
Budget Optimization for Sponsored Search:
Censored Learning in MDPs

Kareem Amin Michael Kearns
Computer and Information Science

University of Pennsylvania
{akareem,mkearns}@cis.upenn.edu

Peter Key Anton Schwaighofer
Microsoft Research

Cambridge, United Kingdom
{peter.key,antonsc}@microsoft.com

Abstract

We consider the budget optimization prob-
lem faced by an advertiser participating in re-
peated sponsored search auctions, seeking to
maximize the number of clicks attained under
that budget. We cast the budget optimiza-
tion problem as a Markov Decision Process
(MDP) with censored observations, and pro-
pose a learning algorithm based on the well-
known Kaplan-Meier or product-limit esti-
mator. We validate the performance of this
algorithm by comparing it to several others
on a large set of search auction data from
Microsoft adCenter, demonstrating fast con-
vergence to optimal performance.

1 Introduction

In this paper we study algorithms for optimized bud-
get expenditure in sponsored search. Given an adver-
tiser’s budget, the goal of such algorithms is to maxi-
mize the number of clicks obtained during each budget-
ing period. We consider a single-slot model in which
our algorithm’s competing bid — representing the rest
of the “market” for clicks — is drawn from a fixed
and unknown probability distribution. While in real-
ity, advertisers (or their proxies) may often bid strate-
gically and not stochastically, we view this assump-
tion as analogous to classical models in finance, where
despite strategic behavior of traders at the individ-
ual level, models of macroscopic price evolution that
are stochastic (such as Brownian motion models) have
been quite effective in developing both models and al-
gorithms. Our empirical results will demonstrate that
algorithms designed for these stochastic assumptions
also perform quite well on the non-stochastic sequence
of bids actually occurring in real search auctions.

The assumption of stochastic bids by the competing
market leads to a Markov Decision Process (MDP)

formulation of the optimal policy, where the states of
the MDP specify the remaining time in the period and
the remaining budget. However, the second-price na-
ture of sponsored search introduces the challenge of
censored observations: only if we win the click do we
observe the actual competing price; otherwise, we only
know our bid was too low.

Our main contributions are the introduction of effi-
cient algorithms that combine the MDP formulation
with the classical Kaplan-Meier [5] or product-limit
estimator for censored observations, and a large-scale
empirical demonstration that these algorithms are ex-
tremely effective in practice — even when our underly-
ing distributional assumptions are badly violated. Our
source of data is auction-level observations on hun-
dreds of high-volume key-phrases from Microsoft ad-
Center. We show that our algorithms rapidly learn
to compete with the strongest possible benchmark —
the performance of an offline-optimal algorithm that
knows the future competing bids, and always selects
the cheapest clicks in each period.

2 Related Work

There is some prior work directly concerning the prob-
lem of optimizing an advertiser’s budget [6, 12], as well
as work concerned with characterizing the dynamics or
equilibria of a market in which advertisers play from a
family of optimizing strategies [2, 3]. All these works
attempt to model the strategic behavior of agents par-
ticipating in a sponsored search auction. We will de-
part from this, modeling the auction market stochas-
tically, as is more common in finance.

The sponsored search budget optimization problem
has also been formulated as an instance of online knap-
sack [12]. For the online knapsack problem, it is known
that no online algorithm can converge to the optimum
in the worst case [8]. The stochastic knapsack problem
has also been studied, and there is an algorithm with
near-optimal average-case performance [7]. One of our

proposed algorithms is a censored learning version of
such an algorithm. Our main proposed algorithm is
closely modeled on an algorithm from a financial opti-
mization problem [4], which similarly integrates a cen-
sored estimation step with greedy optimization.

Finally, we apply classical techniques from reinforce-
ment learning in a finite state MDP, including Q-
learning (c.f. [11]), as well as classical techniques from
the study of censored observations [5, 9].

3 Preliminaries

The optimization problem we consider occurs over a
series of periods. At the beginning of each period, the
budget optimization algorithm is allocated a fresh bud-
get B. This assumption is meant to reflect the manner
in which advertisers actually specify their budgets in
real sponsored search markets. Broadly speaking, the
algorithm’s goal is to maximize the number of clicks
purchased, in each period, using the budget B.

Each period consists of a number of auctions, or an
opportunity to earn a click. We consider the single-
slot setting, wherein the search engine displays a sin-
gle advertisement for each auction 1. The algorithm
places a bid in each auction. Before the bid is placed,
a price is fixed by the auction mechanism. If the algo-
rithm’s bid exceeds this price, the algorithm wins an
impression. For simplicity, we begin by assuming that
winning an impression automatically guarantees that
the algorithm also wins a click; we will describe later
how to relax this assumption.

Once the algorithm wins a click, it is charged the price
from its budget. Otherwise, the algorithm maintains
its budget, and the next auction occurs. In actual
sponsored search markets, the price is determined by
the bids of arbitrary agents competing for the click in
a modified second-price auction (see e.g. [10]).

