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Abstract

This paper presents complexity analysis and
variational methods for inference in probabilis-
tic description logics featuring Boolean oper-
ators, quantification, qualified number restric-
tions, nominals, inverse roles and role hierar-
chies. Inference is shown to be PEXP-complete,
and variational methods are designed so as to ex-
ploit logical inference whenever possible.

1 Introduction

In this paper we investigate probabilistic description logics
that are based on the well-known description logicALC. In
ALC one deals with individuals, concepts, roles, Boolean
operators, and restricted forms of quantification [1]. For
example, the concept Fireman denotes the set of firemen,
and Vegetarian u ∀buyFrom.Fireman denotes a set
of individuals who are vegetarian and buy only from fire-
men. We can also have assertions such as Fireman(John),
stating that John belongs to Fireman.

We start from credalALC, a probabilistic description logic
we have introduced previously [8, 33]. Credal ALC, re-
ferred to as CRALC, mixes constructs of ALC with fea-
tures of relational Bayesian networks. Indeed most of this
paper can be read as the study of those relational Bayesian
networks that can be expressed with (variants) of ALC.

In CRALC one can have probabilistic assessments such as
P (C|D) = α for concepts C and D, or P (r) = β for role
r. The semantics of these assessments is roughly given by:

∀x : P (C(x)|D(x)) = α, ∀x, y : P (r(x, y)) = β.

Credal ALC is attractive because its semantics allows rea-
sonably flexible probabilistic assessments and the calcu-
lation of probabilities over assertions; the language stays
both close to the power of ALC and to the clarity of rela-
tional Bayesian networks. Section 2 reviews work on prob-
abilistic description logics and in particular CRALC.

To illustrate the main features of CRALC, consider an ex-
ample whose syntax should be reasonably easy to grasp.
Take the Kangaroo ontology, a small collection of facts
about animals.1 Consider a probabilistic version as fol-
lows [33]:
P (Animal)=0.9, P (Rational) =0.6, P (hasChild)=0.3,
Human ≡ Animal u Rational,
Beast ≡ Animal u ¬Rational,
Parent ≡ Human u ∃hasChild.Human,
P (Kangaroo|Beast) = 0.4, P (Kangaroo|¬Beast) = 0.0,
MaternityKangaroo ≡ Kangaroo u ∃hasChild.Kangaroo.

The most basic problem in CRALC is to compute the prob-
ability of an assertion, possibly conditional on other as-
sertions. For instance, we might be interested in comput-
ing P (MaternityKangaroo(Tweety)) given the probabilis-
tic Kangaroo ontology. In Section 3 we present complexity
analysis for this inference problem. Variants of CRALC are
also analyzed in Section 3, both by removing some con-
structs from the language, and by adding constructs such
as numeric restrictions, inverse roles, and nominals.

In Section 4 we propose a variational scheme for inference
in CRALC and its variants, designed to exploit Boolean op-
erators (through logical inference) in a set of sentences. We
often adopt a Bayesian assumption that guarantees unique-
ness of probability values, but we also briefly examine fail-
ures of this assumption. Experiments described in Sec-
tion 4 show the value of the algorithms in practice.

2 Probabilistic description logics

The combination of probability and logic has a long his-
tory, with much recent activity [16, 17, 34]. In particular,
there has been significant interest in probabilistic descrip-
tion logics [29]. The next two paragraphs summarize recent
activity in this topic; a more detailed review and compari-
son can be found in our previous publication [8, Sec.2].

We can divide probabilistic description logics into logics

1Distributed with the CEL System for logical reasoning, at
http://lat.inf.tu-dresden.de/˜meng/ontologies/kangaroo.cl.



that assign probabilities to subsets of the domain [13, 14,
18, 21, 25, 28] and to subsets of interpretations [7, 10], with
some logics in between [37]. In a domain-based semantics
an assessment such as P (Fireman) = 1/2 means that the
probability mass over the set of all firemen is half. The
challenge then is to define probabilities for an assertion:
the probability of the set of individuals who are firemen
does not constrain the probability that a particular individ-
ual is a fireman. This is indeed the old philosophical prob-
lem of direct inference [26]. Hence logics with domain-
based semantics either do not allow probabilities of asser-
tions to be expressed, or resort to non-standard forms of
entailment [21, 28]. This is the reason why we developed
CRALC as an interpretation-based probabilistic logic.

We can alternatively divide probabilistic description logics
into logics that allow independence relations to be orga-
nized into graphs [7, 13, 25], and logics that do not resort to
independence relations [14, 18, 21, 28]. Logics in the first
group usually assume some Markov condition, and assume
that probabilities are uniquely defined for any valid sen-
tence. Logics in the second group allow probability inter-
vals (sometimes sets of probabilities) to be associated with
sentences. We think that independence relations are power-
ful constraints that should be used whenever possible, and
for this reason CRALC has many similarities to logics in
the first group, even though it does not mandate uniqueness
for probabilities. In particular, CRALC shares many fea-
tures with PR-OWL [7] as both have interpretation-based
semantics and use graph-theoretical tools.

