
Robust Graphical Modeling with t-Distributions

Michael A. Finegold
Department of Statistics

The University of Chicago
Chicago, IL 60637

Mathias Drton
Department of Statistics

The University of Chicago
Chicago, IL 60637

Abstract

Graphical Gaussian models have proven to
be useful tools for exploring network struc-
tures based on multivariate data. Applica-
tions to studies of gene expression have gener-
ated substantial interest in these models, and
resulting recent progress includes the devel-
opment of fitting methodology involving pe-
nalization of the likelihood function. In this
paper we advocate the use of the multivari-
ate t and related distributions for more ro-
bust inference of graphs. In particular, we
demonstrate that penalized likelihood infer-
ence combined with an application of the EM
algorithm provides a simple and computa-
tionally efficient approach to model selection
in the t-distribution case.

1 INTRODUCTION

Graphical Gaussian models have attracted a lot of re-
cent interest. In these models, an observed random
vector Y = (Y1, . . . , Yp) is assumed to follow a multi-
variate normal distribution Np(µ,Σ), where µ is the
mean vector and Σ the positive definite covariance
matrix. Each model is associated with an undirected
graph G = (V,E) with vertex set V = {1, . . . , p}, and
defined by requiring that for each non-edge (i, j) /∈ E,
the variables Yi and Yj are conditionally independent
given all the remaining variables Y\{i,j}. Here, \{i, j}
denotes the complement V \ {i, j}. Such pairwise con-
ditional independence holds if and only if Σ−1

ij = 0.
Therefore, inferring the graph corresponds to inferring
the non-zero elements of Σ−1.

Classical solutions to the graph or model selec-
tion problem include constraint-based approaches that
test the model-defining conditional independence con-
straints, and score-based searches that optimize a
model score over a set of graphs. Recently, however,

penalized likelihood approaches based on the one-norm
of the concentration matrix Σ−1 have become increas-
ingly popular. Meinshausen and Bühlmann (2006)
proposed a heuristic method that uses lasso regres-
sions of each variable Yi on the remaining variables
Y\i := Y\{i}. In subsequent work, Yuan and Lin (2007)
and Banerjee et al (2008) discuss the computation of
the exact solution to the convex optimization prob-
lem arising from the likelihood penalization. Finally,
Friedman et al (2008) developed the graphical lasso
(glasso), which is a computationally efficient algorithm
that maximizes the penalized log-likelihood function
through coordinate-descent. The theory that accom-
panies these algorithmic developments supplies high-
dimensional consistency properties under assumptions
of graph sparsity; see e.g. Ravikumar et al (2008).

Inference of a graph can be significantly impacted,
however, by deviations from normality. In particular,
contamination of a handful of variables in a few exper-
iments can lead to a drastically wrong graph. Applied
work thus often proceeds by identifying and removing
such experiments before data analysis, but such out-
lier screening can become difficult with large datasets.
More importantly, removing entire experiments as out-
liers may discard useful information from the uncon-
taminated variables they may contain.

The existing literature on robust inference in graph-
ical models is fairly limited. One line of work con-
cerns constraint-based approaches and adopts robus-
tified statistical tests (Kalisch and Bühlmann, 2008).
An approach for fitting the model associated with a
given graph using a robustified likelihood function is
described in Miyamura and Kano (2006).

In this paper we extend the scope of robust inference
by providing a tool for robust model selection that
can be applied with rather highly multivariate data.
We build upon the glasso of Friedman et al (2008)
but model the data using multivariate t-distributions.
Using the EM algorithm, the tlasso we propose is only
slightly less computationally efficient than the glasso.



In §2 we review maximization of the penalized Gaus-
sian log-likelihood using the glasso. In §3 we introduce
the multivariate t-distribution and review maximiza-
tion of the (unpenalized) log-likelihood using the EM
algorithm. In §4.1 we combine the two techniques into
the tlasso to maximize the penalized log-likelihood in
the multivariate t case; in §4.2 we show simulation re-
sults comparing the glasso with the tlasso; and in §4.3
we use the two methods on gene expression data. Fi-
nally, in §5 we show how the tlasso can be modified for
an alternative multivariate t-distribution.

