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Abstract

The problem of multilabel classification when
the labels are related through a hierarchical
categorization scheme occurs in many appli-
cation domains such as computational biol-
ogy. For example, this problem arises nat-
urally when trying to automatically assign
gene function using a controlled vocabular-
ies like Gene Ontology. However, most exist-
ing approaches for predicting gene functions
solve independent classification problems to
predict genes that are involved in a given
function category, independently of the rest.
Here, we propose two simple methods for in-
corporating information about the hierarchi-
cal nature of the categorization scheme. In
the first method, we use information about
a gene’s previous annotation to set an initial
prior on its label. In a second approach, we
extend a graph-based semi-supervised learn-
ing algorithm for predicting gene function in
a hierarchy. We show that we can efficiently
solve this problem by solving a linear system
of equations. We compare these approaches
with a previous label reconciliation-based ap-
proach. Results show that using the hierar-
chy information directly, compared to using
reconciliation methods, improves gene func-
tion prediction.

1 Introduction

We are interested in the problem of multilabel classi-
fication when the labels are related through a hierar-
chical categorization scheme and the input data is rep-
resented as a similarity metric between objects. This
problem arises naturally when trying to automatically
assign gene function, using controlled vocabularies like
Gene Ontology (GO) (Ashburner et al., 2000), En-

zyme Commission (EC) number (Bairoch, 2000), and
Structural Classification of Protein (SCOP) categories
(Murzin et al., 1995). The hierarchical multilabel clas-
sification problem, as we have posed it, arises in other
application domains including automatic image seg-
mentation and automatic web-page annotation.

In the domain of gene and protein function predic-
tion, the input data is most naturally represented us-
ing a network whose nodes represent genes (or pro-
teins) and whose edges are positively weighted accord-
ing to the biological evidence for shared function of
the connected genes. Such networks, which are called
functional association or function linkage networks,
can be derived from a variety of genomics and pro-
teomics data sources, including gene expression and
genetic interaction data, by using an appropriate sim-
ilarity metric. For example, Pearson correlation coeffi-
cient is often used to measure similarity between gene
expression profiles.

Although genes have multiple functions, existing ap-
proaches for predicting gene function typically solve a
binary classification problem to identify positive genes
for each function category independently (Pavlidis
et al., 2002; von Mering et al., 2003; Lanckriet et al.,
2004; Tsuda et al., 2005; Myers et al., 2005; Mostafavi
et al., 2008). However, hierarchical gene classification
schemes, such as GO, organize gene function categories
as a directed acyclic graph (DAG) in which categories
describing broader functions (e.g. eye development)
are ancestors of those describing more specific func-
tions (e.g. eye photoreceptor cell differentiation). An-
notations, i.e., assignments of genes to a given cate-
gory, satisfy the “true path” rule: genes annotated to
a given category are also assigned to all of its ances-
tors; for example, an annotation in the category pho-
toreceptor cell differentiation implies annotation in eye
development.

When making an annotation, curators place genes in
the most specific category supported by the available
data. Often genes are annotated in internal nodes of



the DAG because there is insufficient evidence to an-
notate genes in the most specific, i.e., leaf, categories.
For example, a mouse gene can be annotated as being
involved in development if mice with defective copies of
that gene die as embryos. Further investigations may
determine whether the gene functions in eye, heart, or
brain development, warranting a more specific anno-
tation. These internal node annotations can provide
helpful hints when classifying genes in descendent cat-
egories, so long as the classification algorithm incorpo-
rates prior knowledge about the hierarchy.

Here, we introduce two new classification methods that
leverage DAG-based categorization hierarchies. Both
of our algorithms extend the Gaussian random fields
(GRF) algorithm (Zhou et al., 2004; Zhu et al., 2003).
Our interest in this algorithm stems from its success
at predicting gene function compared with other bi-
nary and hierarchy-based classification schemes (Pena-
Castillo et al., 2008; Mostafavi et al., 2008; Tsuda
et al., 2005). Intuitively, the GRF algorithm takes
as input a similarity network (here a functional link-
age network) and a set of real-valued label biases and
assigns real-valued discriminant scores to each node;
these scores are assigned so that the linked nodes have
similar discriminant scores and the discriminant score
of each node is not too different from its initial la-
bel bias. Our first method, which we call Hierarchi-
cal label propagation (HLProp), replicates the simi-
larity network for each category and then links the
nodes representing the same gene in parent and child
categories, thus ensuring that the discriminant scores
of a gene in related function categories also remain
close. By applying the GRF algorithm to this new
(much larger though sparsely-connected) network, we
can perform multilabel classification efficiently by solv-
ing a linear system of equations. We also describe a
second method, Hierarchical label bias (HLBias), that
uses the GO hierarchy to set label biases of genes with
annotations in internal category nodes. This second
approach builds on the previous work of (Eisner et al.,
2005) which used the structure of the GO hierarchy
to define positive and negative examples for a given
category of interest.

