Quantifying the Strategyproofness of Mechanisms
via Metrics on Payoff Distributions
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Abstract

Strategyproof mechanisms provide robust equi-
librium with minimal assumptions about knowl-
edge and rationality but can be unachievable in
combination with other desirable properties such
as budget-balance, stability against deviations by
coalitions, and computational tractability. In the
search for maximally-strategyproof mechanisms
that simultaneously satisfy other desirable prop-
erties, we introduce a new metric to quantify
the strategyproofness of a mechanism, based on
comparing the payoff distribution, given truth-
ful reports, against that of a strategyproof “ref-
erence” mechanism that solves a problem relax-
ation. Focusing on combinatorial exchanges, we
demonstrate that the metric is informative about
the eventual equilibrium, where simple regret-
based metrics are not, and can be used for online
selection of an effective mechanism.
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computational tractability [13]. In addition, there arers®
problems for which the design of a strategyproof mecha-
nism with desirable properties is unattainable with curren
theoretical techniques. For these reasons, it is often nec-
essary to adopt approximately strategyproof mechanisms,
and for this it is useful to have a metric to quantify the
degree of strategyproofness of a mechanism to guide the
design process.

A standard measure of approximate strategyproofnéss is
gret, namely the loss in utility to an agent from reporting its
true type compared to its best possible misreport, given re-
ports of other agents. Asistrategyproof mechanisis one

in which truthful reporting achieves within> 0 of the best
possible utility, for all possible reports of other agentsl a

all agent types [17]. This is meaningful whers small,

for example smaller than the cost an agent incurs in rea-
soning about how to manipulate, because it is reasonable
that agents will then behave truthfully. But, as the maxi-
mal regret gets large it is not clear that regret provides the
appropriate metric by which to quantify the degree of strat-
egyproofness of a mechanism or guide mechanism design.

Conceptually, one could imagine simply defining a metric
on the distance between equilibrium strategies and truthfu

Mechanism design addresses the problem of achieving d%'trategies. But this metric provides no guidance for how

_swable qutcomes n mu!tl-agent S.ySt.e.mS desplt_e prlvat?o design approximately strategyproof mechanisms. More-
information about valuations and individual self-intdres

. ) . o . ; over, we are interested in a metric that does not require
Mechanism design finds applications in societal ConteXt%olving for the equilibrium of a candidate mechanism, be-

(e.g., school and medical residents matching [1]) and busi

text d h i 9 h.Fause this will tend to be the bottleneck in computational
ness contexts eg, sponsored search auc |ons.[ D, w Ifpproaches to identifying good mechanisms. We intro-
providing a formal paradigm by which to coordinate the

. e duce as a metric theormalized Kullback-Lieber (KL) dis-
behavior of artificial agents (e.g., for task and resouree al

. ; tancebetween the distribution of payoffs in a mechanism
location). A central concept is that sfrategyproofness

. . . . Lo ; and a distribution induced by a strategyproof “reference”
is there a desirable mechanism in which it is a dominant- y ayp

o . ) ~“mechanism, where these payoffs (or utilities) are evalu-
strategy equilibrium for every agent to report its private i

; i it truthfullv? Strat p olif ated given truthful bids (i.e. out of equilibrium), and re-
ormation (ortypg truthiully? Sirategyproofness simpli €S stricted to agents affected by the outcome (either posjtive
participation and removes the need for counterspeculatio

Br negatively.) The metric requires that there exists d-stra
about the behavior of other agents. But strategyproofnes& 9 ) q

. . . gyproof reference mechanism for some natural relaxation
can be unachievable together with other desirable properss o problem.
ties. For example, strategyproofness can conflict withrothe
desired properties such as budget-balance [14], coadition In studying this KL-distance metric, we focus on mech-
stability or revenue properties [3], simple rules [9], andanism design for combinatorial exchanges (CEs), which



extend combinatorial auctions to allow for multiple buy- ods ofautomated mechanism desif, in which system-

ers and multiple sellers. The design of highly efficient, atic search is performed in the space of possible mechanism
strategyproof CEs remains an open problem in mechanismules, and especiallgmpirical mechanism desigh8, 19],
design' The Vickrey-Clarke-Groves mechanism is strate-in which one couples search through a parametrized mech-
gyproof and efficient, but runs at a deficit. This provides theanism space with an empirical methodology for solving the
reference mechanism. We evaluate the KL-distance metrimduced games.

and a number of regret-based metrics on a family of ap- . . . .
proximately strategyproof mechanisms that were proposeg A Heuristic Mechanism Design Paradigm

in Parkes et al. [14]. In providing experimental results, we . . .
[14]. In p g exp In the problem of mechanism design, there is a set of al-

need to adopt an approximate method to compute equilib- .
rium of different CE mechanisms because there is no Comt_ernsnvesr,:tl ﬁmd a ﬁst tOfva?erlitQ; f_n {tl’ N ,n}Ra;n(rd
putationally tractable method to compute exact Bayesian(-aac agent has a private valuation functig() € R fo