2 THE GRAPHICAL LASSO

Suppose we observe a sample of n independent random
vectors Y1, . . . , Yn ∈ Rp that are distributed accord-
ing to the multivariate normal distribution Np(µ,Σ).
Likelihood inference about the covariance matrix Σ is
based on the log-likelihood function

`(Σ) = −np
2

log(2π)− n

2
log det(Σ)− n

2
tr(SΣ−1),

where the empirical covariance matrix

S =
1
n

n∑
i=1

(Yi − Ȳ )(Yi − Ȳ )T

is defined based on deviations from the sample mean
Ȳ . Let Θ = (θij) = Σ−1 denote the p×p-concentration
matrix. In penalized likelihood methods a one-norm
penalty is added to the log-likelihood function, which
effectively performs model selection because the result-
ing estimates of Θ may have entries that are exactly
zero. Omitting irrelevant factors and constants, we are
led to the problem of maximizing the function

log det(Θ)− tr(SΘ)− ρ‖Θ‖1 (1)

over the cone of positive definite matrices. Often the
one-norm is defined as

‖Θ‖1 =
∑

1≤i<j≤p

|θij |

such that only the off-diagonal entries of Θ are involved
in the regularization term. The multiplier ρ is a posi-
tive tuning parameter. Larger values of ρ lead to more
entries of Θ being estimated as zero. The tuning of ρ is
typically done through cross-validation or information
criteria.

The glasso is a computationally efficient method for
solving the convex optimization problem in (1). Its
iterative updates operate on the covariance matrix Σ.
In each step one row (and column) of the symmetric
matrix Σ is updated based on a partial maximization
of (1) in which all but the considered row (and column)

of Θ are held fixed. This partial maximization is solved
via coordinate-descent as briefly reviewed next.

Partition off the last row and column of Σ = (σij) and
S as

Σ =
(

Σ\p,\p Σ\p,p

ΣT
\p,p σpp

)
, S =

(
S\p,\p S\p,p

ST
\p,p Spp

)
.

Then, as shown in Banerjee et al (2008), partially max-
imizing Σ\p,p with Σ\p,\p held fixed yields Σ\p,p =
Σ\p,\pβ̃, where β̃ minimizes

‖(Σ\p,\p)1/2β − (Σ\p,\p)−1/2S\p,p‖2 + ρ‖β‖1

with respect to β ∈ Rp−1. The glasso finds β̃ by coordi-
nate descent in each of the coordinates j = 1, . . . , p−1,
using the updates

β̃j =
T

(
Sjp −

∑
k<p,k 6=j σkj β̃k, ρ

)
σjj

where T (x, t) = sgn(x)(|x| − t)+. The algorithm then
cycles through the rows and columns of Σ and S until
convergence; see Friedman et al (2008).

3 GRAPHICAL T -MODELS

3.1 MULTIVARIATE T -DISTRIBUTION

The multivariate t-distribution tp,ν(µ,Ψ) on Rp has
Lebesgue density

fν(y;µ,Ψ) =
Γ(ν+p

2 )|Ψ|−1/2

(πν)p/2Γ(ν
2 )[1 + δy(µ,Ψ)/ν](ν+p)/2

(2)
with δy(µ,Ψ) = (y − µ)T Ψ−1(y − µ) and y ∈ Rp. The
vector µ ∈ Rp and the positive definite matrix Ψ deter-
mine the expectation and covariance matrix of the dis-
tribution, namely, if Y ∼ tp,ν(µ,Ψ) with ν ≥ 3 degrees
of freedom then E[Y ] = µ and V[Y ] = ν/(ν − 2) · Ψ.
From here on we will assume ν ≥ 3 such that the co-
variance matrix exists.

