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Abstract

Congestion games model a wide variety
of real-world resource congestion problems,
such as selfish network routing, traffic route
guidance in congested areas, taxi fleet opti-
mization and crowd movement in busy ar-
eas. However, existing research in congestion
games assumes: (a) deterministic movement
of agents between resources; and (b) per-
fect rationality (i.e. maximizing their own
expected value) of all agents. Such assump-
tions are not reasonable in dynamic domains
where decision support has to be provided
to humans. For instance, in optimizing the
performance of a taxi fleet serving a city,
movement of taxis can be involuntary or non-
deterministic (decided by the specific cus-
tomer who hires the taxi) and more impor-
tantly, taxi drivers may not follow advice pro-
vided by the decision support system (due to
bounded rationality of humans).

To that end, we contribute: (a) a general
framework for representing congestion games
under uncertainty for populations with as-
sorted notions of rationality. (b) a scalable
approach for solving the decision problem for
perfectly rational agents which are in the mix
with boundedly rational agents; and (c) a
detailed evaluation on a synthetic and real-
world data set to illustrate the usefulness of
our new approach with respect to key social
welfare metrics in the context of an assorted
human-agent population.

An interesting result from our experiments on
a real-world taxi fleet optimization problem
is that it is better (in terms of revenue and
operational efficiency) for taxi drivers to fol-
low perfectly rational strategies irrespective
of the percentage of drivers not following the
advice.

1 Introduction

Congestion games [5] and its variants have numer-
ous applications in domains ranging from urban trans-
portation [14] (e.g. movement of vehicles between dif-
ferent regions of an area) to capturing company dy-
namics in a congested industry [12] (e.g., strategiz-
ing on marketing investments by different companies
selling the same product). There are many interest-
ing challenges that exist in these problem domains:
(a) Representing and accounting for implicit interac-
tions between agents. For example, vehicles trying to
get on the same road are implicitly competing (even
though there may not be an actual intention to com-
pete); (b) large-scale nature of problems; (c) involun-
tary movements of agents (in some decision epochs,
agents might need to follow given instructions and
cannot freely choose their own actions); and (d) ac-
counting for humans in the loop, who may not follow
perfectly rational policies.

While existing research in congestion games is exten-
sive, we are unaware of research that addresses the
issues mentioned in points (b), (c) and (d) mentioned
above. To that end, we make three key contributions
in this paper: (1) By extending on the cognitive hierar-
chy model [1] (introduced in behavioral game theory),
we introduce a general model to represent the decision
problem for perfectly rational agents in an agent popu-
lation of assorted rationalities; (2) A scalable approach
called Soft-max based Flow update for Assorted Popu-
lations (SoFA) for solving the decision problem of per-
fectly rational agents in an assorted population; and
(3) Finally, we provide a detailed evaluation on both
real-world and synthetic data sets for the taxi fleet
optimization problem.

This paper is motivated by a real-world problem of im-
proving the performance of a taxi fleet. The decision
making problem faced by a typical taxi driver is inter-
esting both practically and theoretically, since a driver
needs to make both voluntary (driver’s own decision)
and involuntary (when customers board taxis) move-
ments. In such a problem, customers are considered



as the resources, due to whom an implicit competition
exists between taxis. Since demands are both zone-
dependent and time-dependent, the problem becomes
even more challenging. The goal here is to provide deci-
sion support to taxi drivers such that the operational
efficiency of the fleet and the revenues obtained are
improved. Similar problems exist in analyzing indus-
try dynamics (where different companies strategize to
maintain their competitive advantage) and labor mo-
bility (where individuals reason about their movement
to different geographical regions). Although the con-
cept of user equilibrium [10] is well-adopted in model-
ing either static or dynamic traffic route selection, it
cannot be applied in this class of problems due to the
presence of involuntary movements.

Experimentally, we are able to show that SoFA con-
verges on all our problems (both real-world and syn-
thetic ones) with assorted human-agent populations
(agents with different levels of rationality). It is an
important result since we are able to show that if our
algorithm converges, the solution for perfectly ratio-
nal agents is an equilibrium strategy (i.e., no incentive
w.r.t expected value). Another nice empirical result of
our approach in the taxi fleet optimization problem
is that perfectly rational drivers (i.e. ones who adopt
policies suggested by SoFA) always outperform agents
who do not follow the suggested policies.

2 Motivation: Taxi Fleet Optimization

Our research is motivated by the problem of optimiz-
ing a fleet of self-interested taxis1. For a fleet of taxi
population P, serving a city divided into a set of zones
M , the goal is to provide decision support for taxi
drivers to independently decide a sequence of zones to
roam in.

