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Abstract

Latent variable models are used to estimate vari-
ables of interest – quantities which are observ-
able only up to some measurement error. In many
studies, such variables are known but not pre-
cisely quantifiable (such as “job satisfaction” in
social sciences and marketing, “analytical abil-
ity” in educational testing, or “inflation” in eco-
nomics). This leads to the development of mea-
surement instruments to record noisy indirect ev-
idence for such unobserved variables such as sur-
veys, tests and price indexes. In such problems,
there are postulated latent variables and a given
measurement model. At the same time, other
unantecipated latent variables can add further un-
measured confounding to the observed variables.
The problem is how to deal with unantecipated
latents variables. In this paper, we provide a
method loosely inspired by canonical correlation
that makes use of background information con-
cerning the “known” latent variables. Given a
partially specified structure, it provides a struc-
ture learning approach to detect “unknown un-
knowns,” the confounding effect of potentially
infinitely many other latent variables. This is
done without explicitly modeling such extra la-
tent factors. Because of the special structure of
the problem, we are able to exploit a new varia-
tion of composite likelihood fitting to efficiently
learn this structure. Validation is provided with
experiments in synthetic data and the analysis
of a large survey done with a sample of over
100,000 staff members of the National Health
Service of the United Kingdom.

1 CONTRIBUTION

We present a method for learning the structure of a latent
variable model, where latent variables are divided into two

categories: i. latent variables which we would like to es-
timate, as in any smoothing task (e.g., to generate latent
representations of data points for visualization, clustering,
and ranking, among other tasks); ii. all other latent vari-
ables, which we are not interested in estimating but which
can add further confounding among observed variables and
as such cannot be ignored. They are nuisance variables.

This setup is motivated by many practical problems in the
applied sciences where target latent variables are chosen
upfront, with observed variables designed to measure the
unobservable variables of interest. Consider the simple il-
lustrative example of Figure 1.
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Figure 1: A latent variable model with a mixed graphical
representation (that is, more than one type of edge).

Here, eachXi is a latent variable and eachYi an observed
variable. For instance,X1 could represent a latent vari-
able quantifying the level of job satisfaction, postulated
to be measured by answers to questions such asY1 ≡ “I
can choose my own method of working” andY2 ≡ “I have
strong support from my manager”.X2 could represent a la-
tent level of job responsibility, measured by questions such
asY4 ≡ “I know what my responsibilities are” andY5 ≡ “I
am regularly consulted by my team”.

Other nuisance latent factors might correlate, say, the em-
ployee support from her manager and the level of interac-
tion with her team. That is, associations not accounted by
X1 andX2. This is represented graphically in Figure 1
by a bi-directed edge between two observed items, a no-
tation widely used in the structural equation model litera-
ture (Bollen, 1989) and futher formalized by Richardson
and Spirtes (2002). In a linear Gaussian model, for in-



stance, this could be parameterized by the measurement
model equationYi = XTβ + ǫi, where the covariance of
the error terms forY2 andY4 is allowed to be non-zero.
More details will be given in the sequel.

Conditioned on the background knowledge of a model
where we specify the “known unknowns” – the latent fea-
tures we would like to estimate by a postulated relationship
to observations – we would like to identify the remaining
dependence structure given by all remaining factors we did
not specify in advance – the “unknown unknowns.” This
provides a meeting point between the common practice
of designing measurement models for the practical goal
of quantifying specific latent factors (Bollen, 1989), and
purely data-driven approaches for discovering latent struc-
ture (Elidan et al., 2000; Silva et al., 2006).

The structure of the paper is as follows. A formal prob-
lem definition is given in Section 2, where we specifiy pre-
cisely the goals, classes of models and assumptions em-
bedded in our procedure. Algorithms for structure learn-
ing are described in detail in Section 3, based on varia-
tions of the composite likelihood method integrated within
a expectation-maximization framework. Further context
and related work is discussed in Section 4. Experiments
with synthetic and real data are discussed in Section 5, fol-
lowed by a Conclusion in Section 6.

2 PROBLEM SPECIFICATION AND
MODEL SPACE

In this section, we first define the space of graphical models
which is assumed to contain the data generating process of
interest. We then present further details on the parametric
assumptions and a formulation based oncumulative distri-
bution networks(Huang and Frey, 2008; Silva et al., 2011).

2.1 Structural Conditions

In our setup, we assume the following:

1. that the data is generated according toG, an underly-
ing directed acyclic graph (DAG) (Koller and Fried-
man, 2009) composed of latent and observed vari-
ables. InG, observed variables are not parents of any
other variable, as in typical models of factor analysis
(Bartholomew and Knott, 1999);

2. that an expert provides a partition of the set of ob-
served variablesY, such that each setSi ⊂ Y in
this partition corresponds to the observed children
of a latent variableXi. For example, in Figure 1,
the partition is given by setsS1 ≡ {Y1, Y2, Y3} and
S2 ≡ {Y4, Y5, Y6};

3. let XS be this set of latent variables associated with
the partition (e.g.,{X1, X2} in Figure 1). We also
allow for a (possibly infinite) set of latent variables

X∞ that is disjoint ofXS ;
4. elements ofXS are arbitrarily connected to each other

in G, and elements ofX∞ are also arbitrarily con-
nected to each other. However, anyXi ∈ XS is
marginally independent of anyXj ∈ X∞ in G.