We now turn to a more precise description of CRALC, start-
ing with background onALC [36]. Throughout, a, b are in-
dividuals; A, B, C, D are concepts; r, s are roles. A termi-
nology contains inclusions C v D and definitions C ≡ D.
A concept can be a concept name or, recursively, a conjunc-
tion (C uD), disjunction (C tD), negation (¬C), existen-
tial restriction (∃r.C), value restriction (∀r.C). Concept
C directly uses D if they appear respectively in the left
and right hand sides of an inclusion/definition. The rela-
tion uses is always the transitive closure of directly uses. A
terminology is acyclic if no concept uses itself in an inclu-
sion/definition. An Abox contains assertions such as C(a),
r(a, b). An assertion C(a) directly uses assertions of con-
cepts and roles directly used by C instantiated respectively
by elements and pairs of elements from D. The semantics
of ALC is given by a set D, the domain, and a mapping
I, the interpretation. This mapping takes each individual to
an element of the domain, each concept name to a subset of
the domain, each role name to a binary relation on D ×D.
An interpretation is extended to other concepts: I(CuD) =
I(C)∩ I(D), I(C tD) = I(C)∪ I(D), I(¬C) = D\I(C),
I(∃r.C) = {x ∈ D|∃y : (x, y) ∈ I(r) ∧ y ∈ I(C)},
I(∀r.C) = {x ∈ D|∀y : (x, y) ∈ I(r) → y ∈ I(C)}. We
have C v D if and only if I(C) ⊆ I(D), and C ≡ D if and
only if I(C) = I(D). There are translations of these con-

structs into modal and first-order logic [1]; we often treat a
concept C as a unary predicate C(x), a role r as a binary
predicate r(x, y), and restrictions as quantifiers.

In CRALC, we have all constructs of ALC but we only
allow concept names in the left hand side of inclu-
sions/definitions. Additionally, we allow three kinds of
probabilistic assessments, where C is a concept name, D
is a concept, r is a role name:

P (C) ∈ [α, α], (1)
P (C|D) ∈ [α, α], (2)

P (r) ∈ [β, β]. (3)

In Expression (2), C directly uses conditioning concepts.
We write P (C|D) = α when α = α, P (C|D) ≥ α when
α < α = 1, and so on. No concept is allowed to use itself,
neither through deterministic nor through probabilistic in-
clusions/definitions; this guarantees acyclicity.

The semantics is based on probabilities over interpreta-
tions; that is, we take that measures are assigned to the set
of all interpretations. The semantics of Expression (1) is:
for any x ∈ D, the probability that x belongs to the inter-
pretation of C is in [α, α]. That is,

∀x ∈ D : P
( {

I : x ∈ I(C)
} )

∈ [α, α].

An informal and intuitive way to express the semantics is

∀x ∈ D : P (C(x)) ∈ [α, α].

The semantics of Expressions (2) and (3) is then:

∀ x ∈ D : P (C(x)|D(x)) ∈ [α, α],
∀ (x, y) ∈ D ×D : P (r(x, y)) ∈ [β, β].

As usual in interpretation-based probabilistic logics [3],
CRALC requires that all individuals be rigid (an individ-
ual corresponds to the same element of the domain across
interpretations). Similarly to other probabilistic descrip-
tion logics [7, 13, 25], CRALC adopts a (two-part) Markov
condition that is best formulated using indicator functions.2

First, for every concept C and for every x ∈ D, the indica-
tor function of C(x) is independent of the indicator func-
tion of every assertion of a concept that does not use C(x),
given the indicator function of assertions of concepts that
C directly uses. Second, for every role r and for every
(x, y) ∈ D × D, the indicator function of r(x, y) is in-
dependent of every indicator function of assertions, except
those assertions of concepts that use r(x, y). This closes
the specification of CRALC.

We define the t-network of a terminology to be a directed
acyclic graph where each node is a concept name or a re-
striction or a role name. If concept C directly uses other

2The indicator function of a grounded relation C(x) or r(x, y)
yields 1 if the grounded relation holds and 0 otherwise.
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Figure 1: Left: t-network for Kangaroo ontology (Section
1). Right: t-network for terminology Tu (Example 1).

concept/role names, these names appear as parents of C
in the t-network. To simplify the presentation, we assume
that only a concept name C can appear in a restriction ∀r.C
or ∃r.C (without loss of generality, as C can be defined
through other concepts). A restriction ∀r.C or ∃r.C has
parents r and C in the t-network. Figure 1 shows the t-
networks for the Kangaroo ontology (Section 1) and for
the following simple example.

Example 1 (from [8]) Consider terminology Tu:
P (A) = 0.9, B v A, P (B|A) = 0.45, D ≡ ∀r.A,
C ≡ B t ∃r.D, P (r) = 0.3.