If X ∼ Np(0,Ψ) is a multivariate normal random
vector independent of the Gamma-random variable
τ ∼ Γ(ν/2, ν/2), then Y = µ + X/

√
τ ∼ tp,ν(µ,Ψ);

see Kotz and Nadarajah (2004). This scale-mixture
representation, illustrated in Figure 1, allows for easy
sampling. It also clarifies how the use of t-distributions
leads to more robust inference because extreme obser-
vations can be generated via small values of τ .

Let G = (V,E) be a graph with vertex set V =
{1, . . . , p}. We define the associated graphical model
for the t-distribution by requiring that Ψ−1

ij = 0 for in-
dices i 6= j corresponding to a non-edge (i, j) 6∈ E.
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Figure 1: Graph representing the process generating a
multivariate t-random vector Y from a latent Gaussian
random vector X and a single latent Gamma-divisor.

This mimics the Gaussian model in that zero con-
straints are imposed on the inverse of the covariance
matrix. However, in a t-distribution this no longer cor-
responds to conditional independence, and the density
fν(y;µ,Ψ) does not factor according to the graph. The
conditional dependence manifests itself in particular in
conditional variances in that even if Ψ−1

ij = 0,

V[Yi|Y\i] 6= V[Yi|Y\{i,j}].

Nevertheless the following property still holds.

Theorem 1. Let Y ∼ tp,ν(µ,Ψ), where Ψ is a positive
definite matrix with Ψ−1

ij = 0 for indices i 6= j corre-
sponding to the non-edges in the graph G. If two nodes
i and j are separated by a set of nodes C in G, then
Yi and Yj are conditionally uncorrelated given YC .

This connection to zero conditional correlations is ap-
pealing because it entails that mean-square error opti-
mal prediction of variable Yi can be based on the vari-
ables Yj that correspond to neighbors of the node i in
the graph. Alternatively, we can interpret the edges
of the graph as indicating the allowed conditional de-
pendencies in the latent Gaussian vector X.

3.2 EM ALGORITHM FOR ESTIMATION

The lack of density factorization properties compli-
cates likelihood inference with t-distributions. How-
ever, the EM algorithm provides a way to exploit
Gaussian techniques. Equipped with the normal-
Gamma construction, we treat τ as a hidden variable
and use that the conditional distribution of Y given τ
is Np(µ,Ψ/τ). The E-step is simple because

E[τ |Y ] =
ν + p

ν + δY (µ,Ψ)
; (3)

see Liu and Rubin (1995). We now outline the EM
algorithm for the t-distribution assuming the degrees
of freedom ν to be known. In practice, ν could also
be estimated in a line search that is best based on the
actual t-likelihood (Liu and Rubin, 1995).

Consider an n-sample Y1, . . . , Yn drawn from
tp,ν(µ,Ψ). Let τ1, . . . , τn be an associated sequence

of hidden Gamma-random variables. Observation
of the τi would lead to the following complete-data
log-likelihood function for µ and Θ = Ψ−1:

`hid(µ,Θ|Y, τ) ∝ n

2
log det(Θ)− 1

2
tr

(
Θ

n∑
i=1

τiYiY
T
i

)

+ µT Θ
n∑

i=1

τiYi −
1
2
µT Θµ

n∑
i=1

τi, (4)

where, with some abuse, the symbol ∝ indicates
that irrelevant additive constants are omitted. The
complete-data sufficient statistics

Sτ =
n∑

i=1

τi, SτY =
n∑

i=1

τiYi, SτY Y =
n∑

i=1

τiYiY
T
i

are thus linear in τ . We obtain the following EM al-
gorithm for computing the maximum likelihood esti-
mates of µ and Ψ:

E-step: Given current estimates µ(t) and Ψ(t) com-
pute τ (t+1)

i = (ν + p)/(ν + δY (µ(t),Ψ(t))).