The demand fulfillment is modeled at zone-level, as-
suming demands are common knowledge among all
taxis. If the number of taxis in a particular zone during
a time period is fewer than the number of customers,
all taxis will be hired (the determination of their desti-
nations is described in the following paragraph). Oth-
erwise, only a fraction of the roaming taxis (up to the
number of customers) will be hired.

The movements of taxis between zones depend on
whether they are hired or not. If a taxi is hired, the
movement is involuntary (decided by the customer on-
board) and is governed by the probability distribution
computed from the outgoing flows of customers to dif-
ferent zones. Therefore, if a taxi is hired by a customer

1In our definition, we assume that each taxi is driven
by an independent driver (thus we use taxi and taxi driver
interchangeably), who pays for all costs (e.g., monthly rent,
fuel, maintenance) and keeps all earned revenue. We also
assume that there will be no communication/collaboration
among taxi drivers.

in zone i, the probability of moving to zone j is com-
puted based on the fraction of customers moving from
zone i to j over all flows out of zone i. Furthermore,
a hired taxi in such a case will receive a revenue of
Ret(i, j) and incur a cost of Cot(i, j). On the other
hand, if the taxi is not hired, the movement will be
voluntary and deterministic, and the taxi will receive
no revenue but incur the same cost of Cot(i, j).

The goal is to provide decision support (in terms of
policies) for drivers who request for decision support
on moving through the island, such that there is no
incentive for them to deviate from their policies.

3 Model: DAAP

We now introduce a general framework for modeling
problems such as taxi fleet optimization called the Dis-
tributed decision model for Assorted Agent Popula-
tions (DAAP). DAAP is an extension of the DDAP
(Distributed Decision model for Agent Populations)
model introduced by Varakantham et al. [7]. DAAP
can be viewed as a framework for representing general-
ized congestion games with movement uncertainty. In
particular, we generalize the notion of resources in con-
gestion games to states and the movement uncertainty
to transition functions (akin to the one in Markov De-
cision Problems, MDPs).

DAAP represents a subset of problems represented by
the generic stochastic game model [2]. In DAAP, the
transition and reward functions for an agent are depen-
dent only on the aggregate distributions of other agent
states, whereas in more general models like stochastic
games the transition and reward function for an agent
are dependent on specific state and action of every
other agent. It should be noted that DAAP represents
problems with selfish agents and hence is different to
cooperative models such as DEC-POMDP.

DAAP is the tuple:〈
Γ, {Pτ}τ∈Γ,S,A, {φτ}τ∈Γ, {Rτ}τ∈Γ, d

0, {Vτ}τ∈Γ

〉
,

where Γ represents the different agent types and Pτ is
the set of agents of type τ . Two agents belong to dif-
ferent types if they have (a) different transition (φ) or
reward model (R); or (b) different notion of rational-
ity (V). S corresponds to the set of states encountered
by each agent. A is the set of actions executed by each
agent. We define the set of state distributions,
D = {d|d =

〈
d1, d2, · · · , d|S|

〉
,
∑
s∈S ds = |P|}, where

P is the set of all agents and ds represents the number
of agents in state s. d0 represents the starting distribu-
tion of agent states. φτ models the involuntary move-
ments of every agent of type τ and more specifically,
φtτ,d(s, a, s

′) represents the probability that an agent

of type τ in state s(∈ S) after taking action a(∈ A)
would transition to state s′, when the distribution is d



and time is t. Rtτ,d(s, a, s′) is the reward obtained by
an agent of type τ when in state s, taking action a and
moving to state s′ when the distribution of agents is d
at time t.

Vτ characterizes the rationality concept of interest to
agents of type τ and represents the value function defi-
nition for agents of type τ . This is provided to capture
the notion of bounded rationality (particularly for hu-
mans in the population). In this paper, we refer to the
two extreme cases for bounded rationality, which are:
(a) Perfect rationality: agents compute exact best re-
sponse to opponent policies;
(b) Local rationality: agents assume no other agent is
present (dt = 0,∀t) in the system.
Further details on various rationality concepts are pro-
vided in Section 4.

The objective in solving a DAAP is to compute a
policy,πi for each agent i of type τ , such that there
is no incentive for any agent to deviate from its policy,
in terms of the value (i.e. Vτ (πi, {πk}k∈Pτ ,k 6=i)).