2.2 Problem Specification

We want to account for any association among elements of
Y that is due toX∞, so that functionals of the conditional
distributionP(XS | Y) can be correctly estimated from
data.

Instead of modeling the number of elements inX∞ and
how they relate to each other as in a nonparametric latent
variable model formulation (e.g. Wood et al., 2006), we
will treat the existence ofX∞ as a black-box. We model di-
rectly the dependencies that arise from its existence within
amixed graphformulation (Richardson and Spirtes, 2002).
A mixed graph is a graph with more than one type of edge.

Let Gm be a graph with verticesY ∪ XS , and directed
edges from eachXi to each element ofSi. For simplic-
ity, the structure among elements ofXS is assumed to be
a fully connected network of undirected edges. If two ob-
served variablesYi andYj have a common ancestor inX∞

in G, add a bi-directed edgeYi ↔ Yj to Gm. We say that
Gm is the mixed graph induced byG andXS . The condi-
tional independence constraints entailed byGm all hold in
G (Richardson and Spirtes, 2002). Hence, identifiability is-
sues aside, fitting a model based on a graph different from
Gm should in general result in a misspecified distribution
and give a inadequate model forP(XS |Y).

Our goal can then be summarized as:learn the structure of
Gm by finding the correct bi-directed substructure.In the
example of Figure 1, this means returning the information
thatY2 ↔ Y4 is the only bi-directed edge inGm.

Thepractical assumption here is that the bi-directed com-
ponent ofGm is sparse. Sparsity in a bi-directed component
corresponds to a marginal independence constraint among
elements ofX∞: the lack of an edgeYi ↔ Yj corresponds
to the parents ofYi in X∞ being marginally independent
of the parents ofYj in X∞. The extent to which this as-
sumption is valid will depend on how well the dependence
between elements ofY is captured byXS and it is ver-
ified empirically in Section 5. This complements Wood
et al. (2006), which makes fewer assumptions but has to
deal with a much harder problem.

2.3 Comments

The setup where observed variables are partitioned into sets
corresponding to particular semantic groups is a key idea
behindcanonical correlation analysis(CCA). The standard
CCA corresponds to a partition into two sets. For rank-one
CCA, this corresponds to a graphical model with a single



latent variable being a parent of all observations, variables
in each partition connected to each other by bi-directed
edges. There are no bi-directed connections across vari-
ables in different sets of the partition, but CCA in general
allows for several independent latent variables being com-
mon parents of all observations. A general latent variable
model interpretation of canonical correlation analysis was
originally introduced in a series of reports by Wegelin et al.
(2001, 2002), and by Bach and Jordan (2005). In contrast,
we are assuming that a single latent variable is (explicitly)
a parent of each given group of variables, that such latent
variables can be mutually dependent, but that extra fac-
tors are allowed. Common between our model space and
CCA is the idea of having a partition of the observed vari-
ables. As such, we refer to the problem of searching for a
structure in the space of graphs with a known partition as
thestructured canonical correlation analysisproblem. We
once again emphasize that a major motivation for this type
of analysis is a domain-dependent assumption about which
latent variables are being measured, and that such variables
have a prior interpretation.

2.4 Parametric Assumptions

For a fixed level ofXS , observed variablesY should have
marginal independence constraints as implied by the corre-
sponding bi-directed structure. In a Gaussian parameteri-
zation, for instance, this would mean that the covariance of
Yi andYj givenXS is constrained to be zero ifYi is not
adjacent toYj , and free otherwise (Richardson and Spirtes,
2002).

For this paper, we will model binary data. Latent variables
XS are assumed to follow a zero mean Gausssian with an
unknown covariance matrixΣ. For the rest of this section,
we discuss models for the conditional distribution of ob-
served variables givenXS . We will assume a linear model
for each univariate dependenceP(Yi = 0 | Xj = xj) ≡
Φ(0;βi1xj + βi0, 1) for Yi ∈ Sj . FunctionΦ(0;µ, σ2) is
the probability of a Gaussian of meanµ and varianceσ2

being negative. Coefficients{βi1, βi0} are unknown.

Given these univariate conditionals, a conditional joint is
needed. Models of marginal independence for binary data
can be obtained from a Gaussian parameterization, as dis-
cussed by Silva and Ghahramani (2009). However, in our
context we will be also interested in performing Bayesian
model selection. Although priors for sparse covariance ma-
trices exist, performing model selection in a large space
is computationally problematic: we are particularly moti-
vated by the modeling of surveys with a large sample size.
More details on that are discussed in Section 4.

2.4.1 Brief review of CDNs

Instead, we will adopt the cumulative distribution network
framework (CDN) of Huang and Frey (2008, 2011). Given

a symmetric graph, a CDN model defines the cumulative
distribution functionF (y) of a multivariate distribution by
a product off factors. Each factorFi(·) has as arguments
the variables in a cliqueYfi of the graph:

F (y) ≡

f∏
i=1

Fi(yfi )

As shown by Silva et al. (2011), this can be extended to
accommodate conditional distributions and integrated with
a copula modeling framework (Nelsen, 2007)1. For a fixed
instantiationx of the parentsX of a set of random variables
Y, its conditional CDFP(Y ≤ y | X = x) ≡ F (y | x)
can be parameterized as

F (y | x) ≡

f∏
i=1

Ci(ux(yfi;1)
efi ;1 , . . . , ux(yfi;n(i))

efi;n(i))

(1)
whereCi(·) is a copula function,yfi;j denotes the instan-
tiation of thej-th variable in cliquefi, exponentefi;j is a
non-negative parameter, andn(i) the number of elements
in cliquefi. Moreover,

ux(yi) ≡ P(Yi ≤ yi | x) (2)

Also, for eachYi, the sum of its respective exponentse⋆,
across all factors containingYi, is equal to 1. For simplic-
ity, we fix each exponent associated withYi to be1/h(i),
with h(i) being the number of factors containingYi.

