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Abstract

Products of Hidden Markov Models
(PoHMMs) are an interesting class of
generative models which have received little
attention since their introduction. This may
be in part due to their more computationally
expensive gradient-based learning algorithm,
and the intractability of computing the log
likelihood of sequences under the model.
In this paper, we demonstrate how the
partition function can be estimated reliably
via Annealed Importance Sampling. We
perform experiments using contrastive di-
vergence learning on rainfall data and data
captured from pairs of people dancing. Our
results suggest that advances in learning and
evaluation for undirected graphical models
and recent increases in available computing
power make PoHMMs worth considering for
complex time-series modeling tasks.

1 INTRODUCTION

Hidden Markov Models (HMMs) are statistical models
of sequences that have proven successful in speech and
language modeling (Rabiner, 1989; Bengio, 1999), and
more recently, biological sequence analysis (Durbin
et al., 1998). The advantage of an HMM over an N -th
order Markov model is that it introduces a hidden state
that controls the dependence of the current observa-
tion on the history of observations (Fig. 1a). However,
many high-dimensional data sets with rich componen-
tial structure cannot be modeled efficiently by HMMs
due to this simple but restrictive multinomial state.
To model K bits of information about the past his-
tory the HMM requires 2K hidden states.

To avoid this exponential explosion we could condition
the transition and emission distributions on another
input sequence, such that these distributions change

with time. Such a model is called the Input-Output
Hidden Markov Model (IOHMM) (Bengio and Fras-
coni, 1995), also known as a non-homogeneous HMM
(Fig. 1b). A more natural way, however, is to seek
a model with distributed (i.e. componential) hidden
state that has a representational capacity which is lin-
ear in the number of components. Linear dynami-
cal systems satisfy this requirement, but they cannot
model nonlinear dynamics.

Factorial Hidden Markov Models (FHMMs) (Ghahra-
mani and Jordan, 1997) were introduced to address
the need for distributed hidden state in HMMs. The
FHMM generalizes the HMM by representing the state
using a collection, instead of a single discrete state
variable (Fig. 1c). However, FHMMs are directed
models and thus observing a sequence introduces de-
pendencies between the chains; an effect commonly
known as “explaining away”. This renders exact in-
ference intractable and one must resort to approxi-
mate techniques such as Gibbs sampling or variational
approximations to the posterior distribution. Prod-
ucts of Hidden Markov Models (Brown and Hinton,
2001), are a member of the Product of Experts family
(Hinton, 2002), where each of the constituent experts
is an HMM. Like the FHMM, the model provides a
distributed state representation, but the relationship
between hidden state and observations is now undi-
rected (Fig. 1d). Conditioned on a sequence of obser-
vations, each HMM in the product is independent. In-
ference reduces to independently running the forward-
backward algorithm in each HMM, and learning can be
done efficiently by minimizing contrastive divergence
(CD) (Hinton, 2002).

Since their introduction, PoHMMs have received lit-
tle attention apart from some demonstrated success on
“toy” language tasks (Brown and Hinton, 2001). They
have yet to be applied to high-dimensional, real-world
data. Part of the reluctance in adopting PoHMMs
may have been due to the computationally demand-
ing nature of gradient-based CD learning compared to
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(d) Product of HMMs

Figure 1: Graphical models specifying conditional in-
dependence relations for members of the HMM-based
family.

the efficiency of the Baum-Welch algorithm for HMMs.
However, since the introduction of PoHMMs, available
computing power has greatly increased, and numerous
insights have been made with respect to training mod-
els by CD (Tieleman, 2008). Another concern with
undirected models in general has been the intractabil-
ity of calculating the log likelihood of an observed se-
quence due to the existence of a normalizing factor (the
“partition function”) in the likelihood. In this paper,
we demonstrate how the likelihood of sequences un-
der a PoHMM can be estimated to a high degree of
accuracy by estimating the partition function.