M-step: Calculate the updated estimates

µ(t+1) =

n∑
i=1

τ
(t+1)
i Yi

n∑
i=1

τ
(t+1)
i

, (5)

Ψ(t+1) =
1
n

n∑
i=1

τ
(t+1)
i [Yi − µ(t+1)][Yi − µ(t+1)]T .

Note that the E-step uses the result in (3).

4 PENALIZED T -LIKELIHOOD

4.1 THE TLASSO

Model selection in graphical t-models can be per-
formed in principle by any of the classical constraint-
and score-based methods. In score-based searches
through the set of all undirected graphs on p nodes,
each model would have to be refit using an iterative
method. However, the penalized likelihood approach
circumvents this problem in a way that is similar to
structural EM algorithms (Friedman, 1997).

Like in the Gaussian case, we put a one-norm penalty
on the elements of Θ = Ψ−1 and wish to maximize the
penalized log-likelihood function

`ρ,obs(µ,Θ|Y ) =
n∑

i=1

log fν(Yi;µ,Θ−1)− ρ‖Θ‖1, (6)

where fν is the t-density from (2). To achieve this we
will use a modified version of the EM algorithm taking
into account the one-norm penalty.



We treat τ as missing data. In the E-step of our algo-
rithm, we calculate the conditional expectation of the
penalized complete-data log-likelihood

`ρ,hid(µ,Θ|Y, τ)

∝ n

2
log |Θ| − n

2
tr

(
ΘSτY Y (µ)

)
− ρ‖Θ‖1, (7)

where

SτY Y (µ) =
1
n

n∑
i=1

τi(Yi − µ)(Yi − µ)T .

Since `ρ,hid(µ,Θ|Y, τ) is again linear in τ , the E-step
takes the same form as in §3.2.

Let µ(t) and Θ(t) be the estimates after the tth itera-
tion, and τ

(t+1)
i the conditional expectation of τi cal-

culated in the (t+ 1)th E-step. Then in the M-step of
our algorithm we wish to maximize

n

2
log |Θ| − n

2
tr

(
ΘSτ(t+1)Y Y (µ)

)
− ρ‖Θ‖1

with respect to µ and Θ. Differentiation with respect
to µ yields µ(t+1) from (5) for any value of Θ. There-
fore, Θ(t+1) is found by maximizing

n

2
log |Θ| − n

2
tr(ΘSτ(t+1)Y Y (µ(t+1)))− ρ‖Θ‖1. (8)

The quantity in (8), however, is exactly the objective
function maximized by the glasso.

Iterating the E- and M-steps just described we obtain
what we call the tlasso algorithm. A nice feature of
the approach is that convergence guarantees can be
given based on the following observation, which can
be proven in similar fashion as the corresponding stan-
dard result about the ordinary EM algorithm.

Theorem 2. The tlasso never decreases the penalized
log-likelihood function of the considered graphical t-
distribution model, that is, in all iterations t = 1, 2, . . .
it holds that

`ρ,obs(µ(t+1),Θ(t+1)|Y ) ≥ `ρ,obs(µ(t),Θ(t)|Y ).

4.2 SIMULATION RESULTS

We ran multiple simulations with a range of ρ values
to compare how well the competing methods recovered
the true edges. Our tlasso is computationally more
expensive, since it calls the glasso at each M-step. But
in our simulations, the algorithm converges quickly. If
we run through multiple increasing values of ρ, it may
take about 15 to 30 EM iterations for the initial small
value of ρ, but only 2 or 3 iterations for later values as
we can start at the previous output. But even in the
initial run, two iterations typically lead to a drastic
improvement (in the t likelihood) over the glasso.
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Figure 2: ROC curves based on averaging 50 simula-
tions withN100-data (true concentration matrices have
off-diagonal elements non-zero with prob. 0.02). The
tlasso uses ν = 3 degrees of freedom.