In Section 3, we briefly review the GeneMANIA ver-
sion of the GRF algorithm (Mostafavi et al., 2008);
show the relationship between GRF label propagation
and Gaussian inference; and then use that relationship
to justify our two extensions: HLBias and HLProp. In
Sections 4 and 5, we compare these two methods, and
two simplifications of HLProp, a reconciliation method
called Isotonic Regression (Obozinski et al., 2008), and
unaugmented binary classification using GeneMANIA
GRF (Mostafavi et al., 2008). We evaluate perfor-
mance in two settings, test and novel settings, using

the data from the MouseFunc challenge (Pena-Castillo
et al., 2008). The test setting evaluates each classifier
in a cross-validation framework in which the GO an-
notations of test genes are completely hidden. The
novel setting evaluates the performance in the task of
predicting new annotations given the state of the GO
annotation database from the previous year. Many an-
notations in the updated GO database are refinements
of pre-existing internal node annotations.

2 Previous Work

To date, most classification algorithms that make use
of the GO hierarchy have built on top of binary classi-
fication schemes; standard structured output classifi-
cation algorithms (Taskar et al., 2003) are difficult to
employ here due to the size the classification problem
and the non-trivial tree-width of the GO hierarchy.
Augmented binary classification schemes include cas-
caded classification (Kiritchenko et al., 2004) which
trains one binary classifier for each category to pre-
dict whether annotation in the child category is war-
ranted given annotation in the parent category (or cat-
egories). Annotation predictions are made by query-
ing classifiers in a cascade from the root down. An
alternative approach is to independently train binary
classifiers for each category and then to reconcile their
predictions so that the true path rule is enforced. For
example, (Barutcuoglu et al., 2008) reconciled predic-
tions of binary SVMs for 100 GO categories (a subset
of about 2,000 well-annotated GO categories) by using
a Bayesian network to model the GO hierarchy over
the considered categories, (Obozinski et al., 2008) ex-
tended this approach to the entire GO hierarchy using
approximate inference.

Obozinski and colleagues (Obozinski et al., 2008)
compared ten reconciliation methods including rec-
onciliation with a Bayesian networks (as done in
(Barutcuoglu et al., 2008)), Isotonic Regression, and a
cascade of classifiers approach (Cascade Logistics Re-
gression) on the MouseFunc benchmark. Surprisingly,
many reconciliation methods did not significantly im-
prove prediction accuracy, however, the performance
of Isotonic Regression was better than that of Cascade
Logistic Regression and other reconcilation methods.
As such, in this report, we restrict our comparisons to
Isotonic Regression. Other hierarchy-aware gene func-
tion prediction schemes that have only been applied
to tree-structured hierarchies, e.g. (Shahbaba & Neal,
2006), will not be considered here.



3 Algorithm

We assume that we are given as input a weighted, undi-
rected network represented as a positive, symmetric
affinity matrix W = WT, wij ≥ 0, where wij indi-
cates the strength of the evidence of co-functionality
between genes i and j; a classification hierarchy over d
categories denoted by Hd×d, where hmc = 1 indicates
that category c is a child of category of m; and a label
bias matrix Y = [~y1, ..., ~yd], where ~yc ∈ {+1, k,−1}n×1

consists of the label biases of all genes in the category
c. As we will show later, the parameter k is set to a
scalar between -1 and +1 and reflects our prior bias
on the mean of the labels of unlabeled genes. We con-
sider a transductive setting, i.e., we assume that all
input vectors are available during training; this is a
natural assumption since the known gene complement
of genomes is relatively stable.