The major assumption of this work is to instead model
the prices as i.i.d. draws from an unknown distribu-
tion; we will refer to this price as the market price,
since it represents the aggregate behavior of our al-
gorithm’s competitors. As in other financial applica-
tions, it is often analytically intractable to model the
individual agents in a market strategically, so we in-
stead consider the market stochastically as a whole.
We will demonstrate that our algorithm outperforms
other methods in practice on actual auction data from
Microsoft adCenter, even when the i.i.d. assumption
is badly violated.

We will consider some fixed, unknown, distribution P

1We suspect our methods can be adapted to the multi-
slot case, but leave it to future work.

supported on Z+ with mass function p(·). On each
auction, the market price is an independent random
variable distributed as P. We think of the budget B
and market prices as being expressed in terms of the
smallest unit of currency that can be bid by the algo-
rithm. Modeling the problem in this manner motivates
a natural algorithm.

It is important to note that the market prices are not
observed directly by the algorithm. Rather, the al-
gorithm is only privy to the consequences of its bid
(whether a click or impression is received), and changes
to its budget.

Succinctly, we consider the following protocol:

1: for period u = 1, 2, ... do
2: Bu,T = B
3: for auctions remaining t = T, T − 1, ..., 1 do
4: Algorithm bids bu,t ≤ Bu,t.
5: Nature draws price xu,t ∼ P.
6: if bu,t ≥ xu,t then
7: cu,t ← 1
8: Bu,t−1 ← Bu,t − xu,t
9: else

10: cu,t ← 0
11: Bu,t−1 ← Bu,t
12: end if
13: Algorithm observes cu,t, Bu,t−1
14: end for
15: end for

When an algorithm places a large enough a bid, win-
ning the click, it also observes the true market price,
since its budget it reduced by that amount. However,
should the algorithm fail to win the click, it only knows
that the market bid was higher than the bid placed.
Thus, the algorithm receives what is known in the sta-
tistical literature as partially right-censored observa-
tions of the market prices {xu,t}.

Informally, we always assume that an algorithm has
available to it any information it would have in a real
sponsored search auction (although not always at the
same granularity), and no more. So it may be in-
formed of whether it received a click or impression on
an auction-by-auction basis, but not information re-
garding prices if it did not win the click.

Finally, we assume there is only a single keyword which
the advertiser is bidding on. Our methods generalize
to the setting where there are multiple keywords with
multiple click-through rates and valuations for a click.
However, for simplicity, we do not consider these ex-
tensions in this work.

3.1 Notation

Given a distribution P, supported on Z+, with
mass function p, we let the tail function Tp(b) =∑∞
b′=b+1 p(b

′) denote the mass to the right of b.

We use [N] to mean the set {1, ..., N}, and [N]0 =
[N] ∪ {0}.

4 MDP Formulation

An algorithm for the optimization problem introduced
in the previous section can be described as an agent in
a Markov Decision Process (MDP). An MDP M can
be written as M = (S, {As}s∈S , µ, r) where S is a set
of states, and As are the set of actions available to the
agent in each state s, and A = ∪s∈SAs. For a ∈ As,
µ(a, s, s′) is the probability of transitioning from state
s to state s′ when taking action a in state s. r(a, s, s′)
is the expected reward received after taking action a
in state s and transitioning to state s′. The goal of
the agent is to maximize the expected reward received
while transitioning through the MDP.

In our case, the state space is given by S = [B]0× [T]0.
With t auctions remaining in period u, the algorithm is
in state (Bu,t, t) ∈ S. Furthermore, the actions avail-
able to any algorithm in such a state are the set of
bids that are at most Bu,t. So for any (b, t) ∈ S we let
A(b,t) = [b]0.

When t ≥ 1, two types of transitions are possible.
The agent can transition from (b, t) to (b, t − 1) or
from (b, t) to (b′, t−1) where 0 ≤ b′ < b. In the former
case, the agent must place a bid lower than the market
price. Therefore, we have that µ(a, (b, t), (b, t − 1)) =
Tp(a). Furthermore, the agent does not win a click in
this case, and r(a, (b, t), (b, t − 1)) = 0. In the latter
case, let δ = b − b′. The agent must bid at least δ,
and the market price must be exactly δ on auction
t of the period in question. Therefore, we have that
µ(a, (b, t), (b′, t−1)) = p(δ) and r(a, (b, t), (b′, t−1)) =
1 so long as a ≥ δ.

When t = 0, for any action, the agent simply tran-
sitions to (B, T) with probability 1, with no reward.
The agent’s budget is refreshed, and the next period
begins.

All other choices for (a, s, s′) ∈ As × S × S represent
invalid moves, and hence µ(a, s, s′) = r(a, s, s′) = 0.

Finally, conditioned on an agent’s choice of action a
and current state s, its next state s is independent
of all previous actions and states, since the market
prices {xu,t} are independent. The Markov property
is satisfied, and we indeed have an MDP.