Consider a terminology T, a set C containing the concept
names and the restrictions in T, a set R containing the role
names inT, and a finite domainD. Denote by pa(C(a)) the
set of all indicator functions of assertions that C(a) directly
uses (C may be a restriction). Under the Markov condition,
any joint probability distribution for the set X of indicator
functions of assertions from T and D has the form

P (X) =
∏

C∈C;x∈D
P (C(x)|pa(C(x)))×

∏

r∈R;(x,y)∈D×D
P (r(x, y)) . (4)

Throughout the paper we do not differentiate a grounded
relation from its indicator function: C(x) and r(x, y) stand
for indicator functions of binary and unary relations in
Expression (4). We assume throughout the unique-name
assumption: if a and b are distinct names for individu-
als, their interpretations are distinct. We also contemplate
two other assumptions. The confined-domain assumption
says that D has finite known cardinality, denoted by N .
The uniqueness assumption says that there is a precise as-
sessment for each role name (P (r) = β), and for each
concept name we have either a definition C ≡ D, or a
single assessment P (C) = α, or a pair of assessments
{P (C|C ′) = α′, P (C|¬C ′) = α′′} where C ′ must be a
concept name (that can be defined elsewhere). Under these
three assumptions, collectively referred to as the Bayesian
assumption, every CRALC terminology defines a unique
relational Bayesian network [22] whose grounding is a
Bayesian network given by Expression (4). Logics such
as P-CLASSIC and PR-OWL adopt similar assumptions.

An inference in CRALC is the computation of
P (A0(a0)|A) given a terminology and an Abox
A = {Aj(aj)}M

j=1. For instance, given the terminol-
ogy Tu in Example 1 we have the trivial inferences
P (A(a)) = 0.9 and P (A(a)|A(a)) = 1 for any N .

3 Expressivity, complexity, and CRHOrIQ
We now examine the interplay between expressivity and
complexity in CRALC and its extensions. Besides usual
classes P, NP, PSPACE and NEXP, we use three other
classes. A language L is in class PP if there is a nonde-
terministic Turing machine M such that x ∈ L if and only
if more than half of the computations of M on input x end
up accepting, when M has a polynomial-time bound [32];
L is in PPSPACE if the same definition is used but we
replace polynomial-time by polynomial-space [31]; and L
is in PEXP if the same definition is used but we replace
polynomial-time by exponential-time [5].

Define Q
.= P (A0(a0)|A) for an Abox A, and denote by

INFB(Q) the decision problem that returns YES if Q >
1/2 and NO otherwise, under the Bayesian assumption.
The assumption that numeric parameters are coded in unary
is common in description logic research [1]. Even though
in the present context unary specification seems rather ar-
tificial because probabilities are normally coded in binary,
the following easy proposition is worth stating.

Proposition 1 If N is given in unary and probabilities in
binary, INFB(Q) is a PP-complete problem in CRALC.

Proof. Membership: Propositionalize terminology into
Bayesian network with N |C| + N2|R| variables, and run
probabilistic inference. Hardness: for N = 1 the inference
is PP-complete (Bayesian network inference) [27]. 2

A much more interesting question is the complexity of in-
ferences for N in binary, where the domain is exponen-
tially larger than its description. One might conjecture
that, as satisfiability in ALC is in PSPACE, inference in
CRALC should be in PPSPACE. One the other hand, as
Jaeger’s important previous analysis [24] indicates that (un-
less ETIME=NETIME) there must be model representa-
tion systems for which inference is not in P with respect to
N in unary, one might suspect that inference with N in bi-
nary should take us to exponential time complexity of some
sort. The next theorem offers the precise completeness re-
sult for inference; the proof, summarized in the Appendix,
is somewhat long and contains ideas that may be of general
interest.

Theorem 1 If all numbers are given in binary, INFB(Q) is
a PEXP-complete problem in CRALC.

We thus have a clear difference between probabilistic rea-
soning with an enumerated domain (Proposition 1) and
with a compactly specified domain (Theorem 1). One
might try to reduce the complexity of INFB(Q) by start-
ing with a description logic simpler thanALC, for instance
by discarding some operators and negation [2]. However,
one can “probabilistically negate” a concept C by creating
a new concept C ′ that has probability 0 when C obtains and
probability 1 otherwise. Thus the proof of Theorem 1 can



be reconstructed if we restrict CRALC even to the logical
constructs of the simple logic EL (conjunction and existen-
tial quantification) [2]. Hence ALC seems to be the mini-
mal start for a probabilistic description logic, and the gap
between PP and PEXP does seem to be the minimal gap
between an essentially propositional and a truly relational
probabilistic representation system.

We now consider the opposite direction; that is, the com-
plexity of inference in logics that extend CRALC. Consider
the following constructs. A qualified number restriction
(≥ k r.C) has semantics I(≥ k r.C) = {x ∈ D : #{y ∈
D : (x, y) ∈ I(r) ∧ y ∈ I(C)} ≥ k}, where #(·) yields
the cardinality of the set. Number restrictions (≤ k r.C)
and (= k r.C) are defined similarly. An inverse role r−

is interpreted by replacing r− and (x, y) respectively by
r and (y, x) in the semantics. A role hierarchy is based
on inclusions r v s, and a probabilistic version consists
of assessments P (r|s) ∈ [β′, β

′
] and P (r|¬s) ∈ [β′′, β

′′
].