2 PRODUCTS OF HIDDEN
MARKOV MODELS

One way of modeling a complicated, high-dimensional
data distribution is to combine a number of relatively
simple models. Mixtures can approximate compli-
cated smooth distributions arbitrarily accurately but
are very inefficient in high dimensions. The mixture
cannot produce a resultant distribution sharper than
any of the individual experts. An alternative approach
is to multiply the individual probability distributions
together and then renormalize. This allows us to pro-
duce much sharper distributions than the individual
models. The framework is called a Product of Experts
(PoE) (Hinton, 2002). PoEs are defined by the follow-
ing likelihood over observations:

p(y|Θ) =
∏M
m=1 p

(m)(y|θ(m))∑
y′
∏M
m=1 p

(m)(y′ |θ(m))
(1)

where m indexes individual experts, Θ = {θ(m)} rep-
resents parameters, and the probability distribution of
the individual experts may be of any type (including
unnormalized potential functions). Learning a PoE
appears to be difficult due to the partition function
that appears in the expression for the likelihood and
consequently the gradients for maximum likelihood
learning. While exact learning is intractable, one can
approximately minimize an alternative loss function
which, in practice, works very well (provided the indi-
vidual experts themselves are tractable). This method
is known as contrastive divergence.

If we take each of the experts to be an HMM, the
resulting product model is called a Product of Hid-
den Markov Models (PoHMM) (Brown and Hinton,
2001). Note that each expert now defines a distribu-
tion over sequences, {yt}, rather than static observa-
tions. PoHMMs are ideal for modeling data that is
caused by multiple underlying influences. Each ex-
pert can model some aspect of the data and constrain
it such that the combination of the models will have
a very sharp distribution. Specifically, if each HMM
can remember a different piece of information about
the past, the PoHMM should be able to capture more
long-range structure than a standard HMM.

CD learning updates the parameters according to:

∆θ(m) ∝
〈 ∂

∂θ(m)
log p({yt}|θ(m))

〉
P0

−
〈 ∂

∂θ(m)
log p({yt}|θ(m))

〉
PK

(2)

where the first expectation is with respect to the data
distribution, and the second expectation is with re-
spect to the distribution of samples obtained after K
steps of alternating Gibbs sampling, initialized at the
data. Typically K = 1, but recent results show that
gradually increasing K with learning can significantly
improve performance at a modest additional computa-
tional cost (Carreira-Perpinan and Hinton, 2005). We
refer to this technique as CD(K). The gradient terms
in Eq. 2 are obtained by the following procedure:

1. Set {yt}0 to the observed sequence. Calculate
each HMM’s gradient, ∂

∂θ(m) log p({yt}0|θ(m)), on
this sequence, using the forward-backward (f-b)
algorithm. This leads to the first term in Eq. 2.

2. Repeat for k = 1, . . . ,K: Sample from the pos-
terior distribution of paths through state space for
each of the HMMs given {yt}k−1 (we perform f-b
independently in each HMM). Multiply together
the emission distributions specified by the sam-
pled paths in each HMM and renormalize. Draw
a new visible sequence, {yt}k, from this distribu-
tion.



3. For each HMM, calculate ∂
∂θ(m) log p({yt}K |θ(m))

on the final K-step reconstructed sequence, using
f-b. This leads to the second term in Eq. 2.

The learning rule is not a true gradient, so we can-
not employ more sophisticated second-order methods
or conjugate gradient optimization. The convergence
time will be much slower than for fixed-point methods
such as the EM algorithm used to fit tractable mod-
els like the standard HMM. Despite this shortcoming,
the PoHMM shows some clear advantages to standard
HMMs both in theory and in practice.

3 ESTIMATING THE PARTITION
FUNCTION

Following Eq.1 the log likelihood that a PoHMM as-
signs to a sequence,{yt}, is given by:

log p({yt}|Θ) =
M∑
m=1

log p(m)({yt}|θ(m))− logZ (3)

where Z = Z(Θ, T ) is the partition function which
depends on the model parameters and length of the
sequence. A key feature of the PoHMM is the fact
that given an observation, the experts decouple and
the first term can be easily computed by evaluating
log p(m)({yt}|θ(m)) for each expert. This can be found
by summing out the hidden variables from the joint
likelihood, which is done efficiently in an HMM via the
forward-backward algorithm. The partition function,
however, involves an intractable sum (or integral) over
all possible observations of length T . For all but the
smallest discrete models, it is not practical to compute.