A powerful property of CDNs is its simple marginaliza-
tion procedure: calculation of the marginal of a CDF by
marginalizing a subsetYmarg consists of evaluating the
CDF whereYmarg = ∞. For instance,P(Y1 ≤ y1, Y2 ≤
y2) = P(Y1 ≤ y1, Y2 ≤ y2, Y3 ≤ ∞, . . . , YN ≤ ∞).

In a graph such asY1 ↔ Y2 ↔ Y3, the CDF is given by
a CDN modelF1(y1, y2)F2(y2, y3) and the corresponding
marginal forY1 andY3 is given byF1(y1,∞)F2(∞, y3) ≡
g(y1)h(y3), corroborating the fact thatY1 andY3 should
be marginally independent. In the case of a model

1A full description of copula models is beyond the scope of
this paper. Nelsen (2007) provides further details, and Huang and
Frey (2011), Silva et al. (2011) provide examples within thecon-
text of CDNs. For the purposes of this paper, it suffices to un-
derstand that a copula is nothing but ad-dimensional CDF with
(continuous) uniform marginals in[0, 1]d. Its motivation can then
be understood: it allows for the construction of a joint distribution
where marginals can be parameterized separately. By defining
each univariate marginalP(yi | x) separately, the transformation
ux(yi) = P(Yi ≤ yi | x) gives an uniform[0, 1] random vari-
able. These transformed variables can then be plugged into ajoint
distribution with uniform marginals, which becomes a distribution
with arbitrary marginals in the original space. This, amongother
uses, allows for the use of plug-in estimates for marginals to be
combined with other estimators for joints. In this case, no further
bias will be introduced into the marginal models even if the joint
is misspecified or if the copula estimator is biased.



for F (y1, y2, y3 | x), according to (1), we have that
F (y1, y2, y3 | x) is given by

C1(ux(y1), ux(y2)
1/2)C2(ux(y2)

1/2, ux(y3))

Recall that, ifC(u, v) is a copula function, thenC(u, 1) =
u (since copulas are CDFs withU(0, 1) marginals).
One can then verify thatF (y1, y3 | x) = P(Y1 ≤
y1 | x)P(Y3 ≤ y3 | x) andF (y2 | x) = P(Y2 ≤ y2 | x) as
desired.

Another advantage of the CDN formulation is that param-
eters across factors are functionally independent. This isin
contrast with, for instance, the sparse covariance models of
Richardson and Spirtes (2002) and Silva and Ghahramani
(2009), where a positive definite constraint ties all param-
eters. Having no constraints across different factors will
be a fundamental property to be exploited in our learning
procedure. We call this propertyparameter modularity.

The difficulty with the CDN formulation is that in order
to calculate the likelihood function, as required for any
likelihood-based learning procedure, one has to convert the
conditional CDFs into probability mass functions (PMFs)
(Huang and Frey, 2011). This can potentially take an ex-
ponential amount of time on the number of variables in the
graph. However, the marginalization property and the pa-
rameter modularity property of the CDNs leads to an attrac-
tive way of performing efficient learning, as we will see in
the next section.

3 A LATENT COMPOSITE
LIKELIHOOD APPROACH

Let D = {Y(1), . . . ,Y(N)} be our data, a set of bi-
nary measurements of dimensionp. For a given graphi-
cal structureGm and fixed coefficient parameters{βi1, βi0}
and latent covariance matrixΣ, the marginal likelihood of
{Gm, {βi1, βi0},Σ} is

P(D | Gm, {βi1, βi0},Σ) =

∫
P(D,X1:N , θ | Gm, β,Σ) dX1:N dθ (3)

whereX1:N is a shorthand notation for{X(1), . . . ,X(N)},
β is a shorthand notation for{β1,1, β1,0, . . . , βp,1, βp,0},
and parameter setθ describes parameters associated with
copula functions.

One approach for model selection is to assign a prior
π(Gm) over possible graph structures and then chooseGm
that maximizesP(D | Gm, {βi1, βi0},Σ)π(Gm). Since
{{βi1, βi0},Σ} are also unknown, we could marginalize
then away. However, such parameters do not affect the
complexity of the model, and with the goal of having an
efficient computational procedure, we will treat these pa-
rameters also as nuisance parameters and maximize with

respect to them along withGm. In this paper, we will as-
sume that individual pairwise factors are associated with
each bi-directed edge inGm. Our prior forθ is indepen-
dent2 of Gm and factorizes as

π(θ | Gm) = π(θ) =
∏

1≤i<j≤p

π(θij) (4)

Maximizing any expression that depends on (3) poses a
formidable computational problem. Moreover, it depends
on conditional probability expressionsP(Y | x). Such
conditional mass functions need to be obtained from the
canonical CDFF (·) to PMF P(·) transformation (Joe,
1997), which for binary data boils down to:

P(Y = y) =
1∑

z1=0

· · ·
1∑

zp=0

(−1)
∑p

i=1 ziF (y − z) (5)

This is of course exponential inp, but if the corresponding
bi-directed component is a symmetric graph of low tree-
width, the expression can be calculated efficiently by dy-
namic programming and used by any learning method that
requires the likelihood function. The original derivationby
Huang et al. (2010) is quite complex and provides insights
on how approximate methods should behave. However, in
the sequel we will make use of exact methods only, and as
such we provide in the Supplementary Material a straigh-
forward reduction of (5) to a standard inference problem in
factor graphs – making the method easier to implement.