We call this the Sponsored Search MDP (SS-MDP). If

π is a fixed mapping from S to A satisfying π(s) ∈ As,
we say that π is a policy for the MDP.

Note that an agent in the SS-MDP, started in an ar-
bitrary state (b, t), arrives at the state (B, T) after
exactly t + 1 actions. Therefore, we can define the
random variable Cπ(b, t) to be the total reward (i.e.
number of clicks) attained by policy π before return-
ing to (B, T). We say that π is an optimal policy for
the SS-MDP if an agent started at (B, T), playing µ(s)
in each state s encountered, maximizes the expected
number of clicks rewarded before returning to (B, T).
In other words:

Definition 1. A policy π∗ is an optimal policy for the
SS-MDP if π∗ ∈ arg maxπ E[Cπ(B, T)].

The SS-MDP is determined by the choice of budget B,
time T and distribution p. We will want to make the
optimal policy’s dependence on p explicit, and conse-
quently we will write it a π∗p.

5 The Value Function

MDPs lend themselves to dynamic programming. In-
deed, we can characterize exactly the optimal policy
for the SS-MDP when the probability mass function p
is known.

For a distribution p, let Vp(b, t), the value function for
p, denote the expected number of clicks received by an
optimal policy started at state (b, t). That is, if π∗p is
an optimal policy, then Vp(b, t) = E[Cπ∗(b, t)].

First note that when T = 0, Vp(B, T) ≡ 0. Con-
sider the policy π∗a,b,t that takes action a in state

(b, t), and plays optimally thereafter. Let Vp(a, b, t) =
E[Cπ∗a,b,t

(b, t)] be the clicks received by such a policy

from state (b, t). Observe that Vp(a, b, t) can be writ-
ten in terms of Vp(·, t− 1):

Vp(a, b, t) =

a∑
δ=1

p(δ)[1+Vp(b− δ, t− 1)]+Tp(a)Vp(b, t− 1).

In other words, if the market price is δ ≤ a, which
occurs with probability p(δ), the agent will win a click
at the price of δ and transition to state (b − δ, t −
1). At this point it behaves optimally, earning Vp(b−
δ, t − 1) clicks in expectation. If the market price is
greater than a, which occurs with probability Tp(a),
the agent will retain its budget, transitioning to the
state (b, t−1), earning Vp(b, t−1) clicks in expectation.
Furthermore, we know that:

Vp(b, t) = arg max
a≤b

Vp(a, b, t).

Therefore, if p and Vp(·, T − 1) are known then we
can compute Vp(a, b, t) in O(B) operations, and so

compute Vp(b, t) in O(B) operations. Recalling that
Vp(b, 0) ≡ 0, we can compute Vp(b, t) for all (b, t) ∈
[B]0 × [T]0 in O(B2T) operations.

6 Censored Data

In the previous sections, we described how to compute
the optimal policy π∗p when p is known. A natural algo-
rithm for budget optimization is therefore to maintain
an estimate p̂ of p, and bid greedily according to π∗p̂ .
Before describing such an algorithm, we will discuss
the problem of estimating p.

As introduced in Section 3, the observations received
by a budget-optimization algorithm are partially right-
censored data. We begin with a general discussion of
censoring.

Suppose that P is a distribution with mass func-
tion p and (z1, ..., zn) are i.i.d., P-distributed ran-
dom variables. Fix n integers k1, ..., kn, and define
oi = min(zi, ki). We say that the sample {oi} is par-
tially right-censored data.

If oi < ki, we say that oi is a direct observation. In
other words, oi = zi and we have observed the true
value of zi. Otherwise, oi = ki and we say that oi is a
censored observation. We know only that zi ≥ ki.

Given such partially right-censored data, the Product-
Limit estimator [5] is the non-parametric maximum-
likelihood estimator for p.

Definition 2. Let P be a discrete distribution with
mass function p, and let {zi} be i.i.d. P-distributed
random variables. Given integers K = (k1, ..., kn) and
observations O = (o1, ..., on) where oi = min(zi, ki),
let PL(K,O) be the Product-Limit estimator for p.

Specifically, given integers K, and a set of observations
O generated by a distribution P, let D(s) = |{oi ∈ O |
s = oi < ki}| be the number of direct observations of
value s, and N(s) = |{oi ∈ O | s ≤ oi, s < ki}|. Now

let S(t) =
∏t−1
s=1 1 − D(s)

N(s) . The CDF of PL(K,O) is

given by 1− S(t).

In our setting, we are receiving censored observation
of the random variables {xu,t} where the censoring set
K is given by {bu,t+1}, and ou,t = min{bu,t+1, xu,t}.
When a click is received (i.e. xu,t < bu,t + 1), we
observe xu,t directly since xu,t = Bu,t − Bu,t−1, the
amount which the algorithm is charged for winning
the click. Otherwise, the algorithm is charged nothing,
and we only know that xu,t ≥ bu,t + 1.