A good estimate of the partition function would aid
us in both model selection and controlling model com-
plexity since it allows us to compute an estimate of
the log probability of an observation under the model.
It would also permit the comparison of PoHMMs to
other generative models, such as standard HMMs.
Salakhutdinov and Murray (2008) have recently re-
ported success in applying a particular type of Monte
Carlo method, Annealed Importance Sampling (AIS),
to another type of Product of Experts, the Restricted
Boltzmann Machine (RBM). Given the similarity be-
tween members of the PoE family, we are motivated
to extend their work to PoHMMs. We first give a
brief review of AIS but refer the reader to Neal (2001)
for a more thorough discussion. We will assume the
observable space is over discrete sequences, {yt}, but
the development can readily be extended to continuous
PoHMMs (e.g. Gaussian emission distributions).

3.1 Importance sampling

Importance sampling is a Monte Carlo method that al-
lows us to either generate samples from a complicated
distribution of interest, or calculate statistics with re-
spect to that distribution. For the purposes of our
discussion, we call this distribution pB . Importance
sampling is based on the idea of generating indepen-
dent points from some simpler approximating distri-
bution, pA, and associating a weight with each point
to compensate for the use of the wrong distribution. A
byproduct of importance sampling is that it also pro-
vides an estimate of the ratio of the partition functions
of the two distributions. This ratio is a useful quantity
because it allows us to compare two different models
by the likelihood they assign to some test data. To
see this, suppose that pA({yt}|θA) = p∗A({yt}|θA)

ZA(θA,T ) and

pB({yt}|θB) = p∗B({yt}|θB)
ZB(θB ,T ) are sequence models (e.g.

PoHMMs) where p∗A and p∗B are computable but ZA
and ZB are not. Comparing likelihoods leads to:

pA({yt}|θA)
pB({yt}|θB)

=
p∗A({yt})
p∗B({yt})

ZB
ZA

(4)

where we use the shorthand notation introduced in
the rightmost term to simplify the presentation. Eq. 4
states that to compare the models based on likelihood,
we must be able to compute the ratio of partition func-
tions, ZB/ZA. Note that we can rewrite the ratio as:

ZB
ZA

=

∑
{yt} p

∗
B({yt})

ZA
=
∑
{yt}

p∗B({yt})
p∗A({yt})

pA({yt})

= EpA

[
p∗B({yt})
p∗A({yt})

]
(5)

assuming that p∗A({yt}) 6= 0 whenever p∗B({yt}) 6= 0.
The sum (or integral) is taken over all sequences of
length T .

If we can draw independent samples from pA, impor-
tance sampling allows us to estimate Eq. 5 by:

ZB
ZA
≈ 1
P

P∑
p=1

p∗B({yt}(p))
p∗A({yt}(p))

≡ 1
P

P∑
p=1

w(p) (6)

where {yt}(p) ∼ pA and w(p) is the importance weight
of sample p. However, if pA and pB differ considerably
then Eq. 6 is a poor estimate of the true ratio ZB/ZA.

3.2 Annealed importance sampling

Annealed importance sampling (Neal, 2001) can
achieve better estimates of ZB/ZA by defining a se-
ries of intermediate distributions, p0, p1, . . . , pN which
slowly anneal from p0 = pA to pN = pB . The in-
termediate distributions must be defined such that



we can easily evaluate the unnormalized probability,
p∗n({yt});∀{yt}, n = 0, 1, . . . , N . We also must define
a Markov Chain transition operator, Tn({yt}, {yt}′)
that leaves pn({yt}) invariant:∫

Tn({yt}, {yt}′)pn({yt})d{yt} = pn({yt}′). (7)

AIS proceeds by a series of P runs, one per sample.
Given the definition of pn({yt}) and Tn({yt}, {yt}′),
a single AIS run is carried out as follows:

• Sample {yt}0 from p0 = pA

• Repeat for n = 1, 2, . . . , N − 1:
Sample {yt}n from {yt}n−1 using Tn−1

• Set w(p) = p∗1({yt}0)
p∗0({yt}0)

p∗2({yt}1)
p∗1({yt}1) . . .

p∗N ({yt}N−1)
p∗N−1({yt}N−1)

After performing P runs of AIS we can estimate
ZB/ZA using Eq. 6. The estimate is unbiased. Its vari-
ance depends on the number of runs, P , and the num-
ber of intermediate distributions, N (see Neal, 2001).

3.3 AIS for PoHMMs

AIS for any particular model depends on the form
of the intermediate distributions, pn({yt}), and the
Markov chain transition operator, Tn({yt}, {yt}′). A
general form for the intermediate distributions is:

pn({yt}) ∝ p∗A({yt})(1−βn)p∗B({yt})βn (8)

where 0 = β0 < β1 < . . . < βN = 1
is the user-specified annealing schedule. If pA
and pB are defined by PoHMMs, this leads to
an unnormalized distribution for which both eval-
uating p∗n and sampling are not straightforward.
However, we can use the following distribution:

pn({yt}) =
p∗n({yt})
Zn(Θ, T )

=

[
MA∏
m=1

∑
{s(m)

t }

p(m)(s(m)
1 )

T∏
t=2

p(m)(s(m)
t |s(m)

t−1)

×
T∏
t=1

p(m)(yt|s(m)
t )(1−βn)

][
MB∏
m=1

∑
{s(m)

t }

p(m)(s(m)
1 )

×
T∏
t=2

p(m)(s(m)
t |s(m)

t−1)
T∏
t=1

p(m)(yt|s(m)
t )βn

]/
Zn (9)

where m,n index the MA,MB HMMs in PoHMM
A,B, respectively. Eq. 9 defines a PoHMM with
MA +MB chains, one group whose emission distribu-
tions are scaled by 1− βn and the other group whose
emission distributions are scaled by βn. When βn = 0,

pn reduces to PoHMM A with MA chains, and when
βn = 1, pn reduces to PoHMM B with MB chains.

Similar to (Salakhutdinov and Murray, 2008),
Tn({yt}, {yt}′) is defined by alternating Gibbs sam-
pling between {yt}n and the MA +MB hidden states:

• Given the current sample, {yt}, perform inference
in each of the MA HMMs in PoHMM A using the
f-b algorithm with the scaled emission distribu-
tion, p(m)(yt|s(m)

t )(1−βn). Sample a hidden state
sequence, {s(m)

t }, from each posterior.

• Repeat the above step for each of the MB HMMs
in PoHMM B, but using p(m)(yt|s(m)

t )βn .

• Conditional on {s(m)
t }∀m ∈MA and {s(m)

t }∀m ∈
MB , the contribution to the distribution over
observables from each of the HMMs will be
p(m)(yt|s(m)

t )(1−βn) and p(m)(yt|s(m)
t )βn , respec-

tively. For each t, multiply the (MA + MB) con-
ditional distributions together and renormalize.

• Draw {yt}′ from the normalized conditional dis-
tribution over observables.

Our definition of Tn({yt}, {yt}′) leaves pn invariant.
Since pn defines a PoHMM, p∗n is easily evaluated via
the forward-backward algorithm using the scaled emis-
sion probability distributions, as in inference. The re-
sampling and likelihood estimation steps necessary for
AIS can be combined into a single forward-backward
pass (per annealing step) in each HMM. Although we
can obtain samples from pA by alternating Gibbs sam-
pling, they will not be independent. It is preferable to
use independent samples, but AIS will still converge to
the correct estimate, provided that the Markov chain
is ergodic (Neal, 2001).