Integrating awayθ andX is harder in general and large
tree-width graphs are still a possibility. As such we avoid
methods that attempt to maximize (3). The core procedure
is based on structural composite likelihood learning. It is
described in Section 3.1, and refined in Section 3.2. Further
implementation details are given in Section 3.3. An alter-
native to these methods is to emulate a constraint-based ap-
proach (Spirtes et al., 2000) for structure discovery, provid-
ing a non-iterative procedure to identify which bi-directed
edges are needed. This is done in Section 3.4. A brief
discussion on model identification is provided in the Sup-
plementary Material.

3.1 Basic Structural Composite Likelihood

A composite likelihood function (Varin et al., 2011) for a
parameter of interestθ is defined as

CL(θ;D) =
∏
k∈K

Lk(θ;D)
wk

whereLk(·) is the likelihood function resulting from the
conditional probability (or density) function of a subset of

2Parameterθij will not, of course, affect the likelihood func-
tion if Yi ↔ Yj is not inGm. One could otherwise interpretθij
as simply not existing in this case, but this way of interpreting θij
will make the presentation easier without being less precise.



Y given another subset, andwk are user-specified weight
parameters. It is intuitive to understand why a composite
likelihood function can provide consistent estimates ofθ:
if an unique model is identifiable from the marginal con-
ditional densities used in eachLk(·), then maximizing the
log-composite likelihood is equivalent to minimizing the
KL-divergence between each marginal conditional and the
empirical distribution. By matching each marginal as the
divergence goes to zero, one recovers the parameters.

Joreskog and Moustaki (2001) applied this concept in the
context of latent variable models, by fitting a probit model
using univariate and bivariate marginals with equal weight.
A key fact is that bivariate likelihoods can be integrated
numerically, since only two underlying latent variables are
present. Although still computationally demanding, this
approach does not require any Markov chain Monte Carlo
within a stochastic EM procedure, nor requires biased ap-
proximations such as mean-field methods. We initially pro-
pose a similar idea, where our (penalized) composite like-
lihood function is given by

PCL(Gm, β,Σ) ≡ F
(β,Σ)
Gm

+ log π(Gm), (6)

F
(β,Σ)
Gm

≡
∑
i<j

logP(Y1:N
i ,Y1:N

j | Gm, β,Σ)

When using one-parameter copula functions (Nelsen,
2007), each bivariate termP(Y1:N

i ,Y1:N
j | Gm, β,Σ) re-

quires the numerical integration of at most three terms: the
copula parameterθij corresponding to the edgeYi ↔ Yj

and up to two latent variables per data point configuration,
as explained in Section 3.3.

A greedy procedure for optimizingPCL(·, ·, ·) is outlined
in table Algorithm 1. It takes as input a partition over ob-
served variables (S) and a datasetD. Algorithm 1 alter-
nates between optimizing the objective function with re-
spect to the continuous parameters (Step 5), and optimiz-
ing structure (Steps 6). Optimization in Step 5 is done with
respect to the coefficient spaceΩβ and correlation matrix
spaceΩΣ, as explained in further detail in Section 3.3. The
structural update is a standard greedy algorithm that picks
the best choice of graph within the graph spaceG+/−

m : the
space that includesGm and all mixed graphs that differ
from Gm by exactly one bi-directed edge. Finally, pro-
cedure GETDAG(S) at the beginning of Algorithm 1 just
returns the variable space (Y, XS ) and the initial mixed
graph without any bi-directed edges. The initialization of
parameters is discussed in the Supplementary Material.

3.2 Learning via Distributed EM Bounds

Even for problems with large sample sizes, one might be
concerned that using only pairwise regions might imply
low statistical efficiency. Higher (statistical) efficiency can

Algorithm 1 Pairwise Structured CCA Learning
1: procedure LEARNSTRUCTUREDCCA-I(S,D)
2: {Y,XS ,Gm} ← GETDAG(S)
3: {β,Σ} ← INITPARAMETERS(Gm,D)
4: repeat
5: {β,Σ} ← argmax(Ωβ ,ΩΣ) PCL(Gm, β,Σ)
6: Gm ← argmax

(G
+/−
m )

PCL(Gm, β,Σ)

7: until Gm has not changed.
8: return Gm
9: end procedure

be obtained by using components with more than two ob-
served variables. This is undesirable, as it might require
sophisticated integration methods, including MCMC. We
present a different way of sharing statistical power among
different pairwise likelihood functions without requiring
an integration procedure on dimensions higher than in the
pairwise procedure of the previous Section. It is based
on ideas adapted from the expectation-maximization (EM)
family of optimization methods (Dempster et al., 1977).