Finally, we will eventually consider the setting in which
winning an impression does not necessarily guarantee
winning a click. In such a setting, we will have both
left-censored and right-censored observations of xu,t,

what is known as doubly-censored data.

If the algorithm bids bu,t and does not win the impres-
sion, we know that xu,t ≥ bu,t + 1. Similarly, if the
algorithm wins both the impression and the click, it
gets to observe xu,t directly. However, should the al-
gorithm win the impression but not the click, it is only
informed that it placed a large-enough bid (that it won
the impression), or xu,t < bu,t + 1, without observing
xu,t directly. We give a more detailed discussion of
this setting in Section 9. For doubly-censored data,
there is algorithm giving the non-parametric MLE [9].

7 Greedy Product-Limit Algorithm

The algorithm we propose maintains an estimate p̂ of
p. With budget b remaining, and t auctions remaining,
the algorithm will greedily use its current estimate of p,
and bid πp̂(b, t). The pseudo-code for Greedy Product-
Limit contains a detailed description.

Algorithm 1 Greedy Product-Limit

Input: Budget B
1: Initialize distribution p̂ uniform on [B]
2: Initialize K = []; Initialize O = []
3: for period u = 1, 2, ... do
4: Set Bu,T := B
5: for auctions remaining t=T,T-1,...,1 do
6: Bid π∗p̂(Bu,t, t)
7: Set ku,t ← π∗p̂(Bu,t, t) + 1
8: K ← [K, ku,t]
9: if Click won at price xu,t then

10: O ← [O, xu,t]
11: else
12: O ← [O, ku,t]
13: end if
14: Update p̂ to PL(K,O)
15: end for
16: end for

8 Competing Algorithms

In this section we will describe a few alternative strate-
gies against which we compare Greedy Product-Limit.
The first relies on an observation that, given an ar-
bitrary sequence of market prices, there is a simple
bidding strategy that has a constant competitive ratio
to the offline optimal.

8.1 Offline Optimality

So far we have focused our attention on the notion
of optimality introduced in Section 4. Namely, an
algorithm is optimal if it achieves Vp(B, T) clicks,

in expectation, in every period. However, given an
arbitrary (non-stochastic) vector of T market prices
x = (x1, ..., xT), we can define C∗(x, B) to be the max-
imum number of clicks that could be attained by any
sequence of bids, knowing x a priori. In other words,
if b ∈ {0, 1}T , and ‖b‖0 = |{bi | bi = 1}|, then we
define

Definition 3.

C∗(x, B) , max
b∈{0,1}T

‖b‖0 subject to x · b ≤ B.

We call a sequence of bids for x that attains C(x, B)
clicks an optimal offline policy. Notice that one attains
the optimal offline policy by greedily selecting to win
the clicks with the cheapest prices, until the budget B
is saturated.

8.2 Fixed Price

Competing against the notion of optimality introduced
in Section 8.1 may seem onerous in the online setting.
Indeed, competing against an arbitrary sequence of
prices is a special case of the online knapsack problem,
which is known to be hard. However, we will now show
that for any sequence of prices x, there always exists a
simplistic bidding policy which would have attained a
constant factor of the bids of the optimal offline policy.

Let Fixed(b) be the policy that bids b on every auction
that it has budget to do so, and define C(x, b, B) to
be the number of clicks attained by Fixed(b) against
x with budget B.

Theorem 1. For any sequence of prices x, and bud-
get B, there exists a bid b such that C(x, b, B) ≥
1
2C
∗(x, B).

Proof. Let b∗ be the value of the price for the most
expensive click that the optimal offline policy selects
to win. Suppose that the optimal offline policy wins
M+N clicks, where M clicks were won with a price of
exactly b∗ and the remaining N clicks were won with
a price of b∗ − 1 or less.

If N ≥ 1
2C
∗(x, B), then Fixed(b∗ − 1) would win all

N clicks, giving the desired result.

Otherwise, we know that M ≥ 1
2C
∗(x, B). Consider

the policy Fixed(b∗). In the worst case, the policy
will win only clicks with price b∗ before saturating its
budget. However, we know that Mb∗ ≤ B, and so
C(x, b∗, B) ≥M ≥ 1

2C
∗(x, B), as desired.

8.3 Fixed-Price Search

This motivates a simple algorithm which attempts to
find the best fixed-price, Fixed-Price Search.

Algorithm 2 Fixed-Price Search

1: Select b1 arbitrarily.
2: for period u = 1, 2, ... do
3: Cu := 0
4: for auctions remaining t = T, T − 1, ..., 1 do
5: Bid bu
6: if Click won then
7: Cu ← Cu + 1
8: end if
9: end for

10: bu+1 ← UpdateBid({bu′ , Cu′}uu′=1)
11: end for

The algorithm plays a fixed-price strategy each period.
At the end of the period it uses a subroutine Update-
Bid to select a new fixed-price according to how many
clicks it has received. There are many reasonable ways
to specify the UpdateBid subroutine, including using
additive or multiplicative updates (e.g. treating each
price as an expert and running a bandit algorithm such
as Exp3 [1]). But general, the performance of any
such approach cannot overcome the fixed-price “gap”
of Ex[C∗(x, B)−maxb C(x, b, B)].