Nash equilibrium in CEs. For this, we compute restricted,eaf_h alternauvet_ In :[thedconftext 001; thtI)S tpaper, eacrl altevr\;
partially-symmetric equilibria. native represents a trade of goods between agents. We

consider here the standard setting of quasi-linear utility
The KL-distance metric has a significant and strongly posfunctions, where an agent’s utility (gayof) for alterna-
itive correlation with a parametrization of the amount by tive a and paymenp is u;(a,p) = v;(a) — p. A direct-
which the equilibrium deviates from truthful reports, and arevelation mechanism asks each agent to make a claim
strongly negative correlation with the allocative effiggn about its valuation, from which an alternatiy¢d) € A

in equilibrium. The metric identifies the Small rule from is picked based on claims= (¢, ...,%,) on valuations,
Parkes et al. [14] as the best mechanism, and it is inand paymentg;(¢) € R are collected from each agent. A
deed this rule that provides highest efficiency and least bidstrategyproofnechanism is one in which it is a dominant-
shaving in equilibrium. In testing the power of the metric strategy for each agent to report its true valuation, so that
for mechanism design, we show that the metric is effectivev; (f (v;, v_;)) —p; (vi, v_s) > v; (f (D5, v_3)) — ;s (D, v_4),

in guiding a search through a set of mechanisms and identfor all v;, all ;, and allv_; = (v1,..., ;1,11 .., Un)-

fying a highly efficient mechanism based only on observeq tivating th df tric t i
data. In closing, we discuss the implications of the met-,| motivating the need for a metric 1o quan ify approx-

ric for advancing a new paradigm of heuristic mechanismImate strategyprooiness, consider the following hewristi

- : approach to mechanism design: there is a space of non-
design and also present a number of open questions. ) .
9 P pendg strategyproof mechanismst, each of which has the same

Related Work. Schummer [17] was the first to consider  outcome rule and good properties when agents are truth-
strategyproof mechanisms and this approach was also coful, and with properties that degrade as agents becomes
sidered by Kothari et al. [8] in the design of multi-unit auc- less truthful in equilibrium. Given this set of mecha-
tions. In doing so, these authors advocatest-case regret nisms, adopt as the goal that of selecting the mechanism
as a metric of approximate strategyproofness, namely thin M that is maximally strategyproof. For example,
worst-case loss in utility from behaving truthfully giveth a these could be mechanisms in which outcome fifle) €
possible reports of other agents. Another notion of approxarg max,c4 ; vi(a) but vary in their payment rules, so
imate strategyproofness is that sifategyproof with high that if agents are truthful the mechanism is efficient; i.e.,
probability [2]. The aforementioned body of work is gener- maximizing the total value through its choice of alterna-
ally motivated by problems in which the approximation cantive. In doing so, we seek a metric on approximate strate-
be arbitrarily small. Alternatively, Parkes et al. [14] firs gyproofness that provides explicit design guidance bexaus
advocated the idea of defining a payment rule that tries tehe space of mechanisms may be too large to enumerate,
minimize the distance to the payments in the VCG mechaand works without computing the equilibrium of a candi-
nism, in settings such as CEs for which the VCG paymentslate mechanism because this is computationally expensive.

are unavailable because they run at a deficit. This approacﬁgI tandard answer would be t lect a mechanism that
has been adopted and expanded upon in the context of co . standard answer would be 1o select a mechanis a
minimizes the worst-casex postregret from behaving

binatorial auctions, where core constraints can often pre-

clude VCG payments [18.Our work also relates to meth- truthfully, acros's all agents apd across all instances. The
regret of agent when valuations are = (v1,...,v,)

— o s regret,(v) = maxg, (vi(f(05,0-0)) — pil0s,v_)) —

LIt is well known that no mechanism exists that is efficient, ¢ ‘ - - .
no deficit and individual rational [12]. But no “second best" (v,»(f(v,»_,v_i)) _pi(vi’v‘i))i Butis th'.s the right ar?swer?_
mechanism has been designed that maximizes expected efficien&)0€S this lead to a mechanism in which an agent's equilib-
while retaining incentive compatibility, individual-rationality and rium bids are closer to truthful, on average, than in therothe
no deficit properties.

2Budish [4] recently advocated “strategyproofness in a large-comes one of a continuum of agents with the same type. While a
market” as a criteria for selecting amongst two, non-strategyproofrery useful design criteria, this does not by itself meet our needs
mechanisms. This asks whether the mechanism will become stradf providing a metric with which to quantify approximate strate-
egyproof for a replica economy, in the limit as each agent begyproofness.



mechanisms ioM? In this paper, we propose a metric that anced. Conceptually, the payment rules all discount the
adopts a strategyprooéference mechanism*, and seeks amount an agent will pay relative to its reported valu-

a mechanism that induces payoffs that are close in distriation ©;(A*) for the selected trade. In the VCG mecha-
bution tom*. The reference mechanism will be outside of nism, this discount i€\, ;(0) = V*(v) — V*(9_;), but

M, and with the same outcome rule but a payment rule thain each of these new mechanisms the discounts are con-

makes the mechanism strategyproof. strained so tha} , A;(0) = V*(v), providing_, p;(0) =
. . > (0i(N) = Ay(0)) = V*(0) — V*(0) = 0 and no-deficit.
3 The Metric and the CE Environment The deviation from the payments of the VCG mechanism

o ] ) _ opens up the possibility that an agent can gain by deviat-
The metric is defined as a KL-distance between payoff dising from its truthful report. The regret of ageris exactly

tributions to agents in a mechan_is;mn = (f,p) an_d its regret; (5) = Ayeg.i — As(0), i.e. the amount by which the
reference, strategyproof mechanisni. For a particular  giscount is less than that in the VCG mechanism.