Below, we first describe how to predict gene function
using the GRF algorithm; we then show how to use the
GO hierarchy to derive more informative label biases.
Next, we show how to extend GRF when a classifica-
tion hierarchy is available. Finally, we describe other
approaches for making gene function predictions with
a classification hierarchy.

3.1 Predicting a single gene function

To predict gene function, we use the Gaussian random
fields algorithm (Zhu et al., 2003; Zhou et al., 2004) to
assign a discriminant score fi ∈ [−1, 1] to each node
(protein) i in the network. These discriminant scores
can then be thresholded to classify the genes. Below,
we write the Gaussian random fields algorithm in the
following general form:

~f∗ = arg min
~f

n∑
i=1

σi(yi − fi)2 +
n∑

i,j=1

wij(fi − fj)2

= arg min
~f

(~f − ~y)TΣ(~f − ~y) + ~fL~f

= (Σ + L)−1Σ~y (1)

where ~σ = [σ1, ..., σn]T are model parameters, Σ is
a diagonal matrix with Σii = σi, L = D − W is
the graph Laplacian and D is a diagonal matrix with
Dii =

∑
j wij . The above objective ensures that the

discriminant scores remain close to their initial labels
(first term in (1)) and that the discriminant scores of
linked genes (as indicated by wij > 0) are similar to
each other (second term in (1)).

To ensure that Σ + L is invertible, we can set σi > 0
and thus ensure that Σ + L is diagonally dominant.
However, to solve for ~f , we only need to solve a linear

system of equations (Σ + L)~f = Σ−1~y, which we can
do with various existing fast iterative solvers (Nocedal
& Wright, 2006). Here, we use the conjugate gradient
(CG) algorithm which is well-suited to this problem
because our coefficient matrix is very sparse and the
CG iterations only require us to take matrix-vector
products with the coefficient matrix.

The solution to (1) can also be interpreted as the max-
imum a posteriori (MAP) estimate of ~f , where the ob-
servations ~y ∼ N(~f,Σ−1) with a prior on ~f , namely
~f ∼ N(~0, L−1) where N(~µ,K) is the normal distribu-
tion with mean ~µ and covariance matrix K (Shental
et al., 2008).

This relationship suggests that the label bias yi can
be viewed as a noisy estimate of a soft label fi with
the regularization parameter σi as the precision of the
estimate and the weights wij as inverse prior covari-
ance between fi and fj . This interpretation suggests
that a node’s label bias should reflect our prior beliefs
about its label. We have previously shown (Mostafavi
et al., 2008) in unbalanced problems, we can achieve a
large gain in classification performance by setting the
label bias k of unlabeled nodes to be the k = n+−n−

n++n− ,
the mean of the labels of the labelled nodes. In the
following section, we describe how we use the GO hi-
erarchy to set the label bias for nodes which we have
previously labelled as negative.

3.2 Hierarchical label bias

In Hierarchical label bias (HLBias), we use the GO
hierarchy directly to set the initial label bias of non-
positive genes. HLBias builds on the previous work of
(King et al., 2003) and (Eisner et al., 2005). In par-
ticular, King and colleagues (King et al., 2003) used
a gene’s annotations as a feature vector for predicting
additional annotations for the given gene. Eisner and
colleagues (Eisner et al., 2005), used the structure of
the GO hierarchy to define appropriate negative exam-
ples for predicting a given gene function: they used as
negatives all genes with initial annotation (i.e., before
calculating the transitive closure using the true path
rule) in neither descendant nor ancestral categories.

In our approach, we use a gene’s previous annotations
to estimate our prior bias that it will be annotated to
a given category of interest. To do so, when predict-
ing category c, we first use as negatives all genes that
are annotated in any sibling category of c. We assign
this negative label because genes are rarely annotated
in more than one child of the same parent category.
For other genes i with an annotation in an ancestral
category a of c, we set yic = 2 × n+

ac

n+
a
− 1 where n+

a

is the number of positive examples in category a and



n+
ac is the number of positive examples in category a

that were also annotated in category c; this initial la-
bel bias is proportional to the probability of a gene
being annotated to category c given its annotation in
category a. For a gene i with multiple annotations, we
set yic to its mean value. Having set these label biases,
we then solve for discriminant values independently.