Using the standard Jensen bound for convex combinations,
but applied independently to different terms in a summa-
tion, it is possible to lower-boundF (β,Σ)

Gm
as

∑
i<j

∫
qij(θij) log

Pij(Y
1:N
i ,Y1:N

j , θij | Gm, β,Σ)

qij(θij)
d θij

(7)
The bound holds for any choice ofqij(·) and it is
well-known to be maximized by choosingqij(·) to be
P(θ |Y1:N

i ,Y1:N
j ,Gm, β,Σ) (Neal and Hinton, 1998).

We will further modify the idea in (7) with a different
matching between functionalsqij(·) and log-likelihood
functions. LetXi ∈ XS and recallSi are the observed
children ofXi in Y. Let |S| be the number of latent vari-

ables. The trick is to first rewriteF (β,Σ)
Gm

as in Equation (8)
displayed in Table 1. Using an arbitrary set of distributions
{qmn(·)}, 1 ≤ m < n ≤ |S|, PCL(Gm, β,Σ) can then be
rewritten and elementwise bounded as

PCL(Gm, β,Σ) ≥ Q
(β,Σ,{qmn(·)})
Gm

+logπ(Gm)+κ (10)

where Q(β,Σ)
Gm

is defined as Equation (9) in Table 1,
and constantκ does not depend on the free parameters
{Gm, β,Σ}.

Given this setup, we finally defineqmn(Θmn) to be the
joint distributionP(Θmn | Y1:N

mn ,Gm, β,Σ), whereYmn

are thejoint childrenof Xm andXn, andΘmn are the cop-
ula parameters used in the corresponding marginal model
for Ymn. Functionqmn(θij) is then the corresponding
(univariate) marginal ofqmn(Θmn).

The desirable property of (10) is that, while it still re-
quires only a three-dimensional integration (details in Sec-
tion 3.3), information fromYk, not in {Yi, Yj}, can be



Table 1: Components of a Pairwise Composite Likelihood Score Function

F
(β,Σ)
Gm

=
∑
m<n

∑
Yi∈Sm

∑
Yj∈Sn

logP(Y1:N
i ,Y1:N

j | Gm, β,Σ) +

|S|∑
m=1

1

|S| − 1

|S|−1∑
n=1

∑
{Yi,Yj}⊂Sm

logP(Y1:N
i ,Y1:N

j | Gm, β,Σ)

(8)

Q
(β,Σ,{qmn(·)})
Gm

=
∑
m<n

∑
Yi∈Sm

∑
Yj∈Sn

∫
qmn(θij) logP(Y

1:N
i ,Y1:N

j | Gm, β,Σ, θij)d θij +

1

|S| − 1

|S|∑
m=1

∑
n6=m

∑
{Yi,Yj}⊂Sm

∫
qmn(θij) logP(Y

1:N
i ,Y1:N

j | Gm, β,Σ, θij)d θij

(9)

Algorithm 2 Modified Pairwise Structured CCA Learning
1: procedure LEARNSTRUCTUREDCCA-II(S,D)
2: {Y,XS ,Gm} ← GETDAG(S)
3: {β,Σ} ← INITPARAMETERS(Gm,D)
4: repeat
5: for 1 ≤ m < n ≤ |S| do
6: qmn(·)← P(Θmn |Y

1:N
mn , β,Σ,Gm)

7: end for
8: {β,Σ} ← argmax(Ωβ ,ΩΣ) Q

(β,Σ,{qmn(·)})
Gm

9: Gm ← argmax
(G

+/−
m )

PCL(Gm, β,Σ)

10: until Gm has not changed.
11: return Gm
12: end procedure

passed around. Consider the graph in Figure 1 again. There
is a d-connecting path betweenY2 andY6 givenY4 (or “m-
connecting,” using the nomenclature from Richardson and
Spirtes, 2002). Hence, there is a three-way interaction be-
tweenY2, Y4 andY6 that varies according to the copula be-
tweenY2 ↔ Y4, and information fromY6 is propagated to
the estimation ofβ2;1 andβ4;1 via the distribution ofθ2;4.

A modification of Algorithm 1 is shown in Algorithm 2.
The parameter fitting procedure is now expanded into Steps
5-8, with the structure learning step unmodified. The pos-
teriorP(Θmn |Y1:N

mn ,Gm, β,Σ) needs to be calculated ef-
ficiently and it has to lead to efficient integration in Step
8. This is discussed in Section 3.3. Moreover, it might
be surprising that in Step 9 we do not optimize structure
with respect to the same function of Step 8. Optimizing
the bound of Equation (10) with respect to the graph is
equivalent to a composite likelihood Structural EM proce-
dure (Friedman, 1998). While Structural EM procedures
are definitely useful, we prefer to not apply it uncritically
to our special situation. EM is a coordinate ascent method
(Neal and Hinton, 1998), and as such it is more prone to get
stuck in a local maxima compared to optimizing marginal
likelihoods directly. This is particularly true when optimiz-
ing with respect to a discrete structure – in this case, it is

common to prematurely converge to a structure with fewer
bi-directed edges than expected if we optimize the Struc-
tural EM lower bound starting with an empty bi-directed
component. Since for each data point we have no more than
two latent variables per log-likelihood term inPCL(·, ·, ·),
we avoid maximizing a lower bound in Step 9. Conver-
gence issues are discussed in the Supplementary Material.