instance, letr™ (v) = (71 (v),...,m,(v)) define the pay-
off to each agent im, i.e. 7;(v) = v;(f(v)) — p;(v). Sim-  Each mechanism i adopts a different method to allo-
ilarly, let 7 (v) = (77 (v), ..., 7% (v)) define the payoffto ~ Cate the available surplus to agents. The mechanisms that

each agent in the reference mechanisth Letw € II ~ We consider areTwo Triangle, Threshold, Reverse, Large,
be a feasible joint payoff vector and 1&f™ (x), H* () Small, Fractional andEqual The details are presented in
be the joint distribution of payoffs under mechanism the Appendix. For now, we simply note that the Threshold
andm* respectively, as induced by a distribution on val- rule has been considered of particular interest because it d
uations. In general, we have in mind a metric defined adines payments that minimize the maximal regret to agents,
the multivariate KL-distance between these distributions 9iven the no-deficit constraint. Connecting back to the ear-
Joen H*(7) log(g;((:)) )dr. To keep things relatively sim-  lier nqt.at!on, we can also observe that the pa_w@(ﬁ;) to

ple, we will consider in this paper a projection of these29€nt ininstancev, and when agents are truthful, is simply
multi-dimensional distributions down to one-dimensignal ItS discountA; (v) while the payoff in the reference mech-
normalized payoff distributions where the normalizatien i 2MSM iSAvcg,i(v)-

based on a relevant statistic for a particular instance. Thg8.2 The KL-Distance Metric and Other Metrics

particular projection is specific to the CE environment.

. ) In the CE environment, we specialize the general multi-
3.1 Combinatorial Exchanges variate KL-distance to a KL-distance arormalizedpay-
. . . ) .. ... off, where the payoffr!*(v) to each agent in instanae
A CE is a market with multiple units of dissimilar, indivis- is normalized byV*(v), the total available surplus that

iblg items,G = {1,..., k}., and muIti!oIe agents, .eac_h of constrains the total available discounts provided to agent
which may be interested in both buying and selling items e, this, the normalized KL-distance metric for mecha-
Each agent has a valuatiom;(A;) € R on possible trades i< is defined as:

Ai = (Ni1, .. \ik), Where),; € Z specifies the number of ~

units of item; transferred to agent An efficient CE will I *(m)

identify the trade that maximizes the total value across all KLnorm(m) _/0 H*(m)log A () dr, (1)
feasible trades, subject to feasibility constraints ($ppp

demand). The Vickrey-Clarke-Groves (VCG) mechanismwhere H*(r) is the univariate distribution of the normal-

adopts the role of the reference mechanism by relaxing thgqq payoff 7 (v) under the reference mechanism given
no-deficit constraint. Given reported valuatianshe VCG Ve ()

selects the efficient trade* based on reports, to maximize the d|fstr|brlljt|on OE |n§tance§, arfﬂm(.w) 'S S|m|Iar]!y dhe—

the total value over all feasible trades (this problem can bdined for the mechanism being considered. We further re-
formulated and solved as a mixed-integer program). Lestrict these distributions to payoffs associated with &gen
V*(9) denote the total value (@urplug over all agents in that are active in the efficient trade. Note that the distri-

this trade. In the VCG mechanism, each agent’s payment iQUtion on payoffs is that ‘”d‘%?e‘?' by t!nm_e di_stribution
Preg.i(8) = B:(A*) — (V*(0) — V*(9_)), whereV*(i_;) on valuations, not by the equilibrium distribution. We also
vCcg,t - K3 —1 1 —1

consider an unnormalized KL-distance metric.

is the total reported value for the optimal trade without the

presence of agent The VCG mechanism is strategyproof, In addition, we adopt a number of regret-based metrics:
but runs at a deficit.

Recognizing this, Parkes et al. [14] introduced a num- Li(m) = / |7} (v), 7 (0)][1 g(v)dv — (2)
ber of approximately SP mechanisms, defined for CEs. : 7t (v) 7 ()

These will play the role of the design spat¢ in this pa- Linorm(m) :/H s | g(v)dy (3)
per. Each mechanism adopts the same allocation rule as v V() V¥ (v)

in VCG (and therefore has good properties when agents Lo(m) = / |7 (), 7T (0)]]2 g(v)do  (4)
are truthful) but defines payments that are exactly bal- v
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*(U) V* ) 0.1F Ir\ Vi
\ — Vv GEVFit
/ @) @)l g)de ©) e
e\
i(v) WT ) &oosf | [ 1
o.oaf‘! ‘\ 1
whereg(v) is the p.d.f. on valuation instances(for the 002t \\\ J
truthful distribution),* (v) andz’*(v) indicate the payoff H . .
vectors restricted to agents that are active in the tradg, an % 10 w2 s 4 s s 70

Li(-,+), La(+,+), Leo(+, -) are standard,; , L, and L, met-
rics. Note that although 6.‘” of the metrlcs_above are c_iefme_d Figure 1: Distribution of surplus and marginal-surplus
over a continuous valuation space, practical evaluatidin wi

require numerical integration over samples. 045

3.3 An Initial Evaluation in Three CE Scenarios 0.4 [_JHistogram
Pareto Fit
0.35H

We consider three CE generators, and thus three different ;| e
problem scenario$.Two are variations on the combinato- 025
rial auction generatorDecayandUniform) introduced in 5 02
Sandholm [16]. To make these work in an exchange set-
ting, we first fix the set of available goods and then dis-
tribute them to the selling agents, and the demand for them
among the buying agents. With these endowments and ‘de-
mand sets’ specified, we then choose negative seller (re- % 5 10 15 20 25 30 35
serve) values, and positive buyer values for XOR bundles vaue ®

