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Abstract

Score matching is a recently developed pa-
rameter learning method that is particu-
larly effective to complicated high dimen-
sional density models with intractable par-
tition functions. In this paper, we study
two issues that have not been completely re-
solved for score matching. First, we provide
a formal link between maximum likelihood
and score matching. Our analysis shows that
score matching finds model parameters that
are more robust with noisy training data.
Second, we develop a generalization of score
matching. Based on this generalization, we
further demonstrate an extension of score
matching to models of discrete data.

1 Introduction

Parameter estimation is an important task in ma-
chine learning and statistics. For statistical models
of high dimensional data (e.g., Markov random fields
[Win03]), the most commonly used method, maximum
likelihood, may suffer from the intractable computa-
tion of the normalizing partition functions. Because of
this, there exist several alternative learning schemes,
notable examples include maximum pseudo-likelihood
estimation [Bes74] and contrastive divergence [Hin02].
Recently, a new learning method, known as score
matching, was introduced in [Hyv05], which has been
shown to have several desirable properties. First, it
leads to a consistent estimation, and the key optimiza-
tion is deterministic. More important, the partition
function in the parametric model has no effect in the
optimization, and thus their computation is not nec-
essary. It has been further shown that for certain ex-
ponential family models score matching also has close-
form solutions [Hyv07b]. In practice, score matching
has been applied to models for natural images [KLH09]

and videos [CO09].

Notwithstanding these nice properties and successful
applications, there are still two issues on score match-
ing that have not been thoroughly studied. First, there
lacks a clear relation between maximum likelihood and
score matching, which will help to elucidate its ex-
cellent performance in practice. Second, the original
score matching relies on properties of continuous data
and differentiable models that do not hold for discrete
data. It is thus desirable to develop a similar learning
scheme that can apply to the latter case.

Correspondingly, this paper have two goals. First, we
establish a formal link between maximum likelihood
and score matching, by showing that the objective
function in score matching is the derivative of that of
maximum likelihood in the scale space of probability
density functions with regards to the scale factor. This
suggests an interesting interpretation of score match-
ing that it seeks parameters that lead to models robust
to noisy training data. Second, we provide a gener-
alized score matching that extend the formulation of
the original method while keeping its computational
advantages. Based on this generalization, we demon-
strate an extension of score matching for discrete data.

The rest of this paper is organized as following: in Sec-
tion 2, we provide background of this work. Section 3
focuses on the formal relation between maximum like-
lihood and score matching. Section 4 introduces the
generalized score matching and in Section 5, a specific
instantiation of the generalized score matching is de-
scribed for discrete data. Finally Section 6 concludes
the paper with discussions.

2 Background

In statistical modeling, we are given d dimensional
data ~x with density p(~x), and our goal is to find a
parametric probabilistic model qθ(~x), with θ being the
model parameter, that best matches p(~x). To be more



specific, we choose a divergence metric between prob-
ability density functions, and learning becomes find-
ing parameter θ that minimizes such a divergence of
p(~x) and qθ(~x). Ideally, the divergence metric should
be non-negative, and becomes zero only when the two
densities are equal almost everywhere. So if p(~x) is
a member of the parametric density family of qθ(~x),
the optimal parameter could be found by the learning
procedure.

Based on this general view, the classical maximum
likelihood learning, which finds θ to maximize the log
likelihood function

∫
~x
p(~x) log qθ(~x)d~x, can be equiva-

lently understood as minimizing the Kulback-Leibler
(KL) divergence between p(~x) and qθ(~x) [CT06]:

DKL(p‖qθ) =
∫
~x

p(~x) log
p(~x)
qθ(~x)

d~x. (1)

This is because DKL(p‖qθ) =
∫
~x
p(~x) log p(~x)d~x −∫

~x
p(~x) log qθ(~x)d~x. The first term (the negative dif-

ferential entropy of p(~x)) is a constant with regards
to θ, and the second term is the log likelihood. Thus,
minimizing KL divergence is equivalent to maximizing
the log likelihood. However, in the case when we only
have a large number of training data instead of the
analytical form of p(~x), it is more convenient to work
with the log likelihood function, as its dependency on
p(~x) is through an expectation that can be approxi-
mated with averaging over the training data.