In the worst case scenario for our tlasso relative to
the glasso—when the data is normal and we assume
a t-distribution with 3 degrees of freedom—almost no
statistical efficiency is lost. In the numerous simula-
tions we have run using normally generated data, the
tlasso and glasso do an essentially equally good job of
recovering the true graph, as illustrated in Figure 2.

The other extreme occurs for data generated from a t-
distribution with 3 degrees of freedom. With p = 100
nodes, a sparse graph, and n = 50 observations, the
tlasso provides drastic improvement over the glasso
at the low false positive rates that are of interest in
practice (Figure 3). The assumption of normality and
the occasional extreme observation lead to numerous
false positives when using the glasso. With n = 200
observations the tlasso does a very good job of re-
covering the true graph and significantly outperforms
the normal approach. Therefore, there is very little
computational—and little or no statistical—downside
to assuming t-distributions, but significant statistical
upside.
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Figure 3: ROC curves based on averaging 50 simu-
lations with t100,3-data (true concentrations non-zero
with prob. 0.02). The tlasso uses ν = 3 df.

A more realistic setting might be one in which nor-
mal data is contaminated in some fashion. Here we
assume that 3 nodes out of 8 are contaminated with
rather large values in a small portion of the data set. In
simulations from such a normal-contamination model,
the tlasso again outperforms the glasso. Even with a
large sample size, the latter method tends to obtain
false positive edges among the 3 contaminated nodes.
The tlasso on the other hand downweights the contam-
inated data points and performs much better.

4.3 GENE EXPRESSION DATA

We consider data from microarray experiments with
yeast strands (Gasch et al, 2000). As in Drton and
Richardson (2008), we limit this illustration to 8 genes
involved in galactose utilization. An assumption of
normality is brought into question in particular by the
fact that in 11 out of 136 experiments with data for
all 8 genes, the measurements for 4 of the genes were
abnormally large negative values. In order to assess
the impact of such a handful of outliers, we run each
algorithm, adjusting the penalty term ρ such that a
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Figure 4: ROC curves based on 50 simulations with
contaminated N8-data (true concentrations non-zero
with prob. 0.2). In 5% of the observations, the same
3 nodes have data generated instead from univariate
normal distributions with mean 25 times the maxi-
mum of any variance term in the original multivariate
normal. The tlasso uses ν = 3 df.

graph with a given number of edges is inferred. Some-
what arbitrarily we will focus on the top 9 edges. We
do this once with all 136 experiments and then again
excluding the 11 potential outliers.

As seen in Figure 5, the glasso infers very different
graphs, with only 3 edges in common. When the “out-
liers” are included, the glasso estimate in Fig. 5(a) has
the 4 nodes in question fully connected; when they are
excluded, no edges among the 4 nodes are inferred.
The tlasso does not exhibit this extreme behavior. As
shown in Fig. 5(b) it recovers almost the same graph in
each case (7 out of 9 edges shared). When run with all
the data, the τ estimate is very small (∼ 0.04) for each
of the 11 questionable observations compared with the
average τ estimate of 1.2. The graph in Fig. 5(c) shows
the results from the alternative tlasso discussed in §5,
which performs just as well as the tlasso.
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Figure 5: Top 9 recovered edges: (a) glasso, (b) tlasso,
(c) alternative tlasso discussed in §5. Dashed edges
were recovered only when including the outliers; dot-
ted only when excluding them; solid in both cases.

5 ALTERNATIVE MODEL

5.1 MOTIVATION

The tlasso from §4 performs particularly well when a
small fraction of the observations are contaminated.
In this case, these observations are downweighted in
entirety and the gain from reducing the effect of con-
taminated nodes outweighs the loss from throwing
away good data from the other nodes. In very high-
dimensional datasets, however, the contamination may
be in small parts of many observations. Downweight-
ing entire observations may then no longer achieve the
desired results.