of items restricted to these endowments and ‘demand sets’, Figure 2: Distribution of VCG payoffs
according to Sandholm'’s rules. The third is a new genera-

tor (Supe}, specifically designed for CEs, and with features
carefully crafted for super-additive valuations. Herergve
goodg € G is assigned a uniform random common value
¢(g) > 0, and a uniform random private value specific to

agenti, y;(g) > 0. Agenti then has a value for an indi- M =*" X -

vidual goodw; (¢) = Byi(g) + (1 — B)elg), for somes (.5 tEbug%Ql(iEV) p.dg. FlgL:jre 1dsff1ows mm? exgellfnt _flt of

in our experiments). The value to agenfor all bundles the ) t_at can be produced for DO an V2 via
maximum likelihood estimation (MLE). The VCG payoff

of items.S C G; is then i(g))7, for somey > 1, Lo S
whereG. is the endowge:rg]te/%?:rrsg?d set’ for a?entAs distribution is the distribution of exceedences {b%) over
. V*., and is well-modeled by &eneralized Pareto Distri-

above, this value forms a negative (reserve) value forrselle b—t' GPD). thouah thi del i all . di
and a positive value for buyefs. ution ( ), though this model is typically motivated in

cases of exceedences over a fixed threshold. The MLE fit
It is instructive to consider the distribution df*(v),  of the GPD is illustrated in Figure 2, along with the fit of
V*(v_;), and the VCG payofi/*(v) — V*(v_;) for trad-  a simple Exponential distribution (which is generalized by
ing agents that is induced by these generators. See Fighe GPD), indicating that the extra parameters of the GPD
ures 1 and 2 for th&uperdistribution (the others are qual- are improving the fit.

itatively similar). We can precisely identify the form of
these distributions. Fix instanee Consider the seA of
feasible trades in a given market instance. Each A
has a corresponding total valG& X, v), andV*(v) is by
definition the maximum over these. Thus tié distribu-

0.15

0.1

0.05

—— L ST .

tion is that of the extreme values of the underlying distri-
bution of V. Such extreme value distributions have been
extensively studied in the statistics literature, and can b
precisely modeled by th&eneralized Extreme Value Dis-

We can immediately consider how well each of the mech-
anisms performs at mimicking this distribution of payoffs.
Figure 3 shows an empirical c.d.f. of the payoff to trad-
ing agents under each of mechanism, when agents behave
truthfully (again for theSupergenerator, the others being
3please contact the authors to obtain our data sets and specifiémilar). One can visually confirm that the Small rule is the
parametrizations. one best tracking the VCG payoffs in distribution. Table 1
“We do not use CATS [10] for the generation of our data setsevaluates the normalized metrics on each mechanism, com-
because its algorithms are explicitly designed for auctions and 'buted over all three scenarios. Consistent with Figure 3, we

is not straightforward to extend its distributions in a way that ap- gan observe that Small has the small&Egtnorm metric.

propriately balances buyers and sellers. In the absence of su
reference distributions, we have opted for these simpler existingn the other hand, Threshold has the smallgstorm and

generators, coupled with our own new generator. L.norm (regret-based) metrics. Notice that thenorm



have negative values.) This simplification realizes a one-

Z: o ] dimensional, continuous strategy space.

o.7t,f" . We compute a more fine-grained equilibrium by also run-

06l . ning experiments in which we adopt two or three shave fac-
5 osf 7/ T ANGLE] tors. With multiple shave factors, we associate each agent

0.4} - - THRESHOLD | in an instance endogenously with a valuation class depend-

03 L TNERSE ing on its valuation function. For example, with three shave

02 ~ : e onaL ] factorsay, as, andas, we sort agent valuations into “low,”

0af LR “medium” and “high” valuation classes, with an agent in

% : 1 i P P each class associated with shave faetpra, andasz re-
Value ($) spectively. We then search for an equilibrium defined in

terms of these three parameters. To sort agent valuations,
we first draw a number of samples of otherwise unused

agents from the same distribution that defines the CE sce-
nario, and for each of these agents, we record the 95th per-
centile of value across the trades that define its valuation

function. An agent’s valuation class is identified by com-

Figure 3: Distribution of payoffs in each mechanism

Mechanism| KLnorm L;norm Lsnorm L.,norm
Two Trianglel 0.0735 0.5914 0.3170 0.1917
Threshold 0.0472 0.5914 0.2355 0.1016

Reverse 0.1251 0.5914 0.3066  0.2210 paring the value at the 95th percentile on the trades in its
Small 0.0452 05914 0.4208  0.3527 valuation with the sampled values, and assigning a class
Largg 0.0559 0.5914 03110  0.2070 according to placement in the lower, middle, or upper third
Fractional 0.0741 0.5914 0.2528 0.1513 (tritile) of this sampled distribution.