The maximum likelihood learning may become very
difficult for models of high dimensional data. The
problem originates from the requirement that qθ(~x)
should be normalized to one, i.e.

∫
~x
qθ(~x)d~x = 1.

For high dimensional data models such as the Markov
random fields, they are typically defined using un-
normalized components (e.g., clique potentials), and
computing the normalizing constant, known as the
partition function, can be intractable. As maximum
likelihood learning relies on the direct computation
of qθ(~x), this intractable partition function becomes a
major computational bottleneck for learning high di-
mensional data models.

2.1 Score matching

Score matching is a different parameter learning
methodology recently proposed in [Hyv05]. It clev-
erly obviates computing the partition function by us-
ing an alternative divergence metric of density func-
tions, which we call the Fisher divergence. Formally,
the Fisher divergence between p(~x) and qθ(~x) is de-
fined as:

DF (p‖qθ) =
∫
~x

p(~x)
∣∣∣∣∇~xp(~x)
p(~x)

− ∇~xqθ(~x)
qθ(~x)

∣∣∣∣2 d~x, (2)

where ∇~x is the gradient operator with regards to
~x. The learning procedure that finds θ to minimize
DF (p‖qθ) is given the name score matching due to
that ∇~xp(~x)p(~x) is known as the (Fisher) score function in
statistics.

Just as the KL divergence is induced from the Shannon
differential entropy, so does the Fisher divergence from
the Fisher information1,

J(p) =
∫
~x

p(~x)
∣∣∣∣∇p(~x)
p(~x)

∣∣∣∣2 d~x =
∫
~x

p(~x) |∇ log p(~x)|2 d~x.

(3)
Other similarities to the KL divergence include that
the Fisher divergence is non-negative and is zero if
and only if p(~x) = qθ(~x) (a.e.), yet it is not symmetric
and does not form a distance metric.

It is not hard to see that in score matching, there is
no need to use the partition function, in other words,
it can work directly with un-normalized models. This
is because in the score functions, ∇~xp(~x)p(~x) and ∇~xqθ(~x)qθ(~x)

,
the partition functions appear in both the denominator
and the numerator, which cancel out and thus have no
effect to the Fisher divergence. Furthermore, as shown
in [Hyv05], the squared distance of the model score
function from the data score function, as measured by
the Fisher divergence, can be computed as a simple
expectation of functions of the un-normalized model.
To better see this, first expand Eq.(2) as:∫
~x

p |∇~x log p|2 +
∫
~x

p |∇~x log qθ|2 − 2
∫
~x

∇~xpT
∇~xqθ
qθ

.

(4)
Assume that both p(~x) and qθ(~x) are smooth and fast
decaying, such that their logarithms have growth at
most polynomial at infinity. This implies that for both
densities, we have

lim
xi→±∞

p(~x)
∂k

∂xki
log p(~x) = 0, (5)

for any i = 1, · · · , d and certain non-negative integer k.
We can transform, using integration by parts, the last
term in Eq.(4), and use Eq.(5) to ensure that boundary
values vanishes, to have:∫
~x

∇~xpT
∇~xqθ
qθ

= −
∫
~x

p∇T~x∇~x log qθ = −
∫
~x

p4~x log qθ,

where ∇T~x =
∑d
i=1

∂
∂xi

and 4~x = ∇T~x∇~x =
∑d
i=1

∂2

∂x2
i

are the divergence and Laplacian operators, respec-
tively. Subsequently, the Fisher divergence becomes

DF (p‖qθ)=
∫
~x

p
(
|∇~x log p|2+|∇~x log qθ|2+24~x log qθ

)
.

(6)
1Fisher information can be defined for any parameter

in the density. The specific form given in Eq.(3) is for a
location parameter [CT06].



