσgreedy,τ ,...,σgreedy,T − 1

for τ = 0, . . . , T − 1, otherwise we
leave the lower bound unchanged. We update the upper
bound value function based on decentralized Markov deci-
sion rules σgreedy,τ and the (τ + 1)-th upper-bound value
function ῡτ+1, as follows ῡτ (ητ ) = [Lσgreedy,τ ῡτ+1](ητ ).

Theoretical guarantees. The exhaustive variant of MPS
yields both advantages and drawbacks. On the one hand,
it inherits the theoretical guarantees from the LRTA∗ al-



gorithm. In particular, it terminates with a decentralized
Markov policy within ε = ῡ0(η0) − υ0(η0) of the opti-
mal decentralized Markov policy. Indeed, the upper bound
value functions ῡτ never underestimate the exact value at
any state occupancy ητ . This is because we update the
upper bound value at each state occupancy based upon a
greedy decision rule for this state occupancy. On the other
hand, the exhaustive variant algorithm requires the exhaus-
tive enumeration of all possible decentralized Markov de-
cision rules at each backup step (Algorithm 1, line 5). In
MDP techniques, the exhaustive enumeration is not pro-
hibitive since the action space is often manageable. In de-
centralized MDP planning, however, the space of all de-
centralized Markov decision rules increases exponentially
with increasing observations and agents. As such, the ex-
haustive variant can scale only to problems with a moderate
number of observations (local states) and two agents.

5.2 The constraint optimization formulation

To overcome the memory limitation of the exhaustive vari-
ant, we use constraint optimization instead of the exhaus-
tive backup operation. More precisely, our constraint op-
timization program returns a greedy decentralized Markov
decision rule σgreedy,τ for each state occupancy ητ visited,
but without performing the exhaustive enumeration.

In our constraint optimization formulation, variables are
associated with decision rules σiτ (zi) for all agents i =
1, . . . , n and all local observations zi ∈ Zi. The do-
main for each variable σiτ (zi) is action space Ai. For
each state s ∈ S, we associated a single soft constraint
cτ (s, ·) : A 7→ R. Each of these assigns a value cτ (s, a) =
r(s, a) +

∑
s′ p(s, a, s

′) · υσmdp,τ + 1,...,σmdp,T − 1
(s′) to each

joint action a ∈ A. Value cτ (s, a) denotes the reward ac-
crued at horizon τ when taking joint action a in state s
and then following the underlying MDP joint policy for
the remaining planning horizons. For each decentralized
Markov decision rule στ ∈ Ψτ (ητ ), we also associate a
single soft constraint gτ (·). Each of these assigns value
gτ (στ ) = q̄τ (ητ , στ )−q̄mdp(ητ , στ ), where q̄mdp(ητ , στ ) =
[Lστυσmdp,τ + 1,...,σmdp,T − 1

](ητ ). The objective of our con-
straint optimization model is to find an assignment σgreedy,τ
of actions ai to variables σiτ (zi) such that the aggregate
value is maximized. Stated formally, we wish to find
σgreedy,τ = arg maxστ gτ (στ ) +

∑
s ητ (s)cτ (s, στ (s)).

To better understand our constraint optimization program,
note that by the definition of mapping q̄mdp we have that∑
s ητ (s) · cτ (s, στ (s)) = q̄mdp(ητ , στ ). Hence, if we

use q̄mdp(ητ , στ ) instead of
∑
s ητ (s) · cτ (s, στ (s)), we get

σgreedy,τ = arg maxστ q̄τ (ητ , στ ). Thus, our constraint
optimization program returns a decentralized Markov deci-
sion rule with the highest upper-bound value. Techniques
that solve our constraint optimization formulation abound
in the literature of constraint programming [9], allowing
many different approaches to be utilized.

Theoretical guarantees. The constraint optimization vari-
ant yields the same guarantees as the exhaustive variant
without the major drawback of exhaustive enumeration of
all decentralized Markov decision rules. Instead, it uses a
constraint optimization formulation that returns a greedy
decentralized Markov decision rule, which will often be
much more efficient than exhaustive enumeration. And
hence, we retain the property that stopping the algorithm
at any time, the solution is within ε = ῡ0(η0) − υ0(η0) of
an optimal decentralized Markov policy.

Comparison to COP based algorithms. There is a rich
body of work that replaces the exhaustive backup operation
by a constraint optimization formulation in decentralized
control settings [15, 14, 19]. These constraint optimiza-
tion programs compute a decentralized history-dependent
policy for a given belief state. While MPS also takes ad-
vantage of a constraint optimization formulation, it remains
fundamentally different. The difference lies in both the
COP formulation and the heuristic search. In existing COP
based algorithms for decentralized control, authors try to
find the best assignment of sub-policies to histories. In-
stead, in our case the COP formulation aims at mapping
local observations to local actions. This provides consid-
erable memory and time savings. Moreover, existing algo-
rithms proceed by backing up policies in a backward di-
rection (i.e., from last step to first) using a set pre-selected
belief states. In contrast, the MPS algorithm proceeds for-
ward, expanding the state occupancy distributions and se-
lecting greedily decision rules. Finally, the MPS algorithm
returns an optimal solution, whereas other COP based al-
gorithms for Dec-POMDPs return only locally optimal so-
lutions [15, 14]. Approximate solutions are returned by the
other algorithms because they plan over (centralized) be-
lief states, which do not constitute a sufficient statistic for
Dec-POMDPs (or Dec-MDPs).