3.1 Taxi Fleet Optimization as DAAP

The number of types in this problem is primarily due
to varying degrees of human rationality. We will de-
scribe this in detail in Section 7.1. In representing the
taxi fleet optimization as a DAAP, the key is using the
transition function to represent the involuntary move-
ment of taxis2. P is the set of taxis in the fleet, S
is all the zones in which a taxi could be present. A
is the set of zones to which a taxi driver wishes to
move. The transition function, φ is computed based on
the customer flow, fl between various zones. D0 is the
distribution of taxis at the starting time. Equation 1
provides the expression for computing the transition
probability between states.

Intuitively, if there are fewer taxis than customers in
a zone, then all taxis are hired and their transition
probability to a specific zone is dependent on flows to
different zones from the current zone (represented by
condition C1). If there are more taxis in a zone than
customers, then transition is dependent on whether
the action (intended zone) is same as the destination
zone (captured by conditions C2 and C3).
C1: if

∑
ŝ flt(s, ŝ) ≥ ds

C2: if a 6= s′,
∑
ŝ flt(s, ŝ) < ds

C3: if a = s′,
∑
ŝ flt(s, ŝ) < ds

φtd(s, a, s
′) =


flt(s,s′)∑
ŝ fl

t(s,ŝ)
C1

flt(s,s′)
ds

C2

1−
∑
ŝ 6=s′ fl

t(s,ŝ)

ds
C3

 (1)

2Since the movement of taxis and their revenues (stan-
dardized meters) are identical, we do not index transition
and reward model of DAAP with type.

Similar to the transition, R is the reward obtained
based on the three conditions.

In solving the taxi optimization DAAP, our goal is
to maximize expected revenue for the individual taxi
drivers while reducing starvation. Since the transition
function depends on the number of taxis in the zone,
maximizing expected revenue implies minimizing star-
vation as well. In this problem domain, both the wel-
fare metrics (revenue and starvation) are optimized at
once, however, in other domains there could be mul-
tiple objectives that are not in alignment and multi-
objective reasoning might be required.

4 Characterizing Rationality

A major contribution of the paper is the introduction
of multiple levels of rationality to the uncertain con-
gestion game that mimics bounded rationality of hu-
man decision makers. In the context of DAAP, this im-
plies the computed policy will be followed differently:
perfectly rational agents adopt the policy completely,
while other agents only adopt the policy partially (or
even not at all). To concretely represent bounded ra-
tionality, we extend on the cognitive hierarchy model
developed by Camerer et al. [1]. Therefore, in DAAP,
Vτ will represent the rationality notion of an agent in
terms of the cognitive hierarchy model.

Cognitive hierarchy model assumes there is a bound on
the levels of reasoning agents can do and that agents
differ in their levels of reasoning. Level-0 agents are as-
sumed to be non-strategic and either play randomly or
use a heuristic. Level-1 agents compute best response
strategy by assuming all other agents in the popula-
tion are level-0. In general, level-L agents compute best
response strategy by assuming a distribution f across
levels {0, 1, . . . , L− 1}. Camerer et al present a single-
parameter model, called Poisson cognitive hierarchy
model, where f is assumed to follow Poisson distribu-
tion.

We extend the cognitive hierarchy model in three ways.
Firstly, the opponent distribution f is obtained from
iterative Bayesian inference (details provided in Sec-
tion 7.1). Secondly, the best response is computed us-
ing the quantal best response strategy. The quantal
best response for player i to strategy s−i is given by:

si(ai) =
eλ·ui(ai,s−i)∑
a′i
eλ·ui(a

′
i,s−i)

.

For λ = 0, each action is assigned equal probability
(which can be thought as completely irrational); as
λ increases, quantal best response approaches stan-
dard best response (which is completely rational). Fi-
nally, we introduce the consideration of different deci-
sion horizons (referred to as T ). With the above ex-
tensions, an agent’s behavior can be quantified by a



three-tuple CH QR(λ, L, T ). To illustrate the flexibil-
ity of our model, we provide two examples below::

Example 1 CH QR(1, 0, 1) corresponds to an algo-
rithm that generates a quantal best response strategy
with λ = 1 that maximizes one-step payoff without con-
sidering other agents. CH QR(∞,∞, H) corresponds
to an algorithm that generates the exact best response
considering full horizon, assuming all levels of reason-
ing from other agents.

This parametric model enables us to evaluate the SoFA
technique on various sets of assorted populations and
demonstrate the utility of having perfectly rational
agents within a human population. The Poisson cogni-
tive hierarchy model has been shown to provide a good
fit for empirical data involving human subjects. We
demonstrate similar findings with the extended model.