8.4 Q-learning

Given the MDP formulation of the problem in Sec-
tion 4, we may hope to solve the problem using tech-
niques from reinforcement learning. Q-learning with
exploration is one of the simplest algorithms for rein-
forcement learning, giving good results in a number of
applications.

In Q-learning, the agent begins with an estimate
Q(a, b, t) of the function Vp(a, b, t), called the Q-value,
for each state (b, t) and action a ∈ [b]. In a state (b, t),
the agent greedily performs the best action a∗ for that
state using the current Q-values receiving some reward
r̂ and arriving at a new state (b′, t− 1). The Q-values
for state (b′, t− 1) and the observed reward r̂ are then
used to update Q(a∗, b, t). This is often combined with
forced exploration. Notice that Q-learning will nec-
essarily ignore the special assumptions placed on the
underlying MDP. In particular, from our discussion
in Section 4, we have that π(a, (b1, t1), (b′1, t1 − 1)) =
π(a, (b2, t2), (b′2, t2 − 1)) when b1 − b′1 = b2 − b′2.

8.5 Knapsack Approaches

As referenced in Section 2, the problem of budget op-
timization in sponsored search is very related to the

online knapsack problem. In the online knapsack prob-
lem, an optimizer is presented with a sequence of items
with values and weights. At each time step, the opti-
mizer makes an irrevocable decision to take the item
(subtracting its weight from the optimizer’s budget,
and gaining its value). In the worst case, Marchetti-
Spaccamela et al. demonstrate that a constant-factor
competitive ratio with the offline is not possible [8].
Nevertheless, there are many results from the online
knapsack literature that are applicable to our setting.

While in the worst case the online knapsack problem
is hard, Lueker gives an average-case analysis for an
algorithm for the Stochastic Knapsack Problem, which
is related to our setting [7]. In the Stochastic Knap-
sack Problem, items {(ri, xi)} are i.i.d. draws from
some fixed, known, distribution. ri is the profit or re-
ward earned by taking the item, and xi is the price
of the item. In our setting, all clicks are considered
indistinguishable for a fixed keyword, and so ri = 1.

Note that the protocol differs from ours in a few ways.
Firstly, there is no learning. The underlying distri-
bution is assumed to be known. Secondly, there is no
censoring of data, or any notion of an auction. The op-
timizer is presented with each item up-front, at which
point it must make a decision before moving on to the
next. Thirdly, in the language of our setting, there is
only a single period.

Under these assumptions, the algorithm of Lueker
gives a simple algorithm which differs from the true op-
timum by an average of Θ(T), where T is the length of
the period, assuming that the budget available scales
with T [7].

Nevertheless, the same ideas behind Greedy Product-
Limit give us a natural adaptation of this algorithm
to our setting. Suppose that the prices are presented
up-front and that P is known. With budget B remain-
ing and time T remaining in a period, the algorithm
computes:

v(B/T) , max
v
{v |

v∑
a=1

a · p(a) ≤ B/T}

and takes the click iff its market price x satisfies x ≤
v(B/T). Thus, when the prices are not presented up-
front, it is equivalent to simply bidding v(B/T).

Note that bidding v(B/T) is natural; it is the bid that,
in expectation, costs B/T , or smooths the remaining
budget over the time remaining. We can now combine
this with an estimation step, using the product-limit
estimator, as we did for Greedy Product-Limit, simply
replacing line 7 with the assignment ku,t := v(B/T).
We refer to this strategy as LuekerLearn.

Notice, however, that once p̂ has converged to the true
p, we should not expect this algorithm to outperform
Greedy Product-Limit, which would bid optimally. For
a fixed choice of distribution p, budget B, and number
of auctions T , let Lp(B, T) be the expected number
of clicks earned by running the algorithm of Lueker,
knowing p. Lp(B, T) ≤ Vp(B, T), by definition of
Vp(B, T). We will comment (as established by Lueker)
that the gap Vp(B, T)−Lp(B, T) is exacerbated by dis-
tributions with large variance relative to B and T , an
issue we will return to in Section 9; see also Figure 1.

2000 4000 6000 8000 10000

0.35

0.4

0.45

0.5

0.55

0.6

Round t

Lueker B=50, T=10

C
lic

k
s
(t

)/
t

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Distribution p

Bid b

Lueker
V

p
(B,T)

Figure 1: A distribution for which Lp(B, T) is bounded
away from Vp(B, T). The red curve plots the perfor-
mance (averaged over auctions) of the algorithm of
Lueker’s algorithm when the distribution p is known.
The distribution is displayed on the right.

8.6 Budget Smoothing

There is also literature in which other budget-
smoothing approaches are considered. Zhou et al. con-
sider the budget optimization problem in sponsored
search as a online knapsack problem directly [12]. In
our setting, their algorithm guarantees a ln(B) + 1
competitive ration with the offline optimum. Their al-
gorithm smooths its budget over time, and operates by
bidding: 1/(1+exp(z(t)−1)) where z(t) is the fraction
of budget remaining at time t.