3.3 Implementation Details

For Algorithm 2, we obtain the posterior distribution
qmn(Θmn) using the Laplace approximation (MacKay,
2003). Our goal is to use Algorithms 1 and 2 in problems
with large sample sizes, and hence such an approximation
can provide a reasonably accurate replacement for the ex-
act posterior – which has no closed form and would require
a numerical method in any case.

Even the Laplace approximation procedure requires an-
other inner approximation. Recall that in order to obtain
the mean vector and covariance matrix required to approx-
imate the distribution ofΘmn with a Gaussian, we need
to maximizelogP(Y1:N

mn | Gm, β,Σ,Θij) + log π(Θmn).
Let P be the total number of children betweenXi andXj .
ThenP(Y1:N

mn | Θmn,Gm, β,Σ) can be rewritten as

∏
ymn∈{0,1}P

(

∫
P(ymn, xm, xn |Θmn, . . . )d xmd xn)

Nmn

which takes constant time in sample size3 given pre-
computed sufficient statisticsNmn, the count of events
Ymn = ymn in datasetD, and under an approximation
to each of the two-dimensional integrals.

In our implementation, we use an approximation for the

3Assuming that the marginal ofGm overYmn has a bounded
tree-width, this expression is tractable in the dimensionality of the
problem using the CDN inference method to obtain the likelihood
function (Huang and Frey, 2011, see also the Supplementary Ma-
terial). The full graphGm might have a large tree-width, as long
as the subgraph given byYmn does not.



integral ofP(ymn, xm, xn | Θmn, β,Σ,Gm) of the form

≈
∑
k

wk(σmn)P(ymn, x
(k)
m , x(k)

n | Θmn, β,Σ,Gm)

(11)
for a fixed set of grid points{(x(k)

m , x
(k)
n )} regardless of

the values ofm andn, but a function of the covariance
σmn ≡ (Σ)mn. Any quadrature method could be used.

We opted for an admittely crude but simple implementa-
tion which uses an arguably excessive number of points
compared to adaptive quadrature methods, but which is
relatively amortized taken into account such integrations
need to be done several thousand times – we need to cal-
culate our weightswk only once. Without loss of general-
ity, Σ can be assumed to be a correlation matrix. For each
marginal{xm, xn}, we naively space the grid points uni-
formly between the 0.01 and 0.99 quantiles of the standard
Gaussian. The result is a division of the space into squares
centered at each{(x(k)

m , x
(k)
n )} which does not depend on

m andn. We definewk(σmn) to be the probability mass
of each square. This can be pre-computed only once in the
whole procedure, also using the following simplification of
Σ: we allow each entryσmn to lie only within the discrete
set of choices{−0.99,−0.97, . . . , 0.97, 0.99} and cache
wk(σmn) for everyk and possible value ofσmn. Since
they correspond to bivariate Gaussian integrals, recomput-
ing these weightsO(p2) times at each iteration would oth-
erwise be very costly.

Equations (8) and (9) require integrals overθmn. Given the
approximation for the bivariate likelihood of each pairwise
data point configuration, we introduced a discrete approx-
imation for the priorπ(θmn) (Algorithm 1) or univariate
Gaussian marginalqmn(θmn) that results from the Laplace
approximation (Algorithm 2). The grid points are naively
a number of quantiles corresponding to uniformly spread
cumulative probabilities in[0, 1]. These quantiles are re-
computed at every iteration, since this is relatively cheap.

When optimizing parameters, we optimizeβ for a fixedΣ
by gradient methods4. We then optimizeΣ given{βi1, βi0}
without enforcing positive definiteness: the evaluation ofF
andQ does not require this condition. The objective func-
tions decouple over the entries ofΣ and hence each en-
try σmn can be optimized separately – by searching over
the discretized space{−0.99,−0.97, . . . , 0.97, 0.99}, as
required to allow for the caching ofwk(σmn).

3.4 Bivariate Residual Search

An alternative to the expensive iterative methods from the
previous section is to do a single hypothesis test for each

4In order to reduce the number of parameters, we calculate
each interceptβi0 as a function of the slopeβi1 such that the
marginal probabilityP(Yi = 0 |β,Σ) matches the empirical
probability. Hence the only free parameters are the slopes{βi1}.

Algorithm 3 Single-shot Structured CCA Learning
1: procedure LEARNSTRUCTUREDCCA-0(S,D)
2: {Y,XS ,Gm} ← GETDAG(S)
3: {β,Σ} ← argmax(Ωβ ,ΩΣ) PCL(Gm, β,Σ)
4: for 1 ≤ i < j ≤ |Y| do
5: Gijm ← argmax

(G
ij(+/−)
m )

PCL(Gm, β,Σ)

6: end for
7: return ∪ijGijm
8: end procedure

bi-directed edge. If one knew parameters{β,Σ}, a possi-
bility is to do aχ2-like measure of fitness of the implied
bivariate contingency table for each{Yi, Yj}, and add the
corresponding bi-directed edge if there is evidence of mis-
fit. Without knowledge of{β,Σ}, a possibility is to fit the
model without bi-directed edges as a surrogate, in the hope
that such estimates are good enough to detect misfit. In
Algorithm 3, we outline a procedure where the test of mis-
fit is to choose between two models with the single edge
Yi ↔ Yj and none (our definition of the spaceGij(+/−)

m )
based onPCL(·, ·, ·) – essentially a Bayesian test for the
edge in the bivariate modelP(Yi, Yj | β,Σ). The final
graph is given by the union of all edges that were selected
by the bivariate tests. The shortcoming of course is that
the initial parameter estimate might be bad if there are rea-
sonably strong dependencies due to the unaccounted latent
variables. Iterating the procedure, however, gives a proce-
dure that is essentially Algorithm 1, albeit with a “parallel”
testing of the edges. For simplicity, we do not consider
the continuum between sequential and parallel tests (e.g.,
methods where initial iterations would modify one edge
only per parameter update, allowing multiple edge modi-
fications later on) and evaluate Algorithm 3 only.