5 Soft-max based Flow update for
Assorted populations (SoFA)

In this section, we describe our algorithm for solving
DAAPs. We provide an algorithm (Algorithm 1) that
is general and is applicable to a problem where there
are (a) multiple types of agents with each type hav-
ing a different transition and reward model and (b)
multiple notions of rationality. However, for expository
purposes (and to focus on the theme of the paper), we
consider the case where all agents have the same model
(transition and reward functions) and the difference is
only in their rationality concept.

Algorithm 1 SoFA(daap,Γ,P)

1: for all τ ∈ Γ do
2: πτ ← GetInitialPolicy(τ)
3: end for
4: π̃ ← φ
5: iter ← 0
6: while π̃ 6= π do
7: π̃ ← π
8: for all τ ∈ Γ do
9:

〈
d1..dH

〉
← AgentDist(π−i, d

0, φ), i ∈ Pτ
10: {x̃ts,a} ← BestRspnse( τ, daap,

〈
d1 · · · dH

〉
)

11: xtτ (s, a)← (iter·xtτ (s,a)+x̃ts,a)

iter+1 ,∀s, a, t
12: πtτ (s, a)← xtτ (s,a)∑

a x
t
τ (s,a) ,∀s, a, t

13: iter ← iter + 1
14: end for
15: end while

Our goal is to compute the policy for perfectly rational
agents (policy computed using Algorithm 1) in a pop-
ulation that contains other types of agents. It should
be noted that a round-robin best response algorithm
does not converge even if we have just one type of per-
fectly rational agents. Therefore, we introduce our new

algorithm, SoFA that is based on the well known Fic-
titious Play algorithm and has interesting theoretical
properties.

Intuitively, the key idea is that at each iteration,
an agent computes best response against aggregate
policies (over iterations of policy computation) of
other agents. Since, in DAAP, the interactions be-
tween agents are due to the implicit competition for
resources, an agent only has to determine best re-
sponse to distribution of agent states (and not individ-
ual agent states). This observation improves the scal-
ability considerably due to two reasons:
(1) Agents have to plan for state distributions and not
against individual states and actions of other agents;
(2) We can assume same policy for all agents of the
same type (either due to having same model or same
notion of rationality). This allows us to reduce best
response computations. Intuitively, it is a reasonable
assumption when there is a large number of agents, be-
cause such a mixed policy is equivalent to aggregating
(differing) individual agent policies.

It should be noted that the best response computation
varies from agent to agent depending on their rational-
ity criterion as mentioned in Section 4. Furthermore,
best response computation (as mentioned earlier) re-
quires state distribution of other agents. State distri-
butions of other agents can be computed given the
starting distribution, type of agents and their policies.
Formally, we let (a) ptτ (s) be the probability that an
agent of type τ will be in s at time t; (b) dts denote the
number of agents in state s at time t; (c) Pτ denotes
the set of players of type τ .

p0
τ (s) =

d0
s

|P|
,

dts =
∑
τ∈Γ

ptτ (s) · |Pτ |, ∀t (2)

pt+1
τ (s) =

∑
atτ

πtτ (s, atτ )
∑
s′∈S

ptτ (s′)φtdt(s
′, atτ , s) (3)

For a perfectly rational agent, the best response at
each iteration is computed by solving an MDP where
the φ and R are fixed for the state and action sets
because the state distribution of other agents (dt,∀t)
can be computed for each decision epoch using Equa-
tion 3. Solving this best response MDP using tradi-
tional LP based methods or dynamic programming
methods yields a deterministic policy (i.e. one action
for each state). Due to this determinism, the aggre-
gation of policies in fictitious play can take many it-
erations to converge. Therefore, we propose the use
of Soft-Max operator for solving MDPs similar to
the Soft-Max Value Iteration [15]. This implies that
the “max” operator in standard value iteration is re-
placed by a “soft-max” operator. The soft-max op-
erator makes the strategy equivalent to the quantal



response strategy indicated earlier.

We provide the intuition using the following example.

Example 2 Consider an MDP with two actions, a1

and a2, each of which can be executed from a state s.
V(s, a1) and V(s, a2) are the expected values for exe-
cuting actions a1 and a2 respectively from state s. The
policy at s with a standard MDP solver (policy itera-
tion, value iteration etc.), π1 and SoFA, π2 would be:

π1(s, a1) =

{
1, if a1 = arg max{ai∈{a1,a2}} V(s, ai)
0, otherwise

π2(s, a1) =
eV(s,a1)

eV(s,a1) + eV(s,a2)

Algorithm 1 provides the pseudo code for the SoFA al-
gorithm. Lines 6-13 provide the core of the algorithm.
At each iteration of the algorithm, for each agent there
are three key steps: (a) Firstly we compute the state
distribution of all other agents (using Equation 3) on
line 9; (b) Then, we compute the best response (de-
pends on the agent’s rationality criterion) correspond-
ing to the aggregated policies (across iterations) of
other agents on line 10; and (c) Finally, we calculate
the aggregate state action flows and consequently the
aggregate policy for the current agent on lines 11-12.