As the first term is independent of the model param-
eter θ, the dependency on p(~x) in searching for the
optimal parameter reduces to the expectation. This is
desirable when we only have observed data, where the
expectation can be approximated with averaging over
the training data set.

3 Score Matching and Maximum
Likelihood

There is a striking similarity between the Fisher di-
vergence and the KL divergence as in Eq.(1). If we
rewrite the Fisher divergence, Eq.(2), as:

DF (p‖qθ) =
∫
~x

p(~x)
∣∣∣∣∇~x log

p(~x)
qθ(~x)

∣∣∣∣2 d~x,
their difference lie in that instead of using the like-
lihood ratio, the Fisher divergence computes the l2
norm of the gradient of the likelihood ratio. This
implies that there may be a deeper relation between
them, and hence between score matching and maxi-
mum likelihood. This is indeed the case and is sum-
marized in the following theorem.

Theorem 1. Let ~y = ~x +
√
t~w, for t ≥ 0 and ~w

a zero-mean white Gaussian vector. Denote p̃t(~y) and
q̃t(~y) as the densities of ~y when ~x has distribution p(~x)
or q(~x), respectively. Assume that p̃t(~y) and q̃t(~y) are
smooth and fast decaying, such that their logarithms
has growth at most polynomial at infinity. We have

d

dt
DKL(p̃t(~y)‖q̃t(~y)) = −1

2
DF (p̃t(~y)‖q̃t(~y)). (7)

As p̃0(~y) = p(~x) and q̃0(~y) = q(~x), we further have
d
dtDKL(p̃t(~y)‖q̃t(~y))

∣∣
t=0

= − 1
2DF (p(~x)‖q(~x)).

To prove Theorem 1, we need the following two lem-
mas, whose proofs are given in the Appendix.

Lemma 1. For any positive valued function f(~x)
whose gradient ∇~x and Laplacian 4~x are well defined,
we have identity

4~xf(~x)
f(~x)

= 4~x log f(~x) + |∇~x log f(~x)|2. (8)

Lemma 2. [Heat kernel] For density p̃t(~y) as defined
in Theorem 1, the following identity holds

d

dt
p̃t(~y) =

1
2
4~yp̃t(~y). (9)

Proof. [Theorem 1] For conciseness in notation, we
drop references to variables ~x and ~y in the integration,
the density functions, and the operators whenever this
does not lead to ambiguity.

First, with Lemma 1, DF (p̃‖q̃) (Eq.(6)) becomes:

DF (p̃‖q̃) =
∫
p̃
(
|∇ log p̃|2 + |∇ log q̃|2 + 24 log q̃

)
=

∫
p̃

(
|∇ log p̃|2 +

4q̃
q̃

+4 log q̃
)
. (10)

Next, expanding the left hand side of Eq.(7), we have:

d

dt
DKL(p̃‖q̃) =

∫
d

dt
p̃ log

p̃

q̃
+
∫
p̃
d

dt
log p̃−

∫
p̃
d

dt
log q̃.

We can eliminate the second term by exchanging inte-
gration and differentiation of t:∫

p̃
d

dt
log p̃ =

∫
p̃
dp̃
dt

p̃
=
∫

d

dt
p̃ =

d

dt

∫
p̃ = 0.

As a result, there are three remaining terms in com-
puting d

dtDKL(p̃‖q̃), which we can further substitute
using Lemma 2, as:

d

dt
DKL(p̃‖q̃)=

∫
d

dt
p̃ log p̃−

∫
d

dt
p̃ log q̃ −

∫
p̃
d

dt
log q̃

=
1
2

(∫
4p̃ log p̃−

∫
4p̃ log q̃−

∫
p̃
4q̃
q̃

)
.

(11)

Using integration by parts, the first term in Eq.(11) is
changed to:∫
4p̃ log p̃ =

d∑
i=1

∂p̃

∂yi
log p̃(~y)

∣∣∣∣yi=∞
yi=−∞

−
∫
∇p̃T∇ log p̃.