Equal 0.3043 0.8037 0.3727 0.2576

No Discount| 0.6372 15876 0.6679 0.4030 For any number of shave factors, our algorithm for find-
ing the equilibrium begins with provisional shave factors
Table 1: Metric value at truth averaged across all three CEay} (e.g., fork € {1,2,3}) set to 0. It then repeatedly
scenarios. Minimal metric values bold. generates a set of CE instances from the particular distri-
bution (Uniform, Decay or Super), and for each instance,
metric is identical across all rules except, No Discount an(igach agent is first p|aced into a valuation class when us-
Equal. This is because the other mechanisms always allang multiple shave factors. In each iteratiorof the al-
cate all available surplus as payoff to agents. gorithm, and for each agent a grid search is performed
4 Equilibrium Analysis on oz-val_ugs to find its best_—response valde while us-
ing provisionala-values assigned to the other agents. For
Computing the equilibrium of the various mechanismseaih+‘{aluat'9n class, the tprowsmn’ia,j aré thentupdated
presents a challenge because this is an infinite game of ISk := 0@} + (1 — 0)aj, wheref = .5 anda, is the
complete information, with a continuum of possible valua-M&an of the best response values in iterati@alculated
tions and thus possible agent strategies. The game also hig§ €ach agent associated with the classhe width of the
combinatorial structure. There are at present no tractabl@fd séarch in period+1 is chosen endogenously, with 10
methods to compute the exact Bayes-Nash equilibrium foPOINts covering a span ¢f;, —a|. Search stops when this
such problems. The state of the art approach is to searcf{Tor estimation falls below a fixed constant= 0.001.
for parametrized strategy profiles that constitute a retstli
equilibrium through iterated best-response dynamics§20]
This is the approach that we adopt here, with adaptive gridi.2 Equilibrium: Results
search to compute a best-response.

4.1 Computing Restricted Bayes-Nash Equilibrium Table 2 shows the results with one-dimensional and three-
dimensional strategy spaces (respectively “one class” and
One simple restriction that one could impose is that ev«three classes”), for all three generators. In the case of
ery agent shaves its valuation by > 0, and thus seek three classes, the reported shave factor is the averaggsacro
a symmetric Bayes-Nash equilibrium. In the context of{al,%’a:}}_ The best mechanisms in each case are in-
a CE, agents would report valuatiofis — aJv and (1 +  djcated inbold. Surprisingly, the Threshold mechanism,
a)v for buyers and sellers respectively (note that sellersyhich has some theoretical support in minimizing the
postregret across all these mechanisms, does not perform
times allocates an agent more payoff than the VCG payoff. nearly as well as the Small mechanism_either in terms qf
5An exact solver exists only for two-player games with one- the size of shave factor (close to zero indicates approxi-

dimensional private valuations, based on a piecewise-linear strafhate incentive-compatibility) or the resulting allocatif-
egy representation [15]. ficiency. Recall that the Small mechanism is also the one

5The L; norm metric differs for Equal only because it some-



One Equilibrium Class Three Equilibrium Classes
Shave Factor Efficiency (%) Shave Factor Efficiency (%)
Rule Dec. Uni. Sup.| Dec. Uni. Sup.||Dec. Uni. Sup.| Dec. Uni. Sup.
VCG 00 0.0 0.0/ 100 100 100 0.0 0.0 0.0f 100 100 100
Two Triangle|| 0.1 0.2 0.6/ 99.99 100 99.99 0.1 04 5.6/99.99 100 97.95
Threshold 12.0 28.7 10.799.09 97.43 98.01 14.6 27.2 11.293.64 81.09 89.74
Reverse 149 57.7 52.398.70 83.38 5152 13.0 65.8 57.698.99 77.30 56.08
Small 0.1 0.2 039999 100 100f 0.0 0.1 0.2/199.99 100 100
Large 26 23 9.8|99.96 99.99 98.26|| 2.8 2.9 67.1]|99.96 99.98 78.83
Fractional 712 71.1 53.059.39 67.34 49.07 62.7 819 62.037.12 63.09 56.77
Equal 754 77.6 5255196 55.76 51.01 62.2 78.3 66.8 33.35 54.21 52.19
No Discount || 75.6 76.0 53.2 51.56 59.01 48.23 62.3 80.9 724 34.15 50.11 4821

Table 2: Restricted Bayes-Nash equilibrium: Shave FactdrAdlocative Efficiency in Each Mechanism.

with the lowest KL-distance metrit. G 100

L I~
To understand the effect of the Small payment rule, which § %0 LR
allocates payment preferentially to agents with a small & ®°[ 1 "~ —vee
VCG payoff, we can study an individual agent's incentive = 40| ! x’;\_ 1T :':Z: \ TWOTRIANGLE
to deviate. Figure 4 shows the profit gained by a single F 200 e \1\\\ o LESEEEELD
agentin arepresentative single instance drawn frorsthe = o b~ Rt N B LARGE
per scenario, as the agent repovigs compared to truthvy E o0l /," N . H - - - SMALL
for its winning trade and O for all other trades, under each = i RS ool
of the mechanisms. The profit is normalized to its maximal < ~°[ R - - - NODISCOUNT
possible profit, i.e. its VCG profit, and the experiment con- § -60F !
siders only unilateral deviation by this agent with all athe % _80,"'
agents reporting truthfully. The agent in question has a :g 100 ‘ ‘

-20 -10 0

-30

large payoff under VCG, which the Large mechanism fully -
Reported value below truth (%): (Ve —Vr)/Vr

allocates. As the agent deviates he suffers a loss under the
Large mechanism. Under all the other mechanisms (except
VCG) there is at least some gain from deviation. Unlike
the other rules, though, the Small mechanism exhibits a flat
plateau once the agent deviates by a small amount. Thusiechanisms. While still a non-equilibrium analysis (other
the incentives to deviate significantly can be quite low un-agents are truthful), this is suggestive of the good equilib
der Small, even for agents whose payoff in VCG is quiterjum performance under Small.

large.

Figure 4: Profit gain by unilateral mis-report.