3.3 Hierarchical label propagation

Given a matrix of label biases Yn×d and a hierarchical
classification scheme represented by Hd×d, we solve for
discriminant values for all d classes simultaneously. To
do so, we solve the following problem:

F ∗ = arg min
fic

n∑
i

d∑
c

σi(yic − fic)2 + (2)

d∑
c

n∑
i,j

wij(fic − fjc)2 + λ

n∑
i

d∑
c,m

hmc(fim − fic)2

where F = [~f1, ..., ~fd] and hmc denotes the relation-
ship between category m and c, and λ, σi’s are the
regularization constants. Without the third term (by
setting λ = 0), equation (2) corresponds to solving d
independent binary classification problems. The third
term encourages the discriminant values of a gene in
two related function categories to be similar to each
other (see Figure 1 for an example).

In this work, we use the GO hierarchy to define H.
GO is a DAG (directed acyclic graph), however, as we
will discuss later, to ensure that problem (2) is convex,
we treat GO as an undirected graph. In particular,
hcm ∈ {0,+1} represent the parent child relationships
in GO: we set hcm = hmc = 1 if m is a parent of c in
the GO hierarchy and 0 otherwise. In addition, in our
experiments we set λ and each σi to a fixed value of
1 and so we drop these constants from our subsequent
equations.

3.3.1 Optimization

We can solve for F ∗ by solving the following problem:

F ∗ = arg min
F

trace(FTF − 2FTY )

+ trace(FTLF ) + trace(FGFT) (3)

where G is the graph Laplacian of H, G = V −H, V =
diag(vcc), and vcc =

∑d
m hmc.

Differentiating equation (3) with respect to F , we get
the matrix equation (I + L)F + FG = Y . Equiva-
lently, we can find F by solving a large sparse linear
system: A(vec(F )) = vec(Y ), where vec(Y ) is an op-
erator that stacks the columns of Y atop of each other,

Lens 
development: y3

h2,4

Retinal 
development: y4

Eye 
development: y2

yi,1 
Sensory organ 

development: y1

fj,4

Sensory organ 
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development: y2

Lens 
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development: y4

Gene Ontology 
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Figure 1: A graphical example of our model. On the
left figure, there are four identical networks over four
genes (nodes); the association between different genes
is shown in black edges. The color of the smaller nodes
attached to each gene represents the initial label of
the gene. If we wish to predict which genes are in-
volved in eye development, we need to consider other
related categories (as shown on the right). In our mod-
ification, we introduce an edge between the same gene
(blue edges) in the different networks (in this figure, we
have only shown blue edges for one gene); these edges
will encourage the discriminant value of the same gene
(depicted as the color of the bigger nodes) in related
categories to be similar.

A(n×d)×(n×d) = (Id×d ⊗ (I + L) + G ⊗ In×n), and ⊗
denotes the Kronecker matrix product. As an exam-
ple, the matrix A that corresponds to the example in
Figure 1 can be represented as:

A =


(2I + L) −I 0 0
−I (3I + L) −I −I
0 −I (2I + L) 0
0 −I 0 (2I + L)


In general, A can be represented as a block matrix with
diagonal blocks Aii = (I +L+ viiI) and non-diagonal
blocks −hijI.

When H is symmetric, then A is also symmetric. Fur-
thermore, since A is diagonally dominant with positive
diagonals, A is symmetric positive definite (SPD) and
thus invertible. However, with large d (number of gene
function categories) and n (number of genes), con-
structing A may be infeasible. Instead, we can solve
for the ~fc’s iteratively: given all ~fc’s for c 6= m, we can
solve for ~fm by solving the system of linear equations:
(I + L+ vmmI)~fm =

∑d
c hcm

~fm + ~ym. In our setting,
problem (3) is convex and we can calculate F ∗ by it-
eratively updating ~fm’s; we have empirically observed
that we need 10 or fewer iterations to solve each ~f∗m
when there are approximately 50 GO categories that
are related to each other.



3.4 Other approaches for using the GO
hierarchy

Here, we compare gene function prediction using
HLBias, HLProp, two heuristics approaches based on
HLProp (Down- and Up- propagation), and Isotonic
regression, a method for reconciling the predictions of
independent classifiers to satisfy the true-path rule.