6 Theoretical Results

We provide key theoretical properties of our SoFA al-
gorithm. Firstly, we will show that SoFA converges to
equilibrium policies in cases where there are only lo-
cally rational agents (L = 0) in the mix. Secondly, we
show that if SoFA converges on problems with multi-
ple agent types (different transition/reward model or
different notions of rationality), then perfectly rational
agents will converge to equilibrium policies.

Proposition 1 In an assorted population of perfectly
rational agents and locally rational agents (L = 0),
if there exists one type (w.r.t transition and reward
model) of perfectly rational agents, then irrespective
of the proportion of locally rational agents, SoFA algo-
rithm converges to equilibrium policies for the perfectly
rational agents. This is assuming Equation 3 can be
used to compute update of probability.

Proof. Let the population, P be divided into two sets
Pr (perfectly rational agents) and Pl (locally rational
agents), i.e. P = Pl ∪ Pr. If there exists a potential
function for this DAAP, then SoFA would converge
to Nash equilibrium. We now define a function φt()
and then show that it is a potential function for the
DAAP problem. (In the interest of space, we use Πik to
represent the set of {πi}i6=k,i∈P throughout the proof.)

φt({πi}i∈P) =
∑
k

Vti (πk,Πik) (4)

To show that this is a potential function for a given
DAAP, we need to show that for any arbitrary agent
k and two of its policies, π(k,1) and π(k,2):

φt(Πik ∪ π(k,1))− φt(Πik ∪ π(k,2))

= Vtk(π(k,1),Πik)− Vtk(π(k,2),Πik) (5)

We prove this proposition using mathematical induc-
tion over the time horizon t.

Base case for t = 0
For k ∈ Pr, the value function for an agent is given
by:

V0
k(π(k,1),Πik) =

∑
s,a

p0
k(s) · π(k,1)(s, a) · Rk(s, a, d0)

For k ∈ Pl, the only difference in value function from
above would be d0 = 0. It is easy to see that for all
agents except k (irrespective of whether k ∈ Pl or
k ∈ Pr), the value remains the same if policy does not
change for t = 0. Due to this Equation 5 holds (the
terms for all other agents will cancel out).

Therefore, let us assume that the φ is a potential func-
tion for horizon t = m, i.e.,

φm(Πik ∪ π(k,1))− φm(Πik ∪ π(k,2))

= Vmk (π(k,1),Πik)− Vmk (π(k,2),Πik) (6)

Now, we will prove that it holds for t = m+ 1

Let us consider the case where k ∈ Pr,

Vm+1
k (π(k,1),Πik) =

∑
s,a

p0
k(s) · π(k,1)(s, a) · Rk(s, a, d0)

+
∑
s,a,s′

p0
k(s) · π(k,1)(s, a) · φk(s, a, s′, d0)·

Vmk (s′, π(k,1),Πik)

From Equation 3

=
∑
s,a

p0
k(s) · π(k,1)(s, a) · Rk(s, a, d0)+

∑
s′

p1
k(s′) · Vmk (s′, π(k,1),Πik)

=
∑
s,a

p0
k(s) · π(k,1)(s, a) · Rk(s, a, d0) + Vmk (π(k,1),Πik)

(7)



Using Equation 7 and from assumption of Equation 6,
we have

Vm+1
k (π(k,1),Πik)− Vm+1

k (π(k,2),Πik)

=
∑
s,a

p0
k(s) · π(k,1)(s, a) · Rk(s, a, d0)

−
∑
s,a

p0
k(s) · π(k,2)(s, a) · Rk(s, a, d0)

+
∑

{i6=k,i∈P},s,a

p0
i (s) · πi(s, a) · Ri(s, a, d0)

−
∑

{i6=k,i∈P},s,a

p0
i (s) · πi(s, a) · Ri(s, a, d0)

+ φm(Πik ∪ π(k,1))− φm(Πik ∪ π(k,2))

Combining terms using the definition of potential func-
tion (Equation 4), we have

= φm+1(Πik ∪ π(k,1))− φm+1(Πik ∪ π(k,2))

Since k ∈ Pl is a sub-case of k ∈ Pr, where dt = 0, we
can adopt the same steps and prove that Equation 5
holds. Hence the proof. �

While the following proposition is straightforward, it is
important because our algorithm converges on all the
problems provided in the experimental results section.