Such probabilistic role hierarchies demand some strenght-
ening of the uniqueness condition: we must assume that
every role r must be either associated with an assessment
P (r) = β or a pair {P (r|s) = β′, P (r|¬s) = β′′}.

It is also possible to add nominals to CRALC; a nominal
is an individual name identified with a concept. Nominals
would add enormous expressivity to CRALC: for instance,
one might express probabilities for a particular individual
a through the assessment P (C|{a}) = α. However it
does not seem reasonable to ask for assessments such as
P ({a}) = α, meaning ∀x ∈ D : P ({a}(x)) = α, because
this sentence is clearly false for every x if α ∈ (0, 1). Ei-
ther the syntax regarding nominals and probabilities must
be significantly changed, so that nominals cannot be as-
signed probabilities, or the inference algorithms presented
later would have to be changed so as to detect inconsis-
tencies between assessments and nominals. In this paper
we do not attempt to model nominals in their full gener-
ality; instead we only allow nominals in restrictions such
as ∀r.{a}, ∃r.{a} and ≥ kr.{a}. Such constructs seem to
capture significant portion of the practical use of nominals.

As usual in description logics, we indicate numeric restric-
tions by the letter Q; inverse roles by I; role hierarchies
by H. We use Or to indicate the restricted use of nomi-
nals described in the previous paragraph. Whenever pos-
sible we remove the letters ALC from names, so CRALC
with the additional features just mentioned is referred to as
CRHOrIQ. This logic contains most of SHOIQ, a logi-
cal basis for the OWL language [19].3 We have:

Theorem 2 If all numbers are given in binary, INFB(Q)
is a PEXP-complete problem in logics whose features con-
tain CREL and are contained in CRHOrIQ.

3To reach SHOIQwe would need transitive roles; this seems
to require new ideas as transitivity violates the Markov condition
(groundings of the same role are dependent given transitivity).

Proof. Membership: argument in Theorem 1 is not affected
by the new features. Hardness follows from Theorem 1. 2

To conclude this section, we briefly comment on failures of
the confined-domain and uniqueness assumptions. By re-
taining the confined-domain assumption and dropping the
uniqueness assumption, the decision problem “min Q >
1/2?” belongs to NEXPPEXP, as there are exponentially
many choices of probabilities (only the vertices of the sets
of distributions can generate minimizing/maximizing prob-
abilities [15], and there are exponentially many vertices)
and for each one of these choices, an oracle in PEXP
yields the answer. One might adopt an homogeneity as-
sumption [8] prescribing that the selection of a probability
(within a probability interval) should be constant across in-
dividuals; this assumption moves the decision problem to
NPPEXP, as there are polynomially many choices concern-
ing probabilities, followed by an oracle in PEXP. Other sit-
uations are more difficult to analyze. For instance, suppose
we adopt uniqueness and take N to be countably infinite.
Using results by Jaeger [23], we know that CRALC has a
0/1-law such that the probability of every restriction goes
to 0 or 1 as N grows without bound [8]; if we could deter-
mine the limiting value of probabilities for quantifiers, then
the grounded network would decompose into a set of in-
dependent Bayesian networks and inference would be PP-
complete. Of course, determining the limiting values for
restrictions is not an easy matter [23], so our point is just
to describe it as a difficult open problem. Likewise, we do
not have complexity results for the challenging problems
that arise when N is unconstrained. In Section 4.3 we pro-
duce approximate methods for such inferences. Indeed, we
focus on approximate inference in the remainder of the pa-
per, as it should be clear that applications will often have to
resort to approximations.

4 Variational inference for CRHOrIQ

We now look into methods that approximate Q =
P (A0(a0)|A), where the assertions in A and the nominals
in the terminology refer to individuals {a1, . . . , aM}. De-
fine D′ .= {a1, . . . , aM} and assume, without loss of gen-
erality, that a0 ∈ D′. If we ground a terminology, we obtain
a directed acyclic graph with N slices: The slice of a is the
set of indicator functions for grounded concepts C(a) and
grounded roles r(a, x) as x ranges over D. Only M slices
refer to named individuals in D′; the other N − M slices
are identical for all purposes, and we can lump them into
a single parameterized slice. The network with a slice per
named individual ai and an additional slice for a “generic”
element x ∈ D\D′ is called the shattered network [8].4

Figure 2 (left) shows the shattered network for terminol-

4This network is a representation for the shattering operation
in first-order variable elimination [11]; the relationship between
shattering and shattered networks is given by [8, Thm. 1].
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Figure 2: Left: shattered network for query P (A(a0)|C(a0)), terminology Tu from Example 1. Middle: fragment of the
factor graph corresponding to the eight leftmost nodes of the shattered network. Right: factor graph for the slice of a0.

ogy Tu in Example 1 and query P (A(a0)|C(a0)); there
is a slice for a0 (the only named individual in the query)
and a single slice for x ∈ D\D′. An additional variable
y ∈ D\D′ is used to represent groundings of roles in the
parameterized slice.