Down- or Up-propagation. Both of our heuristics are
inspired by the observation that if the classification hi-
erarchy were a polytree, then we would be able to solve
for F* using a belief propagation-like message passing
algorithm which passes a single message in each di-
rection along parent and child category link and these
messages are used to calculate the label biases for the
message recipient. In Up-progation, these messages
are only passed from child categories to parent cat-
egories and in Down-propagation, messages are only
passed from parents to their children. In particular, in
Down-propagation, we first calculate ~f∗r , the vector of
discriminant scores for genes in the root category using
equation (1), then the root passes ~f∗r as a message to
each of its child categories c who set their label biases
to be ~yc + ~f∗r , where ~yc is the vector of initial label
biases for category c. We then apply this procedure
recursively from parent to child, summing together all
parent messages before calculating label biases when-
ever a node has multiple parents. Up-propagation is
similar though messages are passed from child nodes
to parent nodes.

Isotonic Regression (IR). Given a set of indepen-
dent predictions for a gene i in d categories ~xi =
[x1, ..., xd], xc ∈ <, IR (Barlow et al., 1972) solves the
following problem:

arg min
zc

d∑
c

(xc − zc)2qc

subject to zm ≥ zc ∀(m, c) ∈ H

where qc’s are the parameters. We apply IR to the
discriminant values obtained using Gaussian random
fields algorithm to each function category indepen-
dently. In our experiment, as done in (Obozinski et al.,
2008), we set qc = 1 for c = 1, ..., d and solve IR heuris-
tically, using the generalized PAV algorithm (GPAV)
(Burdakov et al., 2006).

4 Methods

Regularization parameters In our experiments, we set
all of the precisions σi = 1, i ∈ {1, ..., n}, i.e. Σ = I
and we set the regularization constant in equation (2)
to λ = 1.

Benchmark data We use the mouse benchmark data
of (Pena-Castillo et al., 2008) which consists of ten
genomics and proteomics datasets. We first represent
each data source as a similarity network using Pearson
correlation coefficient (r) and sparsify each network by
setting to zero any interaction that is not among the
top 50 highest r values for either gene. To ensure that
all interactions are positive (i.e. wij ≥ 0), we only
consider positive interactions (r > 0) and set to zero
all the negative interactions. We normalize each net-
work: W̃ = D−1/2WD−1/2. We then combine all the
networks, by simply adding them together to obtain a
single functional linkage network and re-normalize this
composite network.

Gene Ontology To evaluate gene function prediction
we use GO function categories for M. musculus. We
use the true-path rule to associate each gene with all
of its functions, i.e. if a gene is annotated in a child
category, we consider it to be annotated in all of its
ancestor categories. In addition, we remove all anno-
tations that were only supported with “inferred from
electronic annotation” (IEA) evidence code; IEA an-
notations are the only annotations made based on pre-
vious computational predictions which have not been
reviewed by a curator (Ashburner et al., 2000).

Evaluation As in (Pena-Castillo et al., 2008), we eval-
uate our predictions based on two sets of genes: (a)
test genes (i.e. cross-validation) and (b) novel genes.
For predicting test genes, we perform 3-fold cross-
validation on 2,634 GO biological process categories
which have between 3 and 300 annotations (GO as-
sociation file download on September 1, 2007). Note
that when constructing our hierarchy from which we
derive the HLbias, only GO categories in this set are
included. For predicting novel genes, we train on the
2007 GO association file and then we evaluate our
performance in a “real-life” setting by comparing our
predictions to the updated GO association file (GO
association file download on September 1, 2008). In
particular, for predicting novel genes, we restrict our
evaluation to 903 GO categories that obtained three or
more new annotations since 2007. We report the per-
formance on predicting test and novel genes in terms of
error as measured by 1-area under the ROC (Receiver
Operating Characteristic) curve (1-AUC). The AUC
under the ROC curve (Fawcett, 2006) corresponds to
the probability that a random positive instance will
be scored higher than a random negative instance. In
addition to AUC of ROC, we investigate the perfor-
mance in predicting novel genes as measured by AUC
of precision recall curve.
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Figure 2: Cumulative performance (error) of various
methods in predicting the function of test genes in
2,634 GO categories (i.e. using 3-fold cross-validation
on 2008 GO annotation file).

5 Experimental Results

We first show the performance on test genes and then
focus our analysis in predicting novel genes.