If we wish to calculate ZB instead of ZB/ZA, we can
select PoHMM A to have a ZA that is easily evalu-
ated. For example, if MA = 1 then PoHMM A is
just a standard HMM and ZA = 1. In practice, we
use a single-state HMM whose emission distribution
is estimated to be the base rates of the training data,
smoothed so that pA(·) is never zero. We choose the
βk such that we gently anneal the base-rate HMM to
the PoHMM of interest. This is why in Eq. 9 we do
not need to scale the terms related to the dynamics:
the dynamics are completely defined by the PoHMM.

4 MODELING DAILY RAINFALL
OCCURRENCE

Precipitation modeling is of interest to fields such as
hydrology, geophysics, and agriculture. Existing mod-
els are challenged by the large variance of observa-



tions over time, as well as the local effects present in
the data. Recently, HMMs have been proposed as a
way to describe daily rainfall occurrence data collected
at several weather stations (Kirshner, 2005), as they
are able to capture both spatial dependencies between
weather stations and temporal regularities. The hid-
den states of the HMMs can also be interpreted as
representing “wet-dry” or directional effects and the
state sequences can be analyzed for the existence of
seasonal, intraseasonal, interannual and longer-scale
time patterns. Furthermore, the generative nature of
the HMM allows for the production of station-scale
daily rainfall simulations for input into other systems
such as crop models.

For comparison purposes, we will consider one of the
rainfall data sets which has already been extensively
analyzed in the context of HMMs. The Ceará data
set contains 24 sequences of 90 binary observations for
each of 10 weather stations located in northeast Brazil.
The sequences correspond to the wet seasons from
the years 1975-2002, however, four of the years (1976,
1978, 1984, 1986) contained a significant number of
missing observations and were removed. All seasons
start February 1 and end in April. As a baseline model,
we consider a simple HMM with Bernoulli emission
distributions on each dimension that are condition-
ally independent, given the state (denoted HMM-CI).
Thus, the spatial dependencies between weather sta-
tions are captured entirely by the hidden state, and
the emission parameters for each dimension can be es-
timated independently. Kirshner (2005) has looked at
two ways of extending this HMM baseline. The first is
to employ an IOHMM, for example, conditioning the
transition distributions of the HMM on the output of
a coarser-resolution General Circulation Model that
predicts average seasonal precipitation. The second is
to experiment with emission distributions with richer
dependency structure which can capture interactions
not only between weather stations on a given day, but
between neighbouring observations. In both cases,
the multinomial hidden state is left intact. We pro-
pose maintaining the simple conditionally-independent
Bernoulli emission distribution but using a distributed
hidden state.

We compare baseline HMMs of {2,. . . ,8} states to
a product of two HMMs of {2,. . . ,6} states and a
product of three HMMs of {2,. . . ,6} states. We use
the same notation as Kirshner (2005) for the various
HMMs. In addition to HMM-CI (as noted above), we
experimented with a first-order Autoregressive HMM
with dependence on the previous observation for the
same station (HMM-Chains), an HMM with Chow-Liu
tree emissions (HMM-CL), an HMM with conditional
Chow-Liu forest emissions (HMM-CCL) and an HMM

whose output distribution is a full bivariate maximum
entropy model (HMM-MaxEnt).

Parameters are initialized randomly. The HMMs are
trained with the EM algorithm until convergence is
observed in the training log likelihood. The PoHMMs
are trained with CD(1) for a fixed number of epochs at
a conservative learning rate (0.001 for all parameters).
Following (Kirshner, 2005), we use leave-6-out cross-
validation. Under leave-6-out we train 4 models, one
for each set obtained by leaving out 6 non-overlapping
consecutive sequences. Each model is then evaluated
on the corresponding left-out 6 sequences. We report
the mean of the 4 models. This entire process is re-
peated 100 times (using different random initializa-
tions) and we report the mean of these runs. We em-
ployed four different evaluation metrics:

Scaled log likelihood For the HMM, the log like-
lihoods of the held out sequences are computed ex-
actly using the forward-backward algorithm. For the
PoHMMs, we use 100 AIS runs with 500 intermediate
distributions of uniform spacing1 to estimate the par-
tition function. Log likelihoods of the held out sets are
divided by the number of binary events occurring in
the held out data (6 × 90 × 10).
Classification accuracy We report the average clas-
sification accuracy in predicting observations that are
removed (one dimension, one sequence at a time) from
the held out data. Since observations are binary, we
simply compare the (unnormalized) log likelihood of
the sequence with the correct observation filled in vs.
the incorrect observation.
Difference in precipitation persistence for ob-
served and simulated data Persistence is defined
as the probability of a precipitation occurrence for a
particular station given a precipitation event at that
station at the previous observation. We simply com-
pared the mean of this result over 500 simulated 90-day
sequences to the mean calculated over the held-out ob-
servations and report the absolute difference.
Difference in correlation for observed and sim-
ulated data The spatial correlation between a pair of
stations is computed as Pearson’s coefficient of their
respective daily rainfall occurrences. We compute this
value separately for the held-out sequences and the
simulated data and report the absolute difference.

The results are shown in Fig. 2. Given a fixed num-
ber of parameters, PoHMMs outperform the various
HMMs under the log likelihood and classification met-
rics. In the case of log likelihood, the PoHMMs also
exhibit less overfitting of the training data (though this
could also be an artifact of a fixed number of epochs

1A nonlinear (e.g. logarithmic) schedule may give better re-
sults, but quick initial runs suggested that it was not nec-
essary. It may also require additional tunable parameters.
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HMM−CI

HMM−Chains

HMM−CL

HMM−CCL

HMM−MaxEnt

Po2HMM−CI

Po3HMM−CI

Figure 2: Rainfall modeling. We have compared several types of HMMs (solid lines), to a product of two or
three HMMs (dashed lines) under a variety of metrics. In the top two plots, higher is better. In the bottom two
plots, lower is better. Log likelihoods are per-sequence, per-frame, per-dimension. Error bars of three standard
deviations of the partition function estimate are plotted for log likelihood. The single legend applies to all plots.

vs. training until convergence). They also do well on
the persistence task, though to a lesser degree. Not
surprisingly, the best performing model according to
the difference in persistence is HMM-Chains which has
stronger temporal structure. PoHMMs do not perform
as well according to the difference in spatial correla-
tion. Perhaps this is to be expected as they retain the
same simple emission model as HMM-CI. Models with
stronger spatial structure (HMM-CL,HMM-MaxEnt)
perform better under this metric. Another interesting
observation is that if we examine the emission parame-
ters of the PoHMMs, we can see that individual HMMs
specialize locally (Fig. 3).

5 MODELING HUMAN DANCE

Data captured from human motion (mocap) is often
high-dimensional and contains complex nonlinear rela-

tionships between variates. This makes learning chal-
lenging for simple models. Generative models with
distributed hidden state have had success modeling
locomotion (Taylor et al., 2007), however, this type
of motion exhibits strong global coherence and should
not pose as great a difficulty to an HMM as it can
allocate subsets of its states to the various regimes.
At each frame, it is not difficult to predict what one
part of the body is doing from another. The advan-
tages of componential state should be more apparent
in modeling data that is the result of multiple under-
lying processes, such as mocap from multiple subjects.

We carried out a series of experiments to compare
HMMs and PoHMMs on data with both weakly and
strongly componential structure. We started with mo-
cap data of a pair of people salsa dancing (all frames
from subjects 60 and 61 in the CMU motion capture
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Figure 3: The log-domain emission parameters of a four-state HMM (left) and product of three three-state
HMMs (right). Each rectangle reflects the spatial layout of the numbered weather stations which correspond
to input dimensions. White represents a belief in a dry observation while black represents a belief in a wet
observation, conditional on that state. The larger the radius, the stronger the belief. In the product, HMM 1
captures eastern effects, HMM 2 captures western effects, and HMM 3 captures northern and southern effects.