In determining a good strategy, an agent is in essence mak-
This analysis represents only a single agent in a single inng anex antetrade-off between potential gain from a suc-
stance. In order to get a more comprehensive picture Weessful manipulation and potential loss given an unsuecess
can average several thousand such single-instance trajecfu| manipulation. By further conditioning on those mis-
ries, as shown in Figure 5. Here we see that mis-reportingeports that are successful (i.e., when an agent still sjade
makes an agent strictly worse-off under VCG, as expectedand unsuccessful, we arrive at Figures 6 and 7. We see that
But importantly, we see that the Small mechanism provideSmall is near the bottom of the pack for both conditional
only a small expected gain from deviation, and the maxi-gain and conditional loss, indicating that success briats r
mal expected gain occurs with less shaving then the othejtively less gain while failure brings relatively more pain

"One interesting anomaly in the data is for Large between théhan n .other. mechanisms. In comparison, an unsuccess-
“one class” and “three class” analysis. With one class, a balanc&ul manipulation does not hurt an agent as much under the
must be made in the equilibrium between those agents with higirhreshold mechanism, contributing to its weaker equilib-
valuations (likely to receive their full discount without any shave rium performance.

under Large) vs. those with low valuations (unlikely to receive
any discount without shaving). In this case, the former constraindkemark. Unlike Small, the Threshold mechanism tends

the latter and agents choose not to shave much in equilibriumg allocate payoff to fewer agents, and with very few (if
But with three shave factors there is increased discrimination, angny) agents receiving their maximal payoff. This is driv-

the optimal shave for those with small valuations becomes very . o
extreme. This, coupled with the fact that there are large number9 the divergence from the VCG payoff distribution and

of small discounts relative to a few large discounts, decreases th@lSo this larger loss in payoff, conditioned on an unsucecess
efficiency of the Large rule in equilibrium. ful manipulation. By making the distribution on payoffs
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. 54 conditions (Significance at 0.05 level)
close to the reference, VCG mechanism, the Small mech-

anism makes the expected payoff, conditioned on success . .
and failure, both relatively close to the profile under VCG Ees (for 1, 2.and 3.shave factors.) T.h'.s provides 3 x 6 x 3
54 data points, with the average efficiency, average shave

compared to the other mechanism rules); i.e., close to zerp ; .
( P ) %ctor, and metric computed for each and enabling a corre-

for success and close to forfeiting the maximal payoff for ~ )
failure. Since the VCG payoff distribution is skewed such lation to be computed. The results are prese_nted in Table 3.
We only present results for normalized metrics throughout

that many agents have only small opportunities for gain

. o his section because they dominate in terms of statistical
see Figure 2), then many of these opportunities can be a&—. . . .
( 9 ) y bp significance We see that the KL-norm metric is negatively

dressed by the Small mechanism with the remaining oppor- . - .

tunities for gain entailing significant risk. corr'eilat.ed with efficiency and positively cor.related wf!llet .
equilibrium shave factor. In both cases this correlation is

4.3 Metric Analysis significant at the 0.05 level, whereas the correlation fa th

) ) ) ‘other, regret-based metrics is not significant.
In this section we adopt the correlation between each metric

and the equilibrium shave factor and efficiency as a meaf\lthough of secondary importance, we can also consider
sure of the informativeness of the metric in quantifying thethe informativeness of each metricvalidating how close
degree of strategyproofness of a mechanism. The correld? truthful an equilibrium is, based only on observed datain
tion is determined over a data set of several thousand infhe equilibrium. This is interesting, for example, in ewthu
stances. For each generator (Uniform, Decay and Supef’)‘g the degree of strategyproofness of a mechanism based

there are 6 mechanisfand 3 different equilibrium analy- only on observed, equilibrium behavior. The correlation
data, evaluated over the same 54 conditions but now in
8We drop Equal, No Discount and VCG from this correlation equilibrium for each mechanism, is presented in Table 4.

analysis; No Discount and VCG are not in the candidate clas$Ve find that theL ; norm is more informative, in equilib-
of mechanisms, and Equal is outside the class we are especially
interested in because it sometimes allocates an agent more thés VCG payoff.



| Correlation with Efficiency in Equilibrium | 5 Online Mechanism Selection

Metric Corr. p-value  Significant?
KLnorm | -0.4989 1.2292e-04 Y In this section, we adopt a straw-man experiment to un-
Lynorm | -0.6460 1.3269e-07 Y derstand the effectiveness of the various metrics in guid-
Lynorm | -0.5119 7.6150e-05 Y ing an online search for the best mechanism, using only
Lognorm | -0.3762  0.0051 Y information that is available to an observer in equilibrium

| Correlation with Mean Shave in Equilibrium | play. Note that a simpler question about heuristic design
Metric Corr. p-value  Significant? was already answered earlier: the Small mechanism has
KLnorm | 0.2702 0.0482 Y the bestK'Lnorm metric, and thus would be adopted as the
L;norm | 0.5870 3.0820e-06 Y best mechanism design under this lens. But here we ask a
Lonorm | 0.4615 4.4464e-04 Y different question: given observed equilibrium play, ie th
Loonorm | 0.3738 0.0054 Y KLnorm metric effective in suggesting a new mechanism

to switch to? The set-up is one of online search. We do not
Table 4: Correlation between metrics evaluated at equilibget to evaluate the counterfactual equilibrium that would
rium and both the efficiency and the amount of shavingexist under each candidate equilibrium, nor the true, under
considering all 54 conditions (Significance at 0.05 level) lying efficiency of an equilibrium. The only data that is
available is based on observing the equilibrium bids, allo-
cations and payments in a current mechanism.

Mechanism| KLnorm L;norm Lsnorm Lsnorm . . . . .