5.1 Predicting test genes

Figure 2 shows the cumulative distribution of the error
(1-AUC of ROC) of the Hierarchical label bias, HL-
Prop, Down- and Up-propagation, Isotonic Regression
(IR) and Gaussian random fields (GRF) algorithms.
Table 1 summarizes the mean and median error of each
method.

Table 1: Mean and median error in predicting test
genes in 2,634 GO categories. The last column shows
the standard error in the estimate of the mean error.

Approach mean median SE

Hierarchical label bias 0.1035 0.0881 0.0016
HLProp 0.1382 0.1200 0.0020
Down-Propagation 0.1282 0.1109 0.0019
Up-Propagation 0.1735 0.1405 0.0028
IR 0.1745 0.1438 0.0028
GRF 0.1760 0.1464 0.0028

HLProp, HLBias, and Down-propagation considerably
reduce the error in gene function prediction. Specif-
ically, despite being the simplest method, Hierarchi-
cal label bias achieves the best overall performance in
terms of 1-AUC of ROC curve (Table 1). Note that in
the cross-validation setting, for the Hierarchical label
bias method, the test genes are labeled as unknowns
and the initial label of other non-positive genes is set
according to their previous annotations in the GO hier-

initial labels bias

GO category 1

GO category 2

Hierarchical label bias 
(HLBias)

?

yi,1 

?

Hierarchical label propagation 
(HLProp)

?

-1

+1

yi,2 

Figure 3: An example illustrating the difference be-
tween HLBias and HLProp in assigning discriminant
scores to a test gene. The test gene is depicted by the
node whose initial label bias is a question mark. On
the right figure, the nodes in the same column depict
the same gene in different categories; only one of the
five blue edge representing the edges ha,c’s is shown.
In HLBias, when predicting GO category 2, the two
neighbouring nodes of the test gene have a more pos-
itive label bias. In HLProp, the previous annotations
needs to be propagated through more edges to effect
the discriminant score of the test gene.

archy (see Section 3.4). One explanation for the better
performance of HLBias compared to HLProp is that,
in using HLBias, genes that have an incomplete anno-
tation in an ancestral category more directly influence
the discriminant scores of their linked genes. This is
because the initial label bias of a gene essentially needs
to be propagated through a minimum of two edges to
effect the label bias of a test gene; in HLProp the in-
complete annotation information needs to be propa-
gated through a minimum of three edges to effect the
discriminant score of a test gene (see Figure 3 for a
pictoral description). This explanation may also offer
an insight into why Down-Propagation performs bet-
ter than Up-Propagation.

In addition, we observed that IR and Up-propagation
do not significantly improve the performance. This re-
sult is consistent with the observations in (Obozinski
et al., 2008) that most reconciliation methods often
perform similar to the baseline of independent predic-
tions.

5.2 Predicting novel genes

Here we report the performance in predicting novel
gene function; in particular, to evaluate the perfor-
mance on a given category, we use newly annotated
genes as positives and all other genes (excluding previ-
ously annotated genes, that is, those annotated in the
2007 GO file) as negatives. In predicting novel genes
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Figure 4: The ROC curve for predicting the GO cat-
egory “Osteoblast Differentiation” which had 26 an-
notations in the 2007 GO association file and 9 new
annotations in the 2008 version.
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Figure 5: Comparison of performance in terms of error
in predicting novel genes in 903 GO categories that
acquired three or more annotations in a span of one
year.

with the HLBias method, for a given GO category, we
adjust the initial label of all except the positive genes
(which have an initial label bias of +1 according to
the 2007 GO file) by using the incomplete annotation
information in GO.

Figure 4 shows a typical set of ROC curves; these
curves were generating for predicting GO category
“Osteoblast Differentiation”. Figure 5 shows the cu-
mulative performance of each method in predicting
novel genes in 903 categories as measured by error (1-
AUC of ROC). Table 2 shows the mean and median
error. As shown in Figure 5, unlike the cross-validation
setting, the performance of HLProp at high percentiles
(e.g. greater than 75% percentile) is better that that
of HLBias. In particular, we found that our assump-
tion about using genes that are annotated in siblings’
categories as negative example may not always hold.
For example, in 13 of the 903 GO categories, at least

Table 2: Mean and median error in predicting novel
genes in 903 GO categories. The last column shows
the standard error.