Proposition 2 For DAAP problems with multiple
types of agents, if SoFA converges, then perfectly ra-
tional agents will not have any incentive (in terms of
expected value) to deviate.

Proof. If SoFA converges, it implies that the agent
policy does not change (line 6) from the previous it-
eration after computing best response (corresponding
to other agent policies). Therefore, perfectly rational
agents will have converged to a policy where there is
no incentive to deviate in terms of expected value. �

7 Experimental Results

In this section, we evaluate policies generated by SoFA
(perfectly rational if SoFA converges) within the con-
text of the taxi fleet optimization problem, where only
a proportion of the taxi drivers follow SoFA strategies
and others follow strategies obtained from the cogni-
tive hierarchy model described in Section 4. Firstly, we
will perform the behavioral analysis of the real-world
taxi data set to obtain the composition of the assorted
human-agent population. Once the distributions for
assorted human-agent populations are obtained, we
will show the performance of SoFA on various syn-
thetic and real-world problem sets.

7.1 Human Behavioral Analysis

We now introduce iterative Bayesian inference to com-
pute the distribution over levels of reasoning for taxi
drivers. Let Prti(L) denote the probability of player
i using level-L reasoning in iteration t. Let f t(L) be
the mean probability of level-L reasoning in the pop-

ulation, and f t(L) =
∑
i Pr

t
i(L)

N . The expected levels
of reasoning after t iterations can be computed by:
meant =

∑
L L ·f t(L). Let gtL(h) denote the perceived

proportion of level − h agents by level − L agents in
iteration t, which can be computed by:

gtL(h) =
f t(L)∑L−1
l=0 f t(l)

, ∀h < L.

Given λ, T , and {gtL(h)}, we can compute the behav-
ioral strategy of level-L agent in iteration t by con-
sidering actual distribution of taxis. The procedure is
based on Bayesian update and its pseudo-code is listed
in Algorithm 2. In Algorithm 2, the prior distribution
is initialized to be uniform. The movements of free
taxis provide necessary observations to continuously
update the prior distribution.

The data set we use for computing average levels of
reasoning consists of GPS traces from close to 8000
active taxis over 30 working days. Each record in the
data set provides a timestamp, taxi coordinate, and
the status of the taxi (hired or free). When the taxi
is free and moves from one location to another, we
consider it as a valid observation. We set the length
of time period to be 5 minutes and only consider the
morning peak hours from 6 to 9 AM. The data set
is sliced into 10 3-day chunks, and the algorithm is
executed one chunk at a time. On average, this gives
us 90, 000 valid observations across all taxis for each
run. We also set the look ahead T = 1 for behavioral
analysis3.

Lmax λ = 1 λ = 3
4 1.21± 0.04 1.50± 0.05
5 1.35± 0.04 1.58± 0.05

Table 1: Expected levels of reasoning.

Table 1 gives expected value of levels of reasoning for
two different but uniform initial distributions and for
λ = {1, 3}. Lmax = 4 implies maximum levels of rea-
soning is set to 4 and each level {0 · · · 4} is assigned
initial probability of 0.2. It should be pointed out that
although the actual distribution we obtain is not Pois-
son, the mean values we obtained are well within the

3As a sanity check for the Bayesian inference, we com-
pared the average revenue of taxis from the data set and us-
ing the cognitive hierarchy model. The values were within
1% of each other ($283 and $280 per day respectively).



Algorithm 2 Iterative Bayesian Inference(λ, T )

1: Pr0
i (L) = UniformDistribution(Lmax)

2: it← 0
3: while it ≤ MaxIterations do

4: f it(L) =
∑
i Pr

it
i (L)

N ,∀L
5: gitL (h) = fit(L)∑L−1

l=0 ft(l)
,∀h < L, ∀L

6: for all DataSet do
7:

〈
d1 · · · dT

〉
← GetAgentDist(DataSet)

8: for all L ≤ Lmax do
9: πit(L) =Behavior(λ, T, gitL ,

〈
d1 · · · dT

〉
)

10: end for
11: si =ObservedStartZone(DataSet)
12: ai =ObservedAction(DataSet)

13: Priti (L|a) =
πit(L,si,ai)·Priti (L)∑
l π
it(l,si,ai)·Priti (l)

,∀L
14: end for
15: it← it+ 1
16: end while

range of [1, 2] which, as noted by Camerer et al., can
explain behavior in close to 100 games. The actual dis-
tribution we obtained are skewed towards lower levels
of reasoning. A more rigorous study is needed to cross-
validate this across larger data set and study the effect
of look-ahead, T , on the final distribution.