Parts of the shattered network can be eliminated using d-
separation, possibly leading to substantial savings. For
instance, if d-separation eliminates all quantifiers and
interval-valued assessments, we face a Bayesian network
inference. We assume that such easy cases are detected be-
fore our variational method is employed.

In what follows we focus on universal/existential restric-
tions for the sake of space. Numeric restrictions and role
hierarchies can be handled with straightforward modifica-
tions, while inverse roles can also be handled by the same
methods but the equations presented later must be changed
significantly. Finally, each nominal a that appears in re-
strictions can be dealt with by creating a concept {a} such
that {a}(a) holds while {a}(x) does not hold for x 6= a;
the shattered network now has all nodes {a}(x) clamped to
false in its parameterized portion, and all techniques pre-
sented later apply. (A different scheme for inference in
CRALC with restricted nominals can be found in [33].)

4.1 Inference under the Bayesian assumption

Under the Bayesian assumption every grounded network
is a Bayesian network. Such networks tend to be densely
connected due to the presence of restrictions. Indeed, even
the state-of-art inference engine ACE [6] fails to handle the
grounded network of Example 1 for N = 10. We have
previously suggested the use of Loopy Belief Propagation
(LBP) for approximate inference in large grounded net-
works [8, 33]. The key observation is that many messages
in LBP are repeated across the grounded network, and can
therefore be lumped into parameterized messages. The re-
sulting parameterized LBP is similar to the lifted propaga-
tion scheme of Singla and Domingos [38]. The difference
is that Singla and Domingos’ algorithm applies to a gen-
eral logic and offers few guarantees regarding the number
of lifted messages to be exchanged in each iteration, while
the number of parameterized messages is fixed in our previ-

ous method, due to the regularity of CRALC terminologies.
To understand the idea behind parameterized LBP, suppose
that in Example 1 we are interested in P (D(a0)|B(a0)).
In LBP we need only to send messages from groundings of
A and r to (∀r.A)(a0), and from this latter node to D(a0).
Node A(a0) sends a single message to (∀r.A)(a0), while
node A(x) sends N − 1 identical messages to (∀r.A)(a0).
Then P ((∀r.A)(a0)) is

(1−P (r)(1−P (A)))N−1(1−P (r)(1−P (A(a0)|B(a0))).

This parameterized LBP scheme, where parameterized
messages are raised to appropriate powers because they
stand for sets of messages, is iterated until convergence.

In this section we present improvements to this parameter-
ized LBP scheme, motivated by two observations. First,
while LBP usually displays excellent empirical perfor-
mance, in LBP all nodes are treated alike, thus forsak-
ing the possible exploitation of logical reasoning in a t-
network. We expect that applications for probabilistic de-
scription logics will contain quite a few deterministic def-
initions and Boolean operators. Hence it is important to
develop probabilistic inference that can exploit logical in-
ference whenever appropriate. Second, we note that most
terminologies in the literature are represented as relatively
sparse graphs; we expect that applications will contain t-
networks such that the case N = 1 admits exact inference.

The natural strategy is to examine variational methods that
improve LBP by processing regions (sets of nodes) [41].
In fact we may ignore the variational justification of our
algorithm and view it as a clustered propagation method,
where messages are exchanged amongst regions. As there
is no systematic way in the literature to define such regions
optimally, we propose a scheme that is well suited to our
purposes, by grouping nodes in the shattered network into
larger conglomerates, and then running LBP on a set of re-
gions that emerges easily from these conglomerates. In or-
der to group nodes without concerns about directed cycles,
we use factor graphs; that is, undirected bipartide graphs
where circular nodes correspond to variables and rectangu-
lar nodes correspond to factors of the joint distribution, and
where an edge connects a circular node and a rectangular
node when the variable in the former defines the domain of



the factor in the latter. Each factor fj(Xj) is a conditional
probability distribution, where Xj is a set of indicator func-
tions of grounded relations. Figure 2 (middle) depicts the
factor graph for a fragment of Figure 2 (left).

Our proposal is to transform each slice of the grounded net-
work into a small set of factors, and run LBP in the result-
ing factor graph, while running exact inference inside some
of the factors. We now elaborate this idea.

Consider the slice for individual a. Multiply together every
probability distribution in the slice for a, except the distri-
butions for indicator variables of restrictions (∀r.A)(a) and
(∃r.A)(a).5 The resulting product is called the factor for a,
and denoted by fa. We now construct a factor graph where
all factors used to produce fa are replaced by the factor fa

itself, and run LBP in this compact factor graph.

Denote by Ba the Bayesian network with all nodes used in
fa, and refer to nodes in Ba that are not grounded at a as
extraneous node. For instance, if (∀r.B)(a) belongs to Ba,
then B(b) is an extraneous node in Ba. Denote by Ea the
variables in Ba that correspond to members of the Abox of
interest (that is, the evidence in the query).