The limits in the first term becomes zero given the
smoothness and fast decay properties of p̃(~y). The
remaining term can be further simplified as:∫
∇p̃T∇ log p̃ =

∫
p̃

(∇p̃)T

p̃
∇ log p̃ =

∫
p̃|∇ log p̃|2.

The second term in Eq.(11) can be manipulated simi-
larly, by first using integration by parts to get:∫
4p̃ log q̃ =

d∑
i=1

∂p̃

∂yi
log q̃

∣∣∣∣yi=∞
yi=−∞

−
∫
∇p̃T∇ log q̃.

Applying integration by parts again to
∫
∇p̃T∇ log q̃,

we have∫
∇p̃T∇ log q̃ =

d∑
i=1

p̃
∂ log q̃
∂yi

∣∣∣∣yi=∞
yi=−∞

−
∫
p̃4 log q̃.

The limits at the boundary values are all zero due
to the smoothness and fast decay properties of p̃(~y).
Now collecting all terms, we have

∫
4p̃ log p̃ =

−
∫
p̃|∇ log p̃|2 and

∫
4p̃ log q̃ =

∫
p̃4 log q̃, Eq.(11)

becomes

d

dt
DKL(p̃‖q̃) = −1

2

∫
p̃

(
|∇ log p̃|2 +4 log q̃ +

4q̃
q̃

)
.

Combining with Eq. (10), this proves the result.



Theorem 1 reveals some intriguing aspects of the rela-
tion between score matching and maximum likelihood
by setting up a formal relation between the Fisher di-
vergence and the KL divergence.

1. The effect of adding white Gaussian noise,
√
t~w,

relates the density of ~x and ~y by

p̃t(~y) =
∫
~x

1
(2πt)d/2

exp
(
−|~y − ~x|

2

2t

)
p(~x)d~x,

i.e., p̃t(~y) is the convolution of p(~x) and a white
Gaussian density of zero mean and variance level
t. It is known that this process forms a scale space
[Lin94] over probability densities, which composes
Gaussian smoothed density functions of different
scale factor t. With large scale factors, small local
structures in the density function are smoothed.
So if parameter in qθ to match p is sought in the
scale space, it can put emphasis on large scale
structures that survive the smoothing operation,
and at the same time, spurious structures caused
by the sampling effects of the training data are
discounted. Indeed, this methodology has been
adopted in clustering and non-parametric density
estimation, e.g., [LZX00].

2. Theorem 1 elucidates that the Fisher divergence
between two densities for scale factor t equals
to the derivative of their KL divergence with re-
gards to the scale factor at the value of t. As
the Fisher divergence between two densities are
non-negative, this implies that the KL divergence
between two densities never increases as the scale
factor increases (or equivalently, the signal to
noise ratio decreases). This is easy to understand,
as the stronger noise is added, different signal
sources get closer to the distribution of the noise
and become more similar.

3. While maximum likelihood aims to minimize the
KL divergence directly, according to Theorem 1,
score matching seeks to eliminate its derivative in
the scale space at t = 0. In other words, score
matching looks for stability, where the optimal
parameter θ leads to least changes in the KL di-
vergence between the two models when a small
amount of noise is present in the training data,
while maximum likelihood pursues extremity of
the KL divergence. It is known that maximum
likelihood estimation is sensitive to noisy training
data, which may give rise to many false extreme
values, yet score matching may be more robust
to small perturbation in training data. On the
other hand, due to this fundamental difference,
score matching and maximum likelihood can lead
to very different solutions for the same parametric
density family and training data, the only known
exception of which is when qθ is Gaussian [Hyv05].

4. There have been other interpretations of score
matching based on data corrupted by additive
Gaussian noise. In [Hyv08], it was shown that
score matching is an approximation of the opti-
mal parameter estimation when using the model
as a prior in the inference of noise-free signal,
and as the noise goes to infinitesimally small. In
[RS07], score matching was interpreted as search-
ing parameters of qθ so that when a Bayes least
square estimator is constructed based on it, the
overall mean square error with the optimal esti-
mator based on p(~x) is minimal (see Section 4 for
more details). However, neither of these provide a
direct relation between score matching and max-
imum likelihood.