4 RELATED WORK

More conventional uses of EM in the context of compos-
ite likelihod have been discussed by Varin et al. (2011) and
Gao and Song (2011). CCA has been applied in other con-
texts in machine learning, such as analysing text data under
different languages (Hardoon et al., 2004). This setup and
usage is very different from our motivation, which focus on
applications with several small sets of measurements, and
where the special structure of the latent space (a one-to-
one association between latent variables and groups of ob-
servable variables) is motivated by particular applications
in measurement error problems (Bollen, 1989). Concern-
ing model selection in structured latent spaces, Silva and
Ghahramani (2009) provides an approach based on Gaus-
sian distributions, and a Gaussian copula method can be
readily applied to the binary modeling case. However, we
want to avoid a full likelihood approach for scalability rea-
sons. While Silva and Ghahramani (2009) provides pri-
ors over sparse covariance matrices, it is not clear what



the marginals of such priors are over subsets of the ob-
servations: sparse inverse Wishart priors do not have a
closed form for their marginals. This makes the Bayesian
Gaussian approach seemingly hard to apply in the compos-
ite likelihood scenario. The use of composite likelihood
methods in model selection (Varin and Vidoni, 2005) has
been increasing in recent years, including variations where
parameters across different likelihood components do not
need to be constrained to be the same: a postprocessing
method can be used to combine estimates from different
regions into a single point estimate (e.g., Meinshausen and
Buehlmann, 2006). Further consequences of ignoring asso-
ciation due to unspecified factors in a latent variable model
are discussed by Westfall et al. (2012). It is also important
to mention that the method here introduced generalizes the
learning methods of Huang and Frey (2011), since the CDN
is a special case. It is also an alternative to maximum like-
lihood estimation for networks of large tree-width.

5 EVALUATION

We evaluate the approach with a synthetic and a real-world
experiment. The prior over graphical structures is given
by an independent probability of 0.1 for each bi-directed
edge. We use Frank copulas for the dependence struc-
ture (Nelsen, 2007). The prior for parameterθij is defined
by first sampling a standard GaussianZ ∼ N (0, 1) and
squashing it asθij = [1/(1+e−z)]×50−25, which gener-
atesθij in the interval[−25, 25] – beyond which the Frank
copula gives numerically unstable results in our code.

5.1 Synthetic Studies

We simulate5 20 networks with 4 latent variables and 4
children per latent variable. Bi-directed edges were added
independently with probability 0.2. The network is then
pruned randomly so that each latent variable d-separates at
least three children, and that each observed variable has no
more than 3 adjacent bi-directed edges. The average num-
ber of resulting edges was approximately 18. Results for
three evaluation measures are shown in Figure 2. We com-
pare the three methods of Section 3, doing a comparison at
three different sample sizes (1000, 5000 and 10000). We
show the average paired difference over 20 trials between

5Other details about the simulation: a “signal factor” (the ra-
tio between the varianceβ2

i1 implied by the GaussianXm, and
β2

i1 + 1 given by the added variance of the probit model) is the
sampled uniformly within the interval[0.2, 0.6] for each variable
Yi. Slopeβi1 is then set accordingly as a function of the signal
factor, with its sign chosen with probability 0.5. A “marginal fac-
tor” (the marginal probabilityP(Yi = 0)) is uniformly sampled
within the interval[0.1, 0.9], and interceptβi0 is set according
to the marginal factor and the sampled value ofβi1. We sample
each copula parameter independently, uniformly in the interval
[10, 15]. Finally, we generateΣ by rescaling as a correlation ma-
trix the result of

∑
4

k=1
zkz

T

k , whereZK ∼ N (0, 1).

LEARNSTRUCTUREDCCA-II (LSC-II) and LSC-I, and
between LSC-II and LSC-0. The first criterion is the root
mean squared error of the average slope coefficients{β1}
with respect to the true model; the second criterion is “edge
omission,” the number of incorrectly removed edges di-
vided by the total number of edges; the third criterion is
“edge commission,” incorrect addition of an edge divided
by the total number of possible additions. The number of
times where the difference is positive with the correspond-
ing p-values for a Wilcoxon signed rank test are given be-
low (stars indicate numbers less than 0.05):

1000 5000 10000
Slope I 0 I 0 I 0

number 13 6 17 15 15 13
p-value 0.22 0.25 * * * 0.06

Omission I 0 I 0 I 0
number 11 18 6 14 6 9
p-value 0.17 * 0.82 * 0.62 0.22

Commision I 0 I 0 I 0
number 5 2 15 16 16 18
p-value 0.28 * * * * *

The upshot is that Algorithm 2 does at least as well as
the others concerning edge omission, but with substantially
fewer false positives – a problem that particularly affects
the single-shot algorithm. Algorithm 2 is also more robust
concerning parameter estimation. It has to be said, how-
ever, that all methods do badly concerning edge omission
at sample size 1000: in more than 10 trials, Algorithm 2
had edge omission rates over 0.5. At sample size 5000, this
substantially decreased (17 trials under 0.2, 10 under 0.15).
Algorithm 2 commission errors are typically low (< 0.05)
for all datasets. It is also relevant that Algorithm 2 typically
converges faster than Algorithm 1 despite the extra step on
approximating posteriors with the Laplace approximation.

