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Abstract

We present a set of high-probability in-
equalities that control the concentration of
weighted averages of multiple (possibly un-
countably many) simultaneously evolving
and interdependent martingales. Our results
extend the PAC-Bayesian analysis in learn-
ing theory from the i.i.d. setting to mar-
tingales opening the way for its application
in reinforcement learning and other interac-
tive learning domains, as well as many other
domains in probability theory and statistics,
where martingales are encountered.

We also present a comparison inequality that
bounds the expectation of a convex function
of a martingale difference sequence shifted to
the [0, 1] interval by the expectation of the
same function of independent Bernoulli vari-
ables. This inequality is applied to derive a
tighter analog of Hoeffding-Azuma’s inequal-
ity.

For the complete paper see Seldin et al.
(2012).
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Figure 1: Illustration of an infinite set of simultane-
ously evolving and interdependent martingales. For
a fixed h, the sequence M̄1(h), M̄2(h), . . . , M̄n(h) is a
martingale. H is a set (possibly uncountably infinite)
that indexes the individual martingales. The arrows
represent the dependencies between the values of the
martingales: the value of the h-th martingale at time
i, denoted by M̄i(h), depends on M̄j(h

′) for all j ≤ i
and h′ ∈ H (everything that is “before” and “con-
current” with M̄i(h) in time; some of the arrows are
omitted for clarity). A mean value of the martingales
with respect to a distribution ρ over H (or a prob-
ability density function, if H is uncountably infinite)
is given by 〈M̄n, ρ〉. Our high-probability inequalities
bound |〈M̄n, ρ〉| simultaneously for a large class of ρ.