database). To facilitate training and comparison, the
data was partitioned into fixed-length sequences of 100
frames. The ordering of sequences was randomly per-
muted so that training and test sets were balanced
and randomly assigned. 23 sequences were set aside
for testing and the remaining 48 sequences were used
for training. We used the same representation as de-
scribed in (Taylor et al., 2007) where all joint angles
were encoded via the exponential map and a local co-
ordinate system was employed to ensure invariance to
translations in the ground plane and rotations about
the vertical. In order to work with discrete HMMs
while still maintaining the multivariate and compo-
nential properties of the mocap data, we performed a
type of vector quantization. Within each subject, di-
mensions were assigned to one of 6 local groups: Left
leg, Right leg, Torso, Upper body, Left arm and Right
arm. (K = 25)-means clustering was applied inde-
pendently to the vectors corresponding to each group,
across all frames. This resulted in 6 or 12-dimensional
discrete sequences for one or two subjects, respectively.

All emission distributions were 6 or 12 25-symbol
multinomials conditionally independent given hidden
state. Baseline HMMs of 2N states where N =
2, . . . , 6 were trained with EM until convergence based
on training log likelihood. We also trained several
PoHMM models, where the number of experts and
states were selected such that the number of free
parameters were comparable to the baseline HMMs.
All PoHMMs were trained using CD(10) which gave
slightly better results than our initial models obtained

using CD(1). The PoHMMs were all trained for 1000
epochs over all sequences, using a learning rate of 0.01
for all parameters. A momentum term was also used:
0.9 of the previous accumulated gradient was added to
the current gradient.

Log likelihoods under the HMMs were computed ex-
actly. To estimate log likelihoods under the PoHMMs,
we used 100 AIS runs. We used an annealing schedule
of 5000 uniformly spaced intervals. Figure 4 shows the
results obtained modeling single-subject mocap data
(weakly componential) and two-subject mocap data
(strongly componential). All log likelihoods are per
sequence, and have been normalized by dividing by
the number of dimensions (6 and 12 respectively) so
that the two plots are comparable.

In both cases, products of HMMs compare favourably
to the baseline. As expected, the advantage is more ev-
ident when the data has strongly componential struc-
ture. This is achieved despite a weaker gradient-based
method of training. We note that HMMs trained by
conjugate-gradient or CD(1) gave worse baseline re-
sults than EM. All of these methods rely on infer-
ence via the forward-backward algorithm whose run-
ning time is quadratic in the number of hidden states.
This suggests that combining HMMs with a smaller
number of states via a product where training time
is linear in the number of HMMs is a sensible thing
to do. However, the cost of gradient-based learning
compared to EM means that this advantage will not
be seen until the number of states are considerably
higher than those considered in our experiments. All
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Figure 4: Modeling a single subject (left) and partners (right) salsa dancing. Open and solid circles correspond
to the log likelihood scores of the baseline HMMs on the training and test data. Open and solid diamonds denote
training and test log likelihood scores for the PoHMMs. The small text beside the PoHMM scores indicates the
number of HMMs and number of states per HMM in the product. Error bars corresponding to three standard
deviations from the partition function estimate have been plotted (visible in open diamonds) but they are so
tight that they are difficult to see at this scale. Shading indicates unit standard deviation error across HMMs.

of the PoHMMs we trained took on the order of an
hour, while the HMMs were trained within minutes.

6 DISCUSSION

Advances in computing hardware and improvements
to the CD learning algorithm have made Products
of Hidden Markov Models a more attractive option
for time-series modeling than when they were first
introduced. This is especially true for data that is
high-dimensional and has strongly componential struc-
ture. With a reliable means of approximating the in-
tractable partition function, log likelihood estimates
of sequences can aid in model selection, complexity
control and comparisons to other generative models.

In this work, we have departed from the domain of
“toy” problems and demonstrated the effectiveness of
PoHMMs on real multivariate data. In precipitation
modeling, PoHMMs were shown to improve perfor-
mance over HMMs of a similar number of parame-
ters under a variety of metrics and also captured in-
teresting local regularities in the data. When trained
on data captured from human motion, PoHMMs were
also shown to compare favourably to HMMs in terms
of log likelihood. This was most apparent when the
data was a product of multiple underlying influences.
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