Two Triangle 0.0820 0.6096 03271  0.1976 The online search is instantiated for a particular metrat an
Threshold 0.0556 0.6991 0 2984 0 i367 proceeds as follows. The search takes place over a se-
Reverse 0'1421 0'9415 64896 '03104 guence of epochs, with a single mechanism deployed in
Small 0'0452 0'5903 0 4208 0 3'534 each epoch and an epoch consisting of a fixed humber of
Large 0.0668 0.8269 '04494 0 2916 CE instances. The search is initialized somehow (here we
Fra?;tional 0'1303 1.1456 0.5683 0'3477 always initialize to the No Discount mechanism.) An epoch
Equal 0'2033 1.3758 0'7291 0'4919 provides two kinds of data. For the mechanism that is used,
N?) Discount 0'3114 1.9962 1'0311 0.6721 it provides distributional information about the equilion

bids and the metric can be evaluated on the (revealed) pay-
Table 5: Metric value at equil. averaged across all threffS received by agents. But it is also possible to take the
scenarios and equil. classes. Minimal valuelard. same distribution on bids, and evaluate the metric for each
of the other available mechanisms. That is, take the bids
as fixed and simply evaluate the metric on the payoffs that
would be induced by the other mechanisms (and ignoring
rium, than theKLnorm and other metrics. A strong, and that the input is actually the equilibrium for the current
significant correlation is also found for thg norm metric.  mechanism, and not the truthful distribution.)

The L, norm measures the average (normalized) regret OfAt the end of each epoch, we evaluate each metric based on

an age_nt. Our_hypothgss for Why the average equmbnun}he data collected in the equilibrium of the current mecha-
regret is effective in this regard, is that the further a mech _. ; . . :
anism is from beina strateavoroof. the further agents will™S™ and switch to the mechanism with the lowest metric.
ISm | Ing strategyproat, fhe 1u 9 "in evaluating the metrics, we retain data from previous runs
deviate from truthful bidding in equilibrium, and the more : .
of the same mechanism as adopted in the current epoch,

?'Stakesrﬁztﬁgsggzzﬁn\g't" ?g\‘iilijr.eNagg,athu%?’ dtggt :]hie_enabling ever more accurate metrics to be calculated. The
1norm . P 9 gr .rfnly caveat is that we check for cycles and break them as
: llows: e.g. we are presentl ing mechanism
equilibrium. In fact, for a fixed distribution on agent re- OlloWs. €.g., SUppose We are prese jty using mechanis
: A and the metric over the data undérindicates mecha-
ports (e.g., at truth) almost all of the mechanisms have the . .
samel, metrics (see Table 1) hism B to be best, bu3 has been selected in the past and
pnorm ' the data under mechanisi indicates that mechanist
In Table 5 we present the various metrics evaluated at this best. If such a cycle is found, then the online search pro-
equilibrium of each mechanism over the 54 conditions.ceeds by evaluating the metric ghand B over thecom-
Here, it is apparent that Small is most effective at minimiz-bineddata set from running botA and B in the past and
ing L;norm, i.e., in minimizing the average regret faced selecting the best.
by agents in equilibrium. In contrast, and counter to ac-_. . . .
. L . Figure 8 shows the results of running this algorithm for
cepted wisdom, the Threshold rule (which is designed to 9 9 9

o : . : each of the three different CE scenarios and for both 1
minimize maximal regret given reports) has higher average

regret in equilibrium. The Threshold rule is most effective and 3 agent classes in defining the simulated equilibrium.

A . ) We compare the performance of the algorithm with the
in minimizing the Ly norm and L., norm metrics, which .

. iy i . . KLnorm and L;norm (average regret) metrics. Each
is perhaps unsurprising given its design.
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Figure 8: Online selection: choosing the mechanism algmiitally. The labels along the x-axis indicate the rule emos
in a given epoch under th€Lnorm and L ; norm rules respectively, using the abbreviations defined in thpehdix.

graph shows the epoch on the x-axis and the efficiencyer (closer to truthful) equilibrium while also minimizing

of the chosen rule as a fraction of the ideal rule (Small)average regret in equilibrium. In the context of CEs, our
on the y-axis; the epoch size was set to 100 for these exesults establish that by seeking to match the payoffs in a
periments. Online search with théLnorm metric very  reference mechanism in distribution, a mechanism designer
quickly chooses a good rule, and with performance thatan achieve a mechanism that is maximally strategyproofin
tends to dominate that of search with thenorm met-  the sense of minimizing the amount by which agents will
ric. Performance of thd.s,norm and Lo.norm is nearly  deviate from truthful bidding in equilibrium.

identical to that ofZ ; norm, and is thus omitted for clarity. " . .
. . A number of opportunities exist for future work. It will
The online search performs least well in the Super scenarig . . . : .
e interesting to try to directly exploit th€Lnorm metric

r . . . .-
Large based on the data available after epoch 3 and thgr?r thelow-level_de5|gn of mechanisms |n_the CI_E_domaln,

. e L i.e., look to design payment rules that will explicitly seek
fails to return. From within its own equilibrium the Large

rule looks promising and the ideal Small rule is extremelya distribution on payments (and thus payoffs) that closely

. i N . . approximates that of the VCG mechanism? Second, we
different in effect and distribution— making escaping the . . ) .
: e can consider different domains for which the VCG mech-
Large local-maxima difficult.