9 Experimental Results

In this section we will describe experimental results
for the previously described algorithms. We use bids
placed through Microsoft’s adCenter in two sets of ex-
periments. In the first, we assume that our modeling
assumptions from Section 3 are correct, and construct
a distribution P from the empirical data for use in
simulation. In the second set of experiments, we run
the methods on the historical data directly, taken as
an individual sequence and thus violating our stochas-
tic assumptions. We will see that in both cases, our
suggested algorithm outperforms the other methods
discussed. First, however, we discuss an important
generalization to the setting that we have considered

so far.

9.1 Impressions and Clicks

Until now we have assumed that all ad impressions re-
sult in a click (i.e. winning an auction results in an
automatic click). We will now relax this assumption.
Instead, when an advertiser wins an impression, we
will suppose that whether a click occurs is an inde-
pendent Bernoulli random variable with mean r. We
call r the click-through rate. If a click does indeed oc-
cur, the advertiser is charged the market price. Oth-
erwise, the advertiser is informed that an impression
has occurred, but maintains its budget.

All the methods described generalize to this setting in
a straightforward manner. Nevertheless, it is worth
being explicit about how Greedy Product-Limit must
be modified. First note that the MDP formulation
for the problem differs in the definition of the tran-
sition probability µ. In particular, we now have
µ(a, (b, t), (b − δ, t − 1)) = rp(δ) (when δ ≤ a), and
µ(a, (b, t), (b, t − 1)) = (1 − r

∑a
δ=1 p(δ)). π

∗
p can still

be computed using dynamic programming, where:

Vp(a,B, T) = (1 − r
∑a
δ=1 p(δ))Vp(B, T − 1) +∑a

δ=1 rp(δ)[1 + Vp(B − δ, T − 1)]

and π∗p(B, T) = arg maxa≤B Vp(a,B, T)

Furthermore, as discussed in Section 6, rather than us-
ing the Product-Limit estimator, this setting requires
that the new algorithm treat doubly-censored data, for
which techniques exist [9].

9.2 Data

The data used for these experiments were generated by
collecting the auction history from advertisers placing
bids through Microsoft’s adCenter over a six month
period. For a given keyword, we let the number of
times that keyword generated an auction be its search
volume, Volk, and take keyword k to be the keyword
with the k-th largest volume.

10
0

10
1

10
2

10
3

10
2

10
3

10
4

10
5

k

V
o
l k
 /
 V

o
l 1

Search Volume (log−log)

Figure 2: Log-log plot of Volk/Vol1 for each k

The distribution of search volume is clearly heavy-
tailed (see Figure 2) and is well approximated by a
power law over several orders of magnitude.

We ran our experiments on the 100 keywords with
largest search volume. As we will discuss further in
the next section, the bidding behavior is quite varied
among the different keywords in the data set.

In actual sponsored search-auctions, each bidder is
given a quality-score for each keyword. Bidders’ actual
bids are multiplied by these quality scores to determine
who wins the auction. For each keyword k, and auc-
tion t, let xk,t be the quality-score-adjusted bid for the
advertiser that historically won the top slot for that
auction, and ck,t indicate whether a click occurred.

We take the perspective of a new advertiser with unit
quality score. xk,t is the amount that such an adver-
tiser would have needed to bid to have instead taken
the top slot (and the amount the advertiser would be
charged should they also receive a click).

Finally, we make the single-slot assumption through-
out, so even if multiple ads were indeed shown histori-
cally, we assume that an algorithm wins an impression
if and only if it wins the top slot. In principle, Greedy
Product-Limit can be modified to operate when mul-
tiple ad slots are available. However, we avoid this
complication in this work.

9.3 Distributional Simulations

The first set of simulations use the historical data
{xk,t}, to construct an empirical distribution pk on
market prices for each keyword k. We also set a fixed
click-through rate rk, for each keyword using the back-
ground click-through rate for that keyword (the empir-
ical average of {ck,t}). While our main results in the
next section eliminate the distribution pk and use the
sequence {xk,t} directly, we first simulate and investi-
gate the case where our modeling assumptions hold.

Figure 3 demonstrates that the types of distributions
generated in this manner are quite varied.

The budget Bk allocated to the advertiser for keyword
k is selected so that, optimally, a constant fraction of
clicks are available. In other words, the simulations
were run with Bk(T) satisfying Vpk(Bk(T), T) = fT ,
where f = 10%. Each experiment was run for 10 peri-
ods containing T = 100 auctions each, and 20 experi-
ments were run for each keyword.