6 Empirical Evaluations

We evaluated our algorithm using several benchmarks from
the decentralized MDP literature. For each benchmark, we
compared our algorithms with state-of-the-art algorithms
for solving Dec-MDPs and Dec-POMDPs. Note that we
do not compare with ND-POMDP methods. Since our
benchmarks allow all agents to interact with all teammates
at all times, there is no reason to expect the optimal ND-
POMDP method (GOA [19]) to outperform the algorithms
presented here. We report on each benchmark the optimal
value υ0(η0) together with the running time in seconds for
different planning horizons.

The MPS variants were run on a Mac OSX machine with
2.4GHz Dual-Core Intel and 2GB of RAM available. We
solved the constraint optimization problems using the aolib
library1. The bilinear programming approach (listed as

1The aolib library is available at the following website:



T υ0(η0) ICE IPG BLP MPS

exh COP

Recycling robot (|Z| = 4,|A| = 9)

50 154.94 1.27 - 8848.7 0.016 0.5
60 185.71 6.00 - - 0.090 0.555
70 216.47 28.6 - - 0.111 0.395
80 247.24 - - - 0.124 0.545
90 278.01 - - - 0.151 0.373

100 308.78 - - - 0.156 0.438
1000 3078.0 - - - 1.440 5.374

Meeting Grid (|Z| = 81,|A| = 25)

2 0.0 0.00 5 10.0 - 0.030
3 0.13 0.02 17 34.7 - 0.110
4 0.43 0.37 54 192.8 - 0.114
5 0.89 4.38 600 571.2 - 0.131
6 1.49 - - 1160.6 - 0.159
10 4.68 - - 3938.5 - 0.309

100 94.26 - - - - 13.12
1000 994.2 - - - - 33.59

T υ0(η0) ICE IPG BLP COP

Meeting on a 8x8 Grid (|Z| = 4096,|A| = 25)

5 0.0 12.55 - - 5.05
6 0.0 - - - 6.20
7 0.71 - - - 13.16
8 1.67 - - - 13.76
9 2.68 - - - 16.94

10 3.68 - - - 18.66
20 13.68 - - - 38.37
30 23.68 - - - 52.39
40 33.68 - - - 59.70
50 43.68 - - - 74.28
100 93.68 - - - 214.73

Navigation (MIT) (|Z| = 7225,|A| = 16)

10 0.0 85.85 - - 47.322
20 0.0 - - - 321.26
30 14.28 - - - 180.70
40 34.97 - - - 400.48
50 54.92 - - - 1061.94
100 154.93 - - - 1236.11

T υ0(η0) ICE IPG BLP COP

Navigation (ISR) (|Z| = 8100,|A| = 16)

2 0.0 0.71 - 3225.8 2.39
3 0.0 6.50 - - 3.19
4 0.0 - - - 4.31
5 0.38 - - - 13.43
10 6.47 - - - 54.16
50 83.02 - - - 194.66

100 182.54 - - - 1294.28
Navigation (PENTAGON) (|Z| = 9801,|A| = 16)

2 0.0 0.99 - 4915.1 1.31
3 0.0 6.01 - - 5.11
4 0.0 - - - 8.75
5 0.38 - - - 13.81
10 4.82 - - - 62.89
20 19.73 - - - 129.48
30 39.18 - - - 209.11
40 57.75 - - - 276.20
50 76.39 - - - 1033.70

Table 1: Experimental results for the COP and exh. variants of MPS as well as GMAA∗-ICE (labeled ICE), IPG, and BLP.

BLP) was run on a 2.8GHz Quad-Core Intel Mac with 2GB
of RAM with a time limit of 3 hours. We used the best
available version of the bilinear program approach which
was the iterative best response version with standard pa-
rameters. This is a generic solution method which does not
perform as well as the more specialized approaches in [22],
but we do not expect results to differ by more than a single
order of magnitude. We do not compare to the coverage
set algorithm because the bilinear programming methods
have been shown to be more efficient for all available test
problems.

We provide values for the exhaustive variant, exh, on small
problems and constraint optimization formulation, COP,
for all problems. We tested our algorithms on six bench-
marks: recycling robot, meeting-in-a-grid 3x3 and 8x8;
and navigation problems2. These are the largest and hard-
est benchmarks we could find in the literature. We com-
pare our algorithms with: GMAA∗-ICE [25], IPG [1], and
BLP. The GMAA∗-ICE heuristic search consistently out-
performs other generic exact solvers such as (G)MAA∗

[25]. The IPG algorithm is a competitive alternative to the
GMAA∗ approach and performs well on problems with re-
duced reachability [1]. Results for GMAA∗-ICE were pro-
vided by Matthijs Spaan and as such were conducted on
a different machine. Similarly, results for IPG were col-
lected on different machine. As a result, the timing results
for GMAA∗-ICE and IPG are not directly comparable to
the other methods, but are likely to only differ by a small
constant factor from those that would be obtained on our
test machine.