5.2 Analysis of the NHS Staff Survey

We present a simple application to the modeling of re-
sponse patterns in the 2009 National NHS Staff Survey
(Care Quality Comission and Aston University, 2010). We
now emphasize less an evaluation of the structure and
more the initial goal described in Section 2.2 on showing
how finding bi-directed structures helps in estimating func-
tionals ofP(XS | Y). The NHS (National Health Ser-
vice) is the public healthcare system of the United King-
dom. A survey concerning different aspects of job satis-
faction, work conditions, training and other factors takes
place regularly. We provide an analysis of the 2009 sur-
vey, which was returned by 156,951 respondents. Un-
der the assumption that sections in the questionnaire trans-
late to particular trait factors, we evaluate how much is
gained by allowing a latent variable model to be adaptive
to external factors not originally included in the model.
Responses to questions are either binary Yes/No ques-
tions or encoded in an ordinal scale (varying in 5 points
from strong disagreement to strong agreement). We en-
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Figure 2: Differences between LEARNSTRUCTUREDCCA-II (LSC-II) and LSC-I are labeled, at three different samples
sizes, as 1000-I, 5000-I and 10000-I. Differences between LSC-II and LSC-0 are labeled analogously.

coded ordinal data as binary, assigning the value of 1 to
“Agree” and “Strongly agree” responses, and 0 otherwise
(including missing or not applicable responses). We gen-
erated 9 factors out of the questionnaire with a total of
50 observed variables. The selection and partitioning pro-
cess is described in detail in the Supplementary Mate-
rial. We randomly selected 100,000 respondents as a train-
ing set and fit a model using LEARNSTRUCTUREDCCA-
II. A total of about 40 bi-directed edges was gener-
ated. We also fit the model without any bi-directed
edges. Since we cannot calculate marginal likelihoods
easily as a way of comparing the models, we resort to
evaluating the predictive ability of the latent representa-
tions. Given these two models, we generate latent em-
beddings of the observations6 in the test set by maximiz-
ing

∑
ij logP(Y

(d)
i , Y

(d)
j , X

(d)
i , X

(d)
j | β,Σ,Gm), for each

data pointd, with respect to the latent variables. HereXi

andXj are the (possibly unique) latent parents ofYi and
Yj . This results in over 50,000 points in a 9-dimensional
space. Half of these points were used to build 11 logis-
tic regression models to predict answers to questions not
included in the model7. We calculated the area under the
curve for predictions done in the test set of approximately
28,000 points. Results are shown in the Table 2, which
illustrates that the mixed model does at least as well or bet-
ter at generating a latent representation of the observations,
while preserving the interpretability of the model.

6 CONCLUSION

We summarize the main features of our method:

• it searchs only over a projection of an infinite di-
mensional latent space into a mixed graph structure,

6After fitting both models, 5 of the observed variables were
given extreme coefficients in their measurement equations (in
both models). In order to make the embedding process numeri-
cally stable, we removed these 5 variables from the testing.

7Questions concerned job satisfaction. See Supp. Material.

Table 2: Comparison of the mixed graph CCA model
(MCCA) against the standard, fixed structure, model
(SCCA) in 11 binary classification tasks, as measured by
the area under the curve.

MCCA SCCA MCCA SCCA
Q1 0.71 0.71 Q7 0.80 0.79
Q2 0.75 0.75 Q8 0.82 0.81
Q3 0.86 0.82 Q9 0.86 0.83
Q4 0.90 0.82 Q10 0.69 0.69
Q5 0.79 0.80 Q11 0.78 0.75
Q6 0.73 0.72

instead of explicitly adding latent variables. Condi-
tioned onXS , the composite likelihood function can
be calculated analytically. This is possible due to the
implicit latent variable representationof the CDN;
• assuming no missing data, it requires only the suf-

ficient statistics for regions of bounded size, com-
putable with a single pass through the data, possible
due to themarginalization propertyof the CDN;
• optimization is unconstrained, thanks to theparame-

ter modularityproperty of the copula formulation;
• it allows for the use of simple deterministic integration

methods, while still providing a mechanism to prop-
agate information beyond simple pairs of observed
variables – anovel variation of composite likelihood
estimation, to the best of our knowledge.

Although the approach scales well in the sample size,
the parameter fitting step is still particularly expensive in
high-dimensions, as also noted by Joreskog and Mous-
taki (2001). A more efficient algorithm can be achieved
by a smarter implementation of the gradient optimization
method, or by relaxing the restriction that parameter esti-
mates need to be the same across different likelihood com-
ponents (Meinshausen and Buehlmann, 2006). Moreover,
having an adaptive structure for the partition of the random
variables is also an important direction.
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