5. Finally, as a special case of Eq.(7), when q̃t is set
to a uniform distribution over the support of p̃t
so that d

dtDKL(p̃‖q̃) = d
dtH(p̃t) and DF (p̃‖q̃) =

J(p̃t), where H(p) = −
∫
~x
p(~x) log p(~x)d~x is the

(Shannon) differential entropy and J(p̃t) is the
Fisher information as defined in Eq.(3), we have

d

dt
H(p̃t) =

1
2
J(p̃t).

This is a well known result in the information the-
ory as the de Bruijn’s identity, which reveals a
remarkable geometric relation between the differ-
ential entropy and the Fisher information: the for-
mer is related to the volume of the typical set of
p̃t, the latter is related to its surface area [CT06].

4 Generalized Score Matching

The score matching learning can be generalized to a
more flexible parametric learning methodology. Start-
ing with the definition of the Fisher divergence, Eq.(2),
the main idea is to replace the gradient, which is a lin-
ear operator (functional) on density functions, with a
general linear operator L, as:

DL(p‖qθ) =
∫
~x

p

∣∣∣∣Lp(~x)
p(~x)

− Lqθ(~x)
qθ(~x)

∣∣∣∣2 d~x. (12)

If ~x has discrete components, integration is substi-
tuted with summations. We term DL the general-
ized Fisher divergence, and Lp(~x)p(~x) the generalized score
function. Correspondingly, parametric learning using
DL is called the generalized score matching. It is easy
to see that DL is non-negative, and is zero when the
two densities equal almost everywhere.

The generalized Fisher divergence keeps several impor-
tant computational advantages of the original Fisher
divergence. First, as an linear operator does not af-
fect the normalizing partition function, it is canceled
out in the generalized score function, and hence has



no effect in the subsequent computation. Second, the
generalized Fisher divergence can also be transformed
to a form as an expectation of functions of the un-
normalized model. To see this, we need the following
definition of L’s adjoint.

Definition 1. Denote F1 and FD as the space of all
scalar-valued and D-variate functions for ~x, respec-
tively. L : F1 7→ FD is an linear operator. Further,
assume that both Lf(~x) and g(~x) are square integrable,
i.e.,

∫
~x
|Lf(~x)|2d~x < ∞ and

∫
~x
|g(~x)|2d~x < ∞. The

adjoint of L, L+ : FD 7→ F1, is a linear operator
satisfying that ∀f ∈ F1 and g ∈ FD,∫

~x

(Lf(~x))T g(~x)d~x =
∫
~x

f(~x)(L+g(~x))d~x.

Next, expand DL(p‖qθ)

DL(p‖qθ) =
∫
~x

p

[∣∣∣∣Lpp
∣∣∣∣2 +

∣∣∣∣Lqθqθ
∣∣∣∣2 − 2

(
Lp
p

)T (Lqθ
qθ

)]
.

Using the definition of adjoint operator, we rewrite:∫
~x

(Lp)T Lqθ
qθ

=
∫
pL+

(
Lqθ
qθ

)
,

which results in

DL(p‖qθ)=
∫
~x

p

[∣∣∣∣Lpp
∣∣∣∣2 +

∣∣∣∣Lqθqθ
∣∣∣∣2−2L+

(
Lqθ
qθ

)]
.

(13)

As the first term is a constant with regards to the
model parameters, we only need p for computing ex-
pectations. Thus, the generalized score matching can
also be computed from training data as in the case of
the score matching.

Difference choices of L lead to different instantiations
of generalized score matching. Though in principle we
can use any linear operator, for parameter learning, we
need operators leading to score functions that do not
“lose” information about the original density. This is
formalized in the following definition.

Definition 2. A linear operator L is complete if for
two densities p(~x) and q(~x), Lp(~x)p(~x) = Lq(~x)

q(~x) (almost ev-
erywhere) ⇒ p(~x) = q(~x) (almost everywhere). Oth-
erwise, it is incomplete.