In the illustrative example below, we evaluate our
methods on two types of data. The same underly-
ing N50 distribution is used to generate the data in
both cases. In the first case, represented by the top

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Alternate Contaminated Normal (p=50,n=100)

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

20 highly contaminated  observations
100 partially contaminated observations

Figure 6: ROC curves for contaminated N50-data
(true concentrations non-zero with prob. 0.1). First,
the same 15 nodes are contaminated in 20 observa-
tions. Second, for 5 blocks of 20 observations a differ-
ent set of 3 nodes is contaminated. All ”contaminated”
nodes are drawn from univariate normals with mean
10 times the maximum of any covariance. The tlasso
uses ν = 3 df.

curve, the same 15 nodes are contaminated in 20 ob-
servations; in the second case, a different group of 3
nodes is contaminated in each of 5 blocks of 20 ob-
servations. The overall contamination level, concen-
tration matrix, and uncontaminated data are exactly
the same for both cases, but the difference in the per-
formance of the tlasso in the two cases is significant.
In the first case, the tlasso downweights the contam-
inated observations and uses the rest of the data to
recover the graph. In the second case, all observa-
tions are contaminated in some coordinates and there
is little gained from weighting them differently. The
tlasso cannot cope with this latter situation and will
generate false positives for the edges connecting the
co-contaminated nodes.

The results of the glasso are not shown in the figure for
the sake of clarity, but the tlasso still outperforms the
glasso in both cases. In the second case, the tlasso at
least downweights the most extreme cases. The normal
model obtains false positives for edges for almost all of
the co-contaminated nodes, except for values of ρ so
small that most of the true positives are missed.

5.2 SPECIFICATION OF THE
ALTERNATIVE T -MODEL

To handle the above situation better, we consider an
alternative extension of the univariate t-distribution,
illustrated in Figure 7. Instead of one divisor τ per
p-variate observation, we draw p divisors τj . For j =
1, . . . , p, let τj ∼ Γ(ν/2, ν/2) be independent of each
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Figure 7: Graph representing the process generating
a t∗-random vector Y from a latent Gaussian random
vector X and independent latent Gamma-divisors.

other and of X ∼ Np(0,Ψ). We then say that the
random vector Y with coordinates Yj = µj +Xj/

√
τj

follows an alternative multivariate t-distribution. We
will denote this as Y ∼ t∗p,ν(µ,Ψ).

Unlike for the standard multivariate t-distribution, the
covariance matrix V[Y ] is no longer a constant multiple
of Ψ when Y ∼ t∗p,ν(µ,Ψ). Clearly, the coordinate
variances are still the same, namely V[Yi] = ν/(ν−2) ·
ψii, but the covariance between Yi and Yj with i 6= j
is now

νΓ(ν−1
2 )2

2Γ(ν
2 )2

· ψij ≤
ν

ν − 2
· ψij .

The same matrix Ψ thus implies smaller correlations
(by the same constant multiple) in the t∗-distribution.
This reduced dependence is not surprising in light of
the fact that now different and independent divisors
appear in the different coordinates. Despite the de-
crease in marginal correlations, the result of Theorem 1
does not appear to hold for conditional correlations in
the alternative model.

5.3 ALTERNATIVE TLASSO

Inference in the alternative model presents some dif-
ficulties because the likelihood is not available ex-
plicitly. The complete-data log-likelihood function
`∗ρ,hid(µ,Θ|Y, τ), however, is simply the product of
the evaluations of p Gamma-densities (τ being a vec-
tor now) and a multivariate normal density. We
can thus implement an EM-type procedure if we
are able to compute the conditional expectation of
`∗ρ,hid(µ,Θ|Y, τ) given Y = (Y1, . . . , Yn). This time we
treat the p random variables (τi1, . . . , τip) as hidden
for each observation i = 1, . . . , n. Unfortunately, the
conditional expectation is intractable. However, it can
be estimated using Markov Chain Monte Carlo.