To simplify the calculation of messages, we introduce an
individual b 6∈ D′. So we have the individuals in D′ plus
b and then x standing for all other elements of the domain.
Figure 2 (right) depicts a fragment of the resulting factor
graph for Example 1, corresponding to the slice of a0. We
must propagate the following messages until convergence
[41, Eqs. (4), (5)], for a concept A and a ∈ D′ ∪ {b}:

nA(a)→fa′ (A(a)) =
∏

f ∈ G(A(a))\fa′

mf→A(a)(A(a)),

mfa′→A(a)(A(a)) =
∑

Xa′\A(a)

fa′(Xa′)
∏

Â(â) ∈ G(fa′ )\A(a)

nÂ(â)→fa′
(Â(â)),

where G(·) denotes neighbors in the compact factor graph.
Consider the computation of message mfa→A(a), sent to
node A(a) from fa. The distribution of an extraneous node
is either a message nB(ai)→fa

from individuals ai, or a
message nB(b)→fa

from the generic individual b, or a pa-
rameterized message nB(x)→fa

. The only question is how
to handle the N −M messages nB(x)→fa

at once, without
actually writing them all. Note that nB(x)→fa

is actually
equal to nB(b)→fa

, because any particular x behaves like
b. So, we compute the message for b and just use the re-
sult for the remaining elements represented by x (this is
the reason to keep an individual b separately). As LBP
takes these N − M − 1 messages related to x to be in-
dependent, and we can use this approximation to compute

5In our implementation we decompose each such restriction
into conjunction/disjunction of two pieces: one is entirely related
to a and its factors are kept within fa; the other is related to other
elements of the domain and is kept outside of fa. This increases
the cluster related to fa, improving accuracy and performance.

in closed-form the effect of these messages. A simple ex-
ample: Take (∀r.B)(a); we need P (

∧
x r(a, x) → B(x)),

approximated by (1 − P (r(a, x)) (1 − nB(b)→fa
))N−M

(the exponent N − M is needed because the calculation
stands for this many elements of the domain). In short,
the message mfa→A(a) is the result of probabilistic infer-
ence in Ba with a particular set of distributions for extra-
neous nodes. Similar reasoning yields messages mfb→A(b)

and mfa→A(b). Messages nA(a)→fa
can be interpreted as

P (A(a),Ea)×∏
f ∈ N(A(a)\fa

P (Eb|A(a)), where terms
are computed in Ba. The point is that messages can be
computed as inferences in appropriate Bayesian networks.

As factor fa and its incoming messages represent a
Bayesian network in each iteration, we can use recent al-
gorithms that exploit determinism within probabilistic in-
ference [6, 12, 35]. The use of larger regions leads to im-
provements in accuracy compared to LBP, while the use
of logical inference within regions leads to gains in speed.
Of course, it may happen that a particular problem has a t-
network so complex that Bayesian network inference fails
even for N = 1. In this case the method can be applied by
breaking factors more finely; that is, by selecting smaller
regions for the propagation [41].

4.2 Experiments under the Bayesian assumption

We now describe experiments with the proposed inference
algorithm. We have used the ACE engine for the proba-
bilistic calculations as it can exploit logical inference [6],
running in a dual core Pentium 2GHz with 2GBytes of
memory. As we have indicated, the current technology on
exact probabilistic inference can only deal with small N ;
it does not seem that an extensive comparison between ap-
proximations and exact results is possible at the moment.
We analyze a few examples that illustrate well our method.

In the following tables we present results of exact infer-
ence, then LBP, then our proposed method. Exact infer-
ence always produced results within two seconds but failed
for N > 9 due to memory exhaustion. The results of
LBP (on the grounded network) and parameterized LBP
are identical, but their running times are different. We only
present results in cases where (grounded) LBP converged
in less than 45 minutes. Overall, paremeterized LBP runs
in milliseconds and is slightly slower (about 15%) than our
proposed method. For the latter we present the result of
the inference and the running time in milliseconds (respec-
tively the last two rows of the tables). We always initial-
ize messages with the results of probabilistic inference in a
grounded Bayesian network for N = 1.

First, we present inferences P (C(a0)) for Example 1. Note
first that the proposed method is more accurate than LBP.
It is also remarkable that the proposed method always con-
verged within two iterations, while the number of iterations
for LBP varied but was always much larger. We have:



N 1 5 9 50 200 500
Exact: 0.5535 0.8445 0.9210 — — —
LBP: 0.5781 0.8558 0.9421 0.9798 — —

Proposed: 0.5335 0.8445 0.9285 0.9739 0.4723 0.4050
Runtime(ms): 32 30 30 29 29 29

Our next experiment uses the probabilistic Kangaroo on-
tology (Section 1), as this ontology leads to very dense
grounded networks. We compute P (Parent(a0)) (again,
convergence with LBP took dozens of iterations, while our
proposed method always converged almost instantly):