The results can be seen in Table 1. In all benchmarks,
the COP variant of MPS outperforms the other algorithms.
The results show that the COP variant produces the opti-

http://graphmod.ics.uci.edu/group/aolibWCSP/
2All problem definitions are available at the following website:

http://users.isr.ist.utl.pt/∼ mtjspaan/decpomdp/

mal policies in much less time for all tested benchmarks.
For example, in the meeting in a 3x3 grid problem for
T = 5: the COP variant computed the optimal policies
approximately 33, 4358 and 4580 times faster than the
GMAA∗-ICE, BLP and IPG algorithms, respectively. We
also note that the COP variant is very useful for the medium
and large domains. For example, in all large domains, the
exh. variant ran out of memory while the COP variant com-
puted the optimal solutions for horizons up to 100. Yet,
the exh. variant can compute the optimal solution of small
problems faster than the COP variant. For instance, in the
recycling robot for horizon T = 1000, the exh. variant
computed the optimal solution in about 5 times faster than
the COP variant of the MPS algorithm due to overhead in
the constraint optimization formulation and a lack of struc-
ture that can be utilized.

There are many different reasons for these results. The
MPS algorithm outperforms GMAA∗-ICE and IPG mainly
because they perform a policy search in the space of decen-
tralized history-dependent policies. Instead, the MPS algo-
rithm performs its policy search in the space of decentral-
ized Markov policies, which is exponentially smaller than
that of the decentralized history-dependent policies. The
MPS outperforms the BLP algorithm mainly because of the
dimension of its solution representation. More specifically,
the number of bilinear terms in the BLP approach grows
polynomially in the horizon of the problem, causing it to
not perform well for large problems and large horizons with
tightly coupled reward values.

We continue the evaluation of the MPS algorithm on ran-
domly generated instances with multiple agents. The ran-
dom instances were built upon the recycling robot problem
described in Sutton and Barto [26]. Given n such models,
each of which is associated with a single agent, we choose a
number of interaction events. An interaction event is a pair
of joint states and actions (s, a) where the reward r(s, a)



is randomly chosen. This structure ties all agents together
since the reward model cannot be decomposed among sub-
groups of agents. In an effort to provide insight on the
degree of interaction among all agents, we distinguish be-
tween four classes {c0, c1, c2, c3}, each of which depends
on the number of interaction events e. For each class ck, we
randomly choose e such that e ∈ [k4 emax; k4 (1 + emax)],
where emax denotes the number of joint state and action
pairs.

As depicted in Figure 2, the constraint formulation allows
us to deal with larger numbers of agents. We calculated op-
timal value functions for 100 instances of each class, and
reported the average computational time. The COP vari-
ant was able to scale up to 6 agents at horizon 10 in about
5, 000 seconds. We could also produce results for up to
10 agents in about 40, 000 seconds using a more powerful
machine. It can also be seen that increasing the number of
interaction events on each problem does not substantially
increase the amount of time required to solve these prob-
lems. This shows that even for dense reward matrices, our
approach will continue to perform well. Despite this high
running time, MPS is the first generic algorithm that scales
to teams of more than two agents without taking advan-
tage of the locality of interaction. For example the BLP
algorithm as it currently stands can only solve two-agent
problems. Moreover, ND-POMDP techniques exploit the
small number of local interactions among agents to scale to
multiple agents, but in this problem all agents interact.
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Figure 2: The MPS performance for increasing number of
agents at planning horizon N = 10 for randomized in-
stances of the recycling robot scenario.

7 Conclusion and Future Work

This paper explores new theory and algorithms for solv-
ing independent transition and observation Dec-MDPs. We
provide a new proof that optimal policies do not depend on
agent histories in this subclass, generalizing previous the-

oretical results. We also describe a novel algorithm that
combines heuristic search and constraint optimization to
more efficiently produce optimal solutions for this class of
problems. This new algorithm, termed learning Markov
policy or MPS, was shown to scale up to large problems
and planning horizons, reducing computation time by mul-
tiple orders of magnitude over previous approaches. We
were also able to demonstrate scalability with respect to the
number of agents in domains with up to 10 agents. These
results show that our approach could be applied to many
large and realistic domains.

In the future, we plan to explore extending the MPS al-
gorithm to other classes of problems and larger teams of
agents. For instance, we may be able to produce an opti-
mal solution to more general classes of Dec-MDPs or pro-
vide approximate results for Dec-POMDPs by extending
the idea of an occupancy distribution to those problems.
Furthermore, the scalability of our approach to larger num-
bers of agents is encouraging and we will pursue methods
to increase this even further. In particular, we think our ap-
proach could help increase the number of agents that inter-
act in conjunction with other structure in the model such as
locality of interaction (as in ND-POMDPs) or sparse joint
reward matrices (as in bilinear programming approaches).
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