The complete-data log-likelihood function is equal to

`∗ρ,hid(µ,Θ, |Y, τ)

∝ n

2
log |Θ| − n

2
tr

(
ΘS∗τY Y (µ)

)
− ρ‖Θ‖1 (9)

where

S∗τY Y (µ) =
1
n

n∑
i=1

D(
√
τi)(Yi − µ)(Yi − µ)TD(

√
τi)

and D(
√
τi) is the diagonal matrix with

√
τi1, . . . ,

√
τip

along the diagonal. The trace in (9) is linear in the en-
tries of the matrix

√
τi
√
τi

T . A Markov Chain Monte
Carlo procedure for estimating the conditional expec-
tation of this matrix given Y cycles through the coor-
dinates indexed by j = 1, . . . , p and accepts or rejects
a draw from a proposal distribution in order to sample
from the conditional distribution of τij given (τi\j , Y ).
This full conditional is proportional to

q(τij) exp
{
−τ1/2

ij (Yij − µj)Θj\jXi\j

}
where q(τij) is the density of the Gamma-distribution:

Γ
(
ν + 1

2
,
ν + (Yij − µj)2θjj

2

)
We then use q(τij) as the proposal density. We cal-
culate

√
τi
√
τi

T at the end of each cycle through the
p nodes, and then take the average over K iterations.
This solves the problem of carrying out one E-step,
and we obtain the following EM-like algorithm, which
we call the alternative tlasso:

E-step: Given current estimates µ(t) and Ψ(t) com-

pute (
√
τi
√
τi

T )
(t+1)

= 1
K

K∑
k=1

(
√
τi
√
τi

T )
(k)

.

M-step: Calculate the updated estimates

µ
(t+1)
j =

n∑
i=1

τ
(t+1)
ij Yij

n∑
i=1

τ
(t+1)
ij

.

Use these and (
√
τi
√
τi

T )
(t+1)

to compute the ma-
trix S∗

τ(t+1)Y Y
(µ(t+1)) to be plugged into the trace

term in (9). Maximize the resulting penalized log-
likelihood function using the glasso.

5.4 GENE EXPRESSION DATA

With the gene expression data from §4.3, the alter-
native tlasso performs similarly to the tlasso when it
comes to graph recovery. However, it appears to make
better use of the available data. As shown in Figure 8,
it significantly downweights the 11 potential outlier ob-
servations for the 4 nodes in question, but not for the
other nodes. Thus the alternative version is able to
extract information from the “uncontaminated” part
of the 11 observations while downweighting the rest.
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Figure 8: Normalized gene expression data (center),
and inverse weights from tlasso (left) and alternative
tlasso (right). Rows correspond to genes and colums
to observations. Lighter shades indicate larger values.
The tlasso uses only one weight per observation and
so must weight each gene the same. All plots show the
same subset of data including 11 potential outliers.

6 DISCUSSION

Our proposed tlasso algorithm is a simple and effec-
tive method for robust inference in graphical models.
Only slightly more computationally expensive than the
glasso, it can offer great gains in statistical efficiency.
The alternative tlasso is a more flexible extension. We
currently use a Markov Chain Monte Carlo sampler to
carry out a stochastic E-step in this alternative pro-
cedure. This approach is computationally expensive,
and we are in the process of exploring variational ap-
proximations.

We assumed ν = 3 degrees of freedom in our vari-
ous tlasso runs. As suggested in prior work on t-
distribution models, estimation of the degrees of free-
dom can be done efficiently by a line search based on
the observed log-likelihood function. For the alterna-
tive tlasso, we could employ the hidden log-likelihood
function. Nevertheless, our own experience and re-
lated literature suggest that not too much is lost by
fixing the degrees of freedom at some small value.

Finally, we remark that other normal scale-mixture
models could be treated in a similar fashion as the t-
distribution models we considered in this paper. How-

ever, the use of t-distributions is particularly conve-
nient in that it is rather robust to various types of
misspecification and involves only the single degrees
of freedom parameter for the distribution of Gamma-
divisors.
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