N 1 5 9 20 50 200
Exact: 0.1620 0.3536 0.4481 — — —
LBP: 0.0875 0.3196 0.4299 0.5243 — —

Proposed: 0.1620 0.3536 0.4481 0.5268 0.5399 0.5400
Runtime(ms): 32 32 34 30 36 32

We finish with a larger terminology containing substan-
tial deterministic information. We have randomly gener-
ated a terminology whose t-network has 20 nodes, 15 of
which are associated with deterministic definitions and 2
others are associated with restrictions. We compute infer-
ence P (A(a0)) where A(a0) is the node whose inference
requires most computation:

N 1 5 9 20 50 200
Exact: 0.7240 0.7544 0.7694 — — —
LBP: 0.6452 0.6991 0.7257 0.7479 — —

Proposed: 0.7240 0.7544 0.7694 0.7819 0.7840 0.7840
Runtime(ms): 68 71 69 68 74 70

To conclude this section, we note that inferences such as
P (A(a0)|A) = α are not the only ones our method can
produce. To illustrate this, consider the completely differ-
ent question, “What is the tighest interval [α, α] such that

∀x ∈ D : P (A(x)|A) ∈ [α, α]?′′.

We answer this question by collecting probabilities across
the domain P (A(x)|A) after running inference. For in-
stance, consider Example 1 with N = 9 and evidence
A = {¬C(a0),¬D(a1), B(a2),¬B(a3)}. We then obtain
∀x ∈ D : P (A(x)|A) ∈ [0.598, 1].

4.3 Dropping assumptions

In this very brief section we comment on failures of the
Bayesian assumption. Suppose we have the uniqueness
assumption but N is countably infinite, thus failing the
confined-domain assumption. As already remarked in Sec-
tion 3, results by Jaeger [23] show that a unique joint dis-
tribution exists in this case. To obtain approximate infer-
ences for N = ∞, run the propagation method with in-
creasing values of N : there will be a point where prob-
abilities raised to N − M become smaller than machine
precision, and at that point we reach approximations valid
for N = ∞. For instance, for the network of Exam-
ple 1, all messages related to quantifiers are deterministic
for N = 500, so the approximate value for P (C(a0)) is

0.4050 for N = ∞. This is a nice result because in this
example one can show that P (C(a0)) is exactly 0.4050 for
N = ∞ [8]. Note that it would be misleading to take the re-
sult for N = 50 as an approximation for the case N = ∞:
while the correct value is P (C(a0)) = 0.4050, LBP pro-
duces P (C(a0)) = 0.9798 for N = 50.

When N is unconstrained we may have different inferences
for varying N : uniqueness of probabilities is not guaran-
teed. Thus it is reasonable to analyze unconstrained N
together with failure of the uniqueness assumption. We
should expect most applications to stay within uniqueness,
but there are several reasons why uniqueness may fail in a
probabilistic description logics. One reason is that a stan-
dard inclusion C v D does imply P (C|¬D) = 0, but
nothing is implied about P (C|D). Another reason is that a
precise assessment such as P (C|A tB) = α does not nec-
essarily constrain probabilities such as P (C|A uB) down
to a single value, so uniqueness may fail. A version of LBP
that handles probability intervals can be used when unique-
ness fails [8]. This version of LBP, called L2U [20] is sim-
ilar to LBP but it propagates the interval-valued messages
derived in the 2U algorithm [15]. We have only two obser-
vations to make in this setting. First, as handling uncon-
strained N is akin to handling probability intervals, mes-
sages that are propagated must only be adapted by conduct-
ing, for each message, a minimization and a maximization
with respect to N . Second, we emphasize that our method
allows each slice to be processed in isolation, and spe-
cific methods for inference with probability intervals can
be used inside such factors [9].

To illustrate these techniques, consider again the terminol-
ogy in Example 1. Suppose we discard the assessment
P (B|A) = α2, leaving only the standard inclusion B v A
for B. By propagating messages with N = 10, we ob-
tain P (C(a0)) ∈ [0.9179, 0.9917]. If we only impose that
N ≤ 20, leaving N otherwise unconstrained, we obtain
P (C(a0)) ∈ [0.2910, 0.9831].

5 Conclusion

This paper has contributed with novel complexity analy-
sis and algorithms for inference in a family of probabilis-
tic description logics with interpretation-based semantics
and assumptions of acyclicity and independence. Vari-
ants of Proposition 1 and Theorem 1 should apply to other
relational/first-order probabilistic models [16, 34]; we note
that currently there are relatively few results on complexity
for these models. Also, our analysis produces a meaning-
ful class of PEXP-complete problems that may be useful
to other applications.

Concerning algorithms, the contributions here center
around a variational scheme that, essentially, breaks the
shattered network into smaller units, so as to employ logi-
cal inference whenever possible. This idea should be useful



to other probabilistic logics. Experiments demonstrate that
our techniques are better than existing ones and in fact can
handle problems of practical significance. The method can
be adapted to handle infinite and unconstrained domains,
as well as situations where uniqueness is violated. Clearly,
many improvements and extensions can be contemplated;
in particular, most of this paper focuses on the Bayesian
assumption, and more work is to be devoted to situations
where this assumption fails.