7.2 Experimental Setup

To demonstrate that perfectly rational policies are use-
ful in an assorted taxi driver population of different
rationalities, we experiment on two different data sets.
One is a synthetic data set that simulates random
scenarios of demand distributions and another a real-
world data set of a taxi company in Singapore. The
synthetic data set was created with an inspiration from
the real-world taxi data set and so we differentiate be-
tween peak hour and normal hours, multiple types of
zones, time dependent flow-in and flow-out from a zone
etc.

The main parameters of interest in the synthetic data
set are (a) the map (defines how zones are connected);
(b) total number of zones; (c) number of neighbors for
each zone; (d) demand for all zones (represents people
going into a zone) characterized by whether it is a
residential zone, entertainment zone, office zone or a
hospital; (e) total number of taxis; (f) total demand for
taxis in a day; (f) length of peak hours. We generate
problem instances considering a range of values for all
these parameters.

Creating such a detailed simulation data set has helped
us in evaluating our algorithm across multiple param-
eters and investigate the specific parameters affect-
ing the final performance. For each map we compute
policies by employing various algorithms and simulate
them multiple times to obtain values for the compari-

son metrics.

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Time
0

2000

4000

6000

8000

10000

12000

Flow Values

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Time

0

2

4

6

8

10

12

CH_QR(1)
CH_QR(4)
CH_QR(H)
SoFA(H)

Average Payoff

(b)

Figure 1: Customer flow at various points and the av-
erage payoff obtained by various approaches.

The real-world data set consists of flows of customers,
revenues and costs for taxis between various zones
across Singapore over a period of six months. We con-
sider a time unit to be 30 minutes long and hence the
time horizon for an entire day is H = 48. Figure 1
(a) depicts the aggregate demand for taxis throughout
the day in this data set. The peak and non-peak hours
are easily distinguishable. There are around 8000 taxis
and 79 zones.

For all the graphs with aggregated results, we com-
puted standard deviation as well. However, standard
deviation is shown in the graphs only if it is greater
than 0.1%. We evaluate the algorithms across the so-
cial welfare parameters highlighted in Section 2: (1)
Average payoff of all taxis. (2) Minimum payoff across
all taxis and (3) Starvation, which represents the lack
of availability of taxis. The first two metrics provide
an intuition for how the payoff distribution for taxi
drivers changes. The third metric ensures an improve-
ment from the system management (or taxi fleet own-
ers) perspective.

We first present the results for the case when all agents
adopt one type of rationality and then we will present
the results for an assorted population. Although, we do
not have theoretical guarantees on convergence when
there are agents following behavioral strategies along
with perfectly rational agents, empirically, we achieved
convergence on all the problem instances. Our algo-
rithm converged on all the problems in the synthetic
and real-world data set within 2 hours4.

7.3 Homogeneous Population

We compare the performance of SoFA algorithm
against the strategies generated by the extended cog-
nitive hierarchy model described in Section 7.1. While
we experimented with a varied set of λ values, we only
show results for λ = {1, 3} because they yield the most

4The most amount of time was taken by the real-world
problem set, where there are 8000 taxis and 79 zones.
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Figure 2: Performance of SoFA and behavioral strategies with T = {1, 4, H} on synthetic and real-world datasets.

diverse set of observations. As for the time horizon, we
considered T = {1, 4, H}. As for the levels of reason-
ing, L, we use the distributions obtained from itera-
tive Bayesian inference corresponding to λ = {1, 3}.
We also set Lmax = 4. Thus, in our result graphs,
CH QR(5) with λ = 3 would imply the population
consists of {17%, 39%, 26%, 13%, 5%} of levels
{0 · · · 4} agents respectively with look-ahead=5. For
λ = 1, it would be {20%, 52%, 17%, 5%, 6%}.

Figure 2 provides the results on the synthetic and real-
world data sets. Graphs (a)-(c) are results for 40 zone
problems and (d)-(f) are for the the taxi data set. Here
are some of the key observations with respect to aver-
age and minimum payoff, starvation:

(i) For both synthetic and real-world problems, SoFA
outperforms all the benchmark algorithms, due to the
Nash equilibrium policies employed by SoFA agents.
(ii) Behavioral strategies with look ahead equal to hori-
zon outperformed strategies with shorter look ahead.
(iii) We observe that for behavioral strategies, λ = 1
performs better than λ = 3. This could be because for
λ = 3, the proportion of higher level reasoning agents
increases and hence overall performance goes down.
On the other hand, for SoFA, due to the randomized
policies, performance increases from λ = 1 to λ = 3.
(iv) For the synthetic data set, when population size is
4k, the behavioral strategy with λ = 1 and look ahead
equals to horizon obtains marginally higher minimum
payoff than all other algorithms. But when the popu-
lation size is increased to 8k and with λ = 3, minimum
payoff is guaranteed to be orders of magnitude higher
under SoFA.
(v) For synthetic and real-world data sets, SoFA out-
performs others for λ = 3 w.r.t. minimum payoff.
(vi) With respect to starvation (lower values are bet-

ter), SoFA outperforms others on all data sets.