Approach mean median SE

Hierarchical label bias 0.1367 0.1249 0.0025
HLProp 0.1404 0.1262 0.0032
Down-Propagation 0.1415 0.1305 0.0032
Up-Propagation 0.1767 0.1671 0.0031
IR 0.1768 0.1672 0.0031
GRF 0.1772 0.1673 0.0031

one newly annotated gene had a previous annotation
in one of the sibling categories. The performance of
HLBias (mean error of 0.1406) was worse than HLProp
in these 13 categories (mean error of 0.1091) and simi-
lar to the baseline (mean error of 0.1469). In addition,
some of the newly annotated genes had no previous
annotations in ancestral categories with less than 300
annotations; as we discuss later, the performance of
HLBias was degraded in predicting these categories.
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Figure 6: Comparison of performance in terms of error
(1-AUC of ROC) in predicting novel genes. The per-
formance is measured in predicting GO categories with
[3-10] (136 categories), [11-30] (350 categories), [31-
100] (314 categories), and [101-300] (101 categories)
positive annotations in the 2008 GO file.

To better understand the difference between the var-
ious methods, we measured the mean performance in
predicting GO categories at four different specificity
levels; those with 3-10, 11-30, 31-100, and 101-300 an-
notations in the 2008 GO file. As shown in Figure
6, HLBias performs better than the others in predict-
ing GO categories with 3 to 10 and 101 to 300 an-
notations whereas the performance of HLProp, Down-
propagation, and GO label bias is similar when pre-
dicting GO categories with 11 to 100 annotations.
Furthermore, using hierarchical information yields the
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Figure 7: Comparison of performance in terms of av-
erage under the precision-recall curve when predicting
novel genes in 903 GO categories that acquired three
or more annotations in a span of one year.

most improvement on GO categories with a very few
positive examples.

In addition to measuring performance in terms of 1-
AUC of ROC, we also investigated the performance
in predicting novel gene functions in terms of area
under the precision recall curve. As shown in Fig-
ure 7, the performance of HLProp in terms of average
precision, is better than all other methods. Interest-
ingly, in contrast to the ROC measure, we observed
that on average, the performance of HLBias is not sig-
nificantly different than the baseline approach (t-test
with α=0.05). However, the cumulative performance
of HLBias follows the same trend as measured in er-
ror or average precision (compare Figure 5 and 7);
HLBias has a lower precision at high percentile but
higher precision at lower percentiles. The lower per-
formance of HLBias, as measured in terms of precision,
can be explained by our observation that genes with
new annotations in 338 of the 903 novel categories had
no previous annotation in the corresponding ancestral
categories and were therefore deemed negatives and
given a highly negative label bias: the performance
of HLBias in terms of precision at lower recalls (e.g.
recall of 10%) was specifically degraded in these cate-
gories.

6 Discussion

Here we have shown that by using the GO hierarchy
information directly, either by setting initial label bi-
ases using GO or using our formulation of hierarchical
Gaussian random fields (HLProp), we can significantly
improve gene function prediction. On the other hand,
our results are consistent with the previous report that
reconciliation methods may rarely improve the per-
formance of independent classifiers (Obozinski et al.,

2008). In contrast, in our setting, reconciliation of in-
dependent GO category results in a performance very
similar to the baseline of un-corrected classifications
obtained by GRF.

In order to be able to solve HLProp efficiently, we ig-
nored the directionality of the GO hierarchy. To do so,
we set pmc = pcm if category c is a child of category
m. In contrast, the two heuristics variants (Up- and
Down-propagation) only propagate information about
discriminant scores in one direction. Our results in-
dicate that propagating information down the hier-
archy results in most gain whereas Up-Propagation
does not significantly effect the performance. This re-
sult is consistent with that of (Obozinski et al., 2008)
which found that reconciliation with a Bayesian net-
work model of GO hierarchy where the arrows are di-
rected from parents to the children classes performs
better than the opposite model where the arrows are
directed from children to the parents.

In its most general form, the GRF and the HLProp
algorithms contain a number of regularization param-
eters. We have had general success by setting all these
parameters to one though we have not rigorously inves-
tigated the effect of changing them because performing
cross-validation on genome scale datasets is computa-
tionally costly and sometimes infeasible. However, a
future area of improvements may be to find an optimal
setting for these parameters.
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