A major observation is that Greedy Product-Limit con-
verges to the optimum policy on the time-scale of auc-
tions, not periods. This is significant since certain
methods considered are doomed to converge on the
time-scale of periods instead. For example, each state

0 1 2 3 4
0

0.005

0.01

0.015

0.02
coupons

b/B
k

p
(b

)

0 1 2 3 4
0

0.005

0.01

0.015

0.02
blackberry

b/B
k

p
(b

)

0 1 2 3 4
0

0.005

0.01

0.015

0.02

0.025

0.03
ipod

b/B
k

p
(b

)

0 1 2 3 4
0

0.005

0.01

0.015

0.02
hawaiian airlines

b/B
k

p
(b

)

Figure 3: Each plot represents the empirical distribu-
tion pk for a different keyword k. The x-axis represents
the bid as a fraction of the total budget Bk allocated
to the advertiser for keyword k.

can be visited at most once by Q-learning in a single
period. Furthermore, for a particular time t, the only
state corresponding to that t visited is (Bu,t, t), (i.e.
the state corresponding to the budget held by the al-
gorithm at that time). Similarly, the Fixed-Price algo-
rithm adjusts its bid at the end of every period. Table
1 shows that after just 2 periods, Greedy Product-Limit
(GPL) has come within five percent of optimal across
all keywords. For each algorithm, the results are the
averages of 20 different simulations, and are statisti-
cally significant. An unpaired 2-sample t-test between
the results for GPL and those of any other algorithm
yields p-values that are less than 10−20.

Table 1: Average Competitive Ratio with Vpk(B, T),
across all keywords and experiments, after two periods.

Algorithm Name Competitive Ratio Std
Greedy Product-Limit 0.9573 0.1704
LuekerLearn 0.8448 0.1842
Fixed-Price Search 0.8352 0.1733
Q-learn 0.7484 0.1786
Budget Smoothing 0.1597 0.2418

9.4 Sequential Experiments

The main result of our work comes from experiments
run on the real sequential data dk = {xk,t, ck,t}t.
Rather than taking {xk,t, ck,t}, and constructing the
distribution pk and a click-through rate, as in the pre-
vious section, we can use the sequence directly. Each of
the previous methods are well-defined if the prices and
clicks are generated in this manner, as opposed to be-
ing generated by the stochastic assumptions that mo-

tivated Greedy Product-Limit. We break the sequence
into 10 periods of length T = 100. In reality, the num-
ber of auctions in a period might vary. However, this
is minor, as an advertiser can attain good estimates of
period-length. We allocate to each algorithm the same
budget Bk used in the stochastic experiments.

Recall the notion of offline optimality defined in sec-
tion 8.1. For each keyword k, we can compute the ex-
act auctions that one should win knowing the sequence
{xk,t, ck,t} a priori. We will demonstrate that Greedy
Product-Limit is competitive with even this strong no-
tion.

We first look at the nature and time-scale of the con-
vergence of Greedy Product-Limit.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100 150
0

0.2

0.4

0.6

0.8

A
v
e

ra
g

e
 C

lic
k
s
 a

ft
e

r
t

A
u

c
ti
o

n
s

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Auctions t
0 50 100 150

0

0.2

0.4

0.6

0.8

1

Auctions t

Figure 4: Convergence rates for 6 different keywords.
The x-axis denotes auctions t, and the y-axis plots,
in black, the number of clicks attained by the offline
optimal after t auctions, normalized by t. The blue
plot shows the same for Greedy Product-Limit. Greedy
Product-Limit converges in the auction time-scale, not
the period time-scale.

We will shortly see that LuekerLearn, the modification
of Greedy Product-Limit attains similar performance.
Like Greedy Product-Limit, it converges in the time-
scale of auctions. However, recalling Figure 1, Lueker-
Learn will sometimes converge to something subopti-
mal, especially on keywords where there is a lot of vari-
ance in the bids. Figure 5 demonstrates this behavior
on the sequential data. In fact, let Ak denote the cu-
mulative number of clicks attained by Greedy Product-
Limit and Lk denote the cumulative number of clicks
attained by LuekerLearn after 10 periods for keyword
k, defining Zk = Ak/Lk and Sk = std({xk,t}t). The
observations {Zk} are positively correlated with {Sk},

with a correlation coefficient of 0.2103 that is signifi-
cant with a p-value of 0.0357.

Figure 6 demonstrates that, ignoring variance, Greedy
Product-Limit has indeed converged to optimal across
all keywords after just a single period. Let Ok be the
offline optimal number of clicks that can be attained
for keyword k after 10 periods (the entire data set).
Let Ak,p denote the cumulative number of clicks at-
tained by an algorithm on keyword k after p periods.
For an algorithm that is optimal after a single period,
we should expect Ak,p/Ok to be roughly p/10 for each
period p. Indeed, while there are certain keywords for
which this doesn’t happen, we see that this is true on
average.