Figure 1(b) gives the average payoff for each algo-
rithm at each time step on the real-world data set.
We observe that SoFA performs better than other al-
gorithms. Furthermore, it should be noted that there
is high degree of similarity in the performance of SoFA
over time and the flow values of Figure 1(a). This im-
plies that SoFA is able to adapt quickly to the changes
in demand over time.

7.4 Assorted Population

We now evaluate SoFA with an assorted population of
agents. It should be noted that for a fixed λ and T ,
there are more than one type of agents in the popula-
tion. We use X to denote the ratio of agents that are
following SoFA policies. For instance, X = 20% (along
X-axis in Figure 3) implies 20% agents are perfectly ra-
tional and the rest are following behavioral strategies
for a particular λ.

Figure 3 provides the performance of SoFA within a
varying population of agents: (a)-(c) and (d)-(f) are re-
sults for the synthetic and real-world data sets respec-
tively. We make the following observations regarding
average payoff, minimum payoff, and starvation:

(i) The performance of SoFA improves as the popula-
tion of agents following behavioral strategies increases
from 20% to 80%. The performance of boundedly ra-
tional agents at the same time goes down. It indicates
that irrespective of the population of boundedly ratio-
nal agents, it is always useful to employ a SoFA policy.
SoFA outperforms behavioral strategies even when the
proportion of agents following SoFA increases to 80%.
(ii) On the synthetic data set, SoFA outperforms other
algorithms w.r.t. minimum revenue when the propor-
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Figure 3: SoFA vs behavioral strategies in assorted population with T = H on synthetic and real-world datasets.

tion of agents is 20%.
(iii) On real-world data set the minimum payoffs are
almost equal across both strategy models.
(iv) Starvation values decrease with increase in the
number of perfectly rational agents.

From all these experiments on both synthetic and real-
world problem instances, we conclude that with re-
spect to all welfare metrics (average revenue, mini-
mum revenue and starvation), for any agent, it is use-
ful to pursue the policy computed for perfectly rational
agents in problems such as taxi fleet optimization.

8 Related Work and Conclusions

In this section, we briefly describe research related to
the contributions made in this paper. The first thread
of related research is in the field of transportation. User
equilibrium (UE) is a classical and powerful equilib-
rium concept in transportation explaining individual
route choices in face of competition for road usages
from other users. Originally proposed in static setting
[10], it was later expanded to dynamic cases (where
temporal choices are also important) [3]. In either for-
mat, static or dynamic, the concept of UE provides a
way to infer and to predict the behaviors of individual
drivers; such ability helps not just individual drivers
to identify better routes, but it can also help policy
makers to properly design road network in anticipa-
tion of driver’s responses. While the solution concept
of UE is relevant, it does not account for the presence
of involuntary movements for agents.

The second thread of related research is from behav-
ioral game theory where different models have been
proposed to accommodate experimental results (in-
volving human subjects) and theoretical predictions.

These include cognitive hierarchy model [1] and quan-
tal response equilibrium [4]. More recently, variants
of these models have been evaluated across different
games [13]. As opposed to evaluation on traditional
small benchmark problems, we have studied these
models in the context of a very large scale real-world
setting in this paper.

The next thread of relevant research is due to Wein-
traub et al. [12, 11]. This research introduces the con-
cept of oblivious equilibrium for large scale dynamic
games. They provide a mean field approximation to
solve problems where there is stochasticity in state
transitions. While, the problem is similar to DAAPs,
the assumption of mean field (or a stationary distri-
bution of taxis in our case) is not applicable in the
context of taxi problems. In fact, there is a huge vari-
ance in the set of possible distributions at each decision
epoch and hence oblivious equilibrium is not directly
applicable in our context.

DAAP model represents a subset of problems repre-
sented by the generic Partially Observable Stochastic
Games (POSG) model. However, all the approaches [6,
9, 8] provided in the literature are for solving identi-
cal payoff stochastic games (also referred to as Decen-
tralized POMDPs or DEC-POMDPs) and not generic
POSGs. Furthermore, they do not scale to problems
with 8000 agents.
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