anism still provides the strategyproof benchmark, such as
6 Conclusions and Future Work combinatorial auctions with core constraints or sponsored

search with constraints that mandate “simple” payment
The KL-distance metric is defined on the difference be-rules. Third, we would like to consider a mechanism design
tween a distribution on agent payoffs in a mechanism angroblem in which the VCG mechanism does not provide
that under a reference, strategyproof mechanism, both evathe strategyproof benchmark, for example in application to
uated with respect to the true distribution on agent valuredistribution mechanisms [5]. We can also look to couple
ations. This metric is shown to be more informative, in the framework with approximation algorithms; i.e., the mo-
terms of correlating with the deviation from truthful bid- tivation for the design question here was to circumvent an
ding in equilibrium, than other regret-based metrics. As ampossibility result, but what if the motivation was compu-
consequence, we also observe that minimizing maxéral tational intractability? We should elaborate on our hypoth
postregret (given truthful bids) does not necessarily leadesis that alignment with the payoff distributions in a ref-
to optimal designs; e.g., the Threshold mechanism is desrence mechanism is useful because it selects mechanisms
signed this way, but the Small mechanism generates a bet-



that for a large number of agents provide no advantage to[4] E. Budish. The combinatorial assignment problem: Approx-

deviation while leaving opportunities for only a small num-
ber of agents, and thus a risky strategic proposition. Binal
we propose to directly compute the KL-distance metrics on [5]

the multivariate payoff distributions.
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Appendix: CE Mechanisms

The CE mechanisms that we study are all from Parkes

al. [14], except fofTwo Triangle(introduced here):

strategyproof and tractable multi-unit auction®ecision
Support System89:105-121, 2005.

[9] S.Lahaie, D. M. Pennock, A. Saberi, and R. V. Vohra. Spon-

sored search auctions. In Cramton et al. [7].

K. Leyton-Brown and Y. Shoham. A test-suite for combina-
torial auctions. In Cramton et al. [7], chapter 18.

(E)qual: Simply split the available surplus equally among [11] P. Milgrom and R. Day. Core-selecting auctioristerna-

the trading agents.

(F)ractional Allocate surplus in proportion to the VCG [12]

discounts.

(S)mall Allocate surplus from smallesh,., ; to largest,
never exceedinghycg ;-

(L)arge Allocate surplus from largesh,., ; to smallest,
never exceeding g ;.

(T)hreshold Allocate surplus to minimize the maximum

Aveg,i — Ag, subjecttad; < Ay, i, Vi€ N.

(R)everse Allocate surplus to maximize the minimum

Ayegi — Ay, subject toA; < Ay, Vi € N (and
allocating all of the surplus).

(W)Two Triangle Allocate half of the surplus by Thresh-

old and then run Small with the residual.

TheNo Discountmechanism simply has each agent pay its
reported valuation for the trade. The Equal mechanism i
the only rule in which an agent’s discount may be greate
than in the VCG mechanism. Each of the mechanisms were
designed to minimize different distance metrics between al
located payoffs (or discounts) and VCG payoffs. For exam
ple, the Threshold rule minimizes the maximal difference

to VCG payoffs across all agents.

References

[1] A. Abdulkadiroglu, P. A. Pathak, and A. E. Roth. The New

York City high school matchAmerican Economic Review,
Papers and Proceeding85:364—-367, 2005.

[2] A. Archer, C. Papadimitriou, K. Talwar, and E. Tardos. An
approximate truthful mechanism for combinatorial auctions

with single parameter agents. Rroc. of the 14th ACM-
SIAM Symposium on Discrete Algorithnmages 205-214,
2003.

[3] L. M. Ausubel and P. Milgrom. The lovely but lonely Vick-
rey auction. In Cramton et al. [7], chapter 1.

tional Journal of Game Theoy6:393—-407, 2008.

R. B. Myerson and M. A. Satterthwaite. Efficient mecha-
nisms for bilateral trading.Journal of Economic Theory
28:265-281, 1983.

N. Nisan and A. Ronen. Computationally feasible VCG
mechanisms. IProc. of the 2nd ACM Conf. on Electronic
Commerce (EC-0Qpages 242-252, 2000.

D. C. Parkes, J. R. Kalagnanam, and M. Eso. Achieving
budget-balance with Vickrey-based payment schemes in ex-
changes. IrProc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI-01)pages 1161-1168, 2001.

D. M. Reeves and M. P. Wellman. Computing best-response
strategies in infinite games of incomplete information. In
Proc. of the 20th Conf. on Uncertainty in Artificial Intelli-
gence (UAI-04)pages 470-478, 2004.

T. Sandholm. Algorithm for optimal winner determination
in combinatorial auctions. Artificial Intelligence 135(1-
2):1-54, 2002.

J. Schummer. Almost dominant strategy implementation.
Technical report, MEDS Department, Kellogg Graduate
School of Management, 2001.

Y. Vorobeychik, C. Kiekintveld, and M. P. Wellman. Em-
pirical mechanism design: Methods, with application to a
supply chain scenario. IRroc. of the 7th ACM Conf. on
Electronic Commerce (EC-0f)ages 306-315, 2006.

Y. Vorobeychik, D. M. Reeves, and M. P. Wellman. Con-
strained automated mechanism design for infinite games of
incomplete information. IfProc. of the 23rd Conf. on Un-
certainty in Artificial Intelligence (UAI-08)2007.

Y. Vorobeychik and M. P. Wellman. Stochastic search meth-
ods for Nash equilibrium approximation in simulation-based
games. InProc. of the 7th Int. Joint Conf. on Autonomous
Agents and Multi Agent Systems (AAMAS-Q288.