200 300 400 500 600 700 800 900 1000
0.26

0.28

0.3

0.32

Performance

0 200 400 600 800 1000
0

2

4

6

8

Keyword: "Time Warner Cable"

200 300 400 500 600 700 800 900 1000
0.09

0.1

0.11

0.12

A
v
g
 C

lic
k
s
 A

ft
e
r

t
R

o
u
n
d
s

0 200 400 600 800 1000
0

50

100

150

200

250

B
id

 i
n

 R
o

u
n

d
 r

Keyword: "Fashion Bug"

200 300 400 500 600 700 800 900 1000
0.1

0.15

0.2

0.25

Auction t
0 200 400 600 800 1000

0

50

100

150

200

Auction t

Keyword: "Spirit Airlines"

Figure 5: On the left the y-axis plots, in black, the
number of clicks attained by the offline policy after
t auctions, normalized by t. The blue plot shows the
same for Greedy Product-Limit and the red for Lueker-
Learn. In all three, LuekerLearn is bounded away from
the offline optimal. The right side displays xk,t/x̄k
where x̄k is the average over xk,t for the correspond-
ing keyword. Note the “bursty” nature of the market
price, with auctions occurring that set a market price
hundreds of times greater than the average.

Figure 7 and Table 2 summarize the performance of
the competing methods.

Table 2: Average Competitive Ratio with OK , across
all keywords.

Algorithm Name Competitive Ratio Std
Greedy Product-Limit 0.9062 0.1166
LuekerLearn 0.8962 0.1152
Fixed-Price Search 0.6253 0.1395
Q-learn 0.5879 0.1558
Budget Smoothing 0.3105 0.3252

Notice that besides Greedy Product-Limit, the only
other algorithm that competes with the offline opti-

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period p

A
k
,p

/O
k

Greedy Product Limit

Figure 6: Each scatter point represents Ak,p/Ok for a
different keyword k, at the end of period p displayed
on the x-axis. The line is the mean of Ak,p/Ok across
all k for a fixed period p.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period p

C
o

m
p

e
ti
ti
v
e

 R
a

ti
o

 A
k
,p

/O
k

Performance Summary

Greedy Product−Limit

LuekerLearn

Fixed−Price Search

Q−learn

Budget Smoothing

Figure 7: Average of Ak,p/Ok across all k for each
algorithm.

mal is our modification to the stochastic knapsack al-
gorithm, LuekerLearn. As previously discussed, the
convergence of Q-learn and Fixed-Price Search hap-
pens on the time-scale or periods, not auctions. We
suspect that with more data, both would converge (as
they do in the stochastic setting), albeit Fixed-Price
Search would converge only to the best fixed-price in
hindsight. Finally, as demonstrated in Figure 5, when
there is large variation in bidder behavior, Lueker-
Learn might stay bounded away from the offline opti-
mal.

10 Future Work

We conjecture that Greedy Product-Limit always con-
verges (rapidly) to the optimal policy in the stochastic
setting, and hope to prove so in the future.

References

[1] P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E.
Schapire. The nonstochastic multiarmed bandit
problem. SIAM Journal on Computing, 32(1):48–
77, 2003.

[2] C. Borgs, J. Chayes, N. Immorlica, K. Jain,
O. Etesami, and M. Mahdian. Dynamics of bid
optimization in online advertisement auctions. In
Proceedings of the 16th international Conference
on World Wide Web, pages 531–540. ACM, 2007.

[3] M. Cary, A. Das, B. Edelman, I. Giotis,
K. Heimerl, A.R. Karlin, C. Mathieu, and
M. Schwarz. Greedy bidding strategies for key-
word auctions. In Proceedings of the 8th ACM
Conference on Electronic Commerce, pages 262–
271. ACM, 2007.

[4] K. Ganchev, M. Kearns, Y. Nevmyvaka, and
J. Wortman. Censored exploration and the dark
pool problem. In Proceedings of the 25th Con-
ference on Uncertainty in Artificial Intelligence,
2009.

[5] E.L. Kaplan and P. Meier. Nonparametric estima-
tion from incomplete observations. Journal of the
American Statistical Association, pages 457–481,
1958.

[6] B. Kitts and B. Leblanc. Optimal bidding on
keyword auctions. Electronic Markets, 14(3):186–
201, 2004.

[7] G.S. Lueker. Average-case analysis of off-line and
on-line knapsack problems. In Proceedings of the
Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 179–188. Society for Industrial
and Applied Mathematics, 1995.

[8] A. Marchetti-Spaccamela and C. Vercellis.
Stochastic on-line knapsack problems. Mathemat-
ical Programming, 68(1):73–104, 1995.

[9] B.W. Turnbull. Nonparametric estimation of a
survivorship function with doubly censored data.
Journal of the American Statistical Association,
pages 169–173, 1974.

[10] H Varian. Position auctions. International Jour-
nal of Industrial Organization, 25(6):1163–1178,
2007.

[11] C.J.C.H. Watkins and P. Dayan. Q-learning. Ma-
chine Learning, 8(3):279–292, 1992.

[12] Y. Zhou, D. Chakrabarty, and R. Lukose. Bud-
get constrained bidding in keyword auctions and
online knapsack problems. Internet and Network
Economics, pages 566–576, 2008.