In this paper we have increased substantially the expres-
sivity of CRALC, while keeping intact both the worst-case
complexity and the basic variational method. We feel jus-
tified in starting from CRALC as it seems to be a minimal
starting point for an interpretation-based probabilistic de-
scription logic, as noted in Section 3. A challenge for the
future is to include transitivity and cyclic definitions; these
features may require a move to undirected t-networks (alas,
the usual Markov condition for undirected graphs does not
guarantee factorization when deterministic constraints are
present [30], so the move to undirected graphs may require
substantially new ideas). Other extensions would be de-
sirable, such as unrestricted nominals, but they appear to
be quite challenging. As practical applications should be
valuable in indicating which constructs are really useful,
we plan to devote some effort to applications before we at-
tempt to study all of these extensions.
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A Proof of Theorem 1

Membership: Propositionalize the terminology into an ex-
ponentially large Bayesian network and run inference (a
PP-complete problem in the exponentially large network).
Hardness: We resort to bounded domino problems. A
domino system consists of a finite set D of tiles and a pair
of compatibility relations on D ×D, respectively express-
ing horizontal and vertical constraints between tiles. Some
tiles, the initial conditions, are assigned to a torus U(s, t),
and the torus has a tiling if it is possible to cover the whole
torus while respecting the constraints and the initial con-
ditions. Börger et al [4, Thm. 6.1.2] show that given a
(time/space) bounded Turing machine one can construct a
bounded domino system that reproduces its behavior. How-
ever their reduction is not parsimonious [32, Sec. 18.1] as
the number of accepting paths and the number of tilings
may differ. A parsimonious reduction can be constructed
by enlarging the original bounded Turing machine into a

machine that visits every cell in its tape (within the space
bound) and that reaches the final accepting state only af-
ter a prescribed number of operations (by counting opera-
tions via auxiliary counters). Consider then a Turing ma-
chine solving some selected NEXP-complete problem of
size O(n) in such a way that its translation into a domino
system involves a torus of size 2n × 2n. We wish to en-
code this domino system using a CRALC terminology. To-
bies shows how to encode such a torus U(2n, 2n) with
ALCQ plus several cardinality constraints [39]. We can
adapt his construction to ALC with a single cardinality
constraint N = 2n × 2n. To do so, we take the defini-
tions of concepts C0,0, Deast and Dnorth exactly as in To-
bies’ work; additionally, the constraints (∃C0,0), (∀Deast),
(∀Dnorth), (∀(∃east.>)), (∀(∃north.>)), where: > de-
notes A t ¬A for some A not in the terminology; (∃C)
denotes ∃x ∈ D : C(x); (∀C) denotes ∀x ∈ D : C(x).
Using these constraints it is possible to construct an isomor-
phism between any model of the terminology and a torus
U(2n, 2n) (by Tobies’ finite induction argument plus the
fact that the constraint on N forces a single element to be
associated with each point in the torus [39, pp. 205-206]).

The key insight now is to “simulate” constraints such as
(∀C) and (∃C) using probabilities. To do so, assign prob-
ability 1/2 to every free concept/role in Tobies’s construc-
tion (P (Xi) = P (Yi) = P (east) = P (north) = 1/2)
and introduce a new role r and assessment P (r) = 1. The
probability P (C ′(a0)) for a concept C ′ ≡ ∀r.C u ∃r.C0,0,
where C is the conjunction Deast uDnorth u (∃east.>) u
(∃north.>), is the probability that a torus is built under
the probabilistic assessments. We must still encode the
compatibility relations and the initial conditions on the
torus; this is done exactly as in Tobies’ construction, by us-
ing concepts Cd, Ci,0 and associated definitions and con-
straints of the form (∀C). We again simulate these latter
constraints probabilistically: introduce P (Cd) = 1/2 for
all Cd, define Ĉ ≡ C ′ u ∀r.C ′′ where C ′′ is the conjunc-
tion of all concepts used in the compatibility constraints
and initial conditions. Now γ

.= P (Ĉ(a0)) is the probabil-
ity that a torus satisfying all conditions is built. If we can
recover the number of tilings of the torus from γ, we ob-
tain the number of accepting computations of the original
exponentially-bounded Turing machine. Note that γ × 2δ

is the number of truth assignments that build the torus sat-
isfying horizontal and vertical relations and initial condi-
tions, where δ is the number of logically independent ran-
dom variables in the grounding of the terminology (we have
δ = 22N (2N +22N+1 + |D|)). This number is not equal to
the number of tilings of the torus; to produce the number of
tilings of the torus, we must compute γ × 2δ/22n!, where
we divide the number of satisfying truth assignments by
the number of repeated tilings. Consequently we obtain the
number of accepting computations of the original Turing
machine just by processing the inference P (Ĉ(a0)). This
shows that INFB(Q) is PEXP-hard.2
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