An extreme example of incomplete operator is
Lf(~x) = 0 for any f(~x), with which for any two den-
sities, we have DL(p‖q) = 0. However, it is obvious
that this operator is no use for parameter learning. In
the following, we show some simple choices for L.

Gradient. If we choose L to be the gradient operator,
∇, DL reduces to the original Fisher divergence, and
the corresponding generalized score matching becomes

the original score matching. As a confirmation, note
that the adjoint of gradient is the negative divergence,
i.e., −∇T =

∑d
i=1

∂
∂xi

, and−∇T∇ = −4. Using these
results, it is easy to see that Eq.(13) reduces to Eq.(6)
in this case.

It is also easy to establish that the gradient operator is
complete. If we have ∇p(~x)p(~x) = ∇q(~x)

q(~x)
2, or equivalently,

∇ log p(~x) = ∇ log q(~x), this leads to ∇ log p(~x)
q(~x) = 0,

or p(~x)
q(~x) = c, where c is a constant for all ~x. Because

both p(~x) and q(~x) are density functions, it must be
that c = 1, which then implies p(~x) = q(~x).
Marginalization. Another choice for L is what we
call the marginalization operator, M : F1 7→ Fd,
which is defined as

Mf(~x) =


...

Mif(~x)
...

 =


...∫

xi
f(~x)dxi

...

 , (14)

for any f ∈ F1. Integration is to be replaced with sum-
mation when ~x has discrete components. If f(~x) =
p(~x) is a probability density over ~x, Mip(~x) is the
marginal density of ~x\i induced from p(~x), where ~x\i

denotes the vector formed by dropping xi from ~x
(hence the name of M as the marginalization oper-
ator). Consequently, we have

Mip(~x)
p(~x)

=
p(~x\i)
p(~x)

=
1

p(xi|~x\i)
, (15)

in other words, each component of Mp(~x) is the re-
ciprocal of conditional density p(xi|~x\i) induced from
p(~x). Without losing generality, we assume here that
p(xi|~x\i) 6= 0. Such conditional densities are known
as the singleton conditionals. Therefore, minimizing
the generalized Fisher divergence between p(~x) and
q(~x) under the marginalization operator is equivalent
to match their corresponding singletons under the in-
duced divergence. The marginalization operator is
complete because of the following well known result
in statistics.
Lemma 3 (Brook’s Lemma [Bro64]). The joint den-
sity of random variables (x1, · · · , xd) are completely
determined by the ensemble of singleton conditional
densities, p(xi|~x\i), ∀i.
For completeness, we include a proof of this lemma in
the Appendix.

In using the marginalization for the case where we only
have training data instead of analytical form for p, we
need Eq.(13) and the adjoint of M, which is given by
the following lemma.

2For simplicity, we drop the qualifier (almost every-
where) and assume p(~x) and q(~x) have the same support,
yet it is not hard to enforce this condition in the subsequent
description.



Lemma 4. For g(~x) ∈ Fd, and denote (g(~x))i =
gi(~x), and f(~x) ∈ F1, it holds that∫

~x

M(f(~x))T g(~x)d~x =
∫
~x

f(~x)
d∑
i=1

Migi(~x)d~x,

in other words, M+ =
∑d
i=1Mi.

The proof is given in the Appendix.
Posterior mean. In [RS07], the generalized score
function, Lp/p, was given a very different statistical
interpretation. Assume p is the density for variable
~y, which depends on a latent variable ~x. The mean
for the posterior distribution, pX|Y (~x|~y), defined as
E(~x|~y) =

∫
~x
~xpX|Y (~x|~y)d~x, is shown to take the form

Lp(~y)/p(~y), where L is determined from the condi-
tional density pY |X(~y|~x). As E(~x|~y) is the optimal esti-
mator of ~x given ~y that minimizes the mean square er-
rors with ~x, optimizing the resulting generalized Fisher
divergence is equivalent to find the optimal density q
such that when used as a model for ~y, it achieves the
best performance in the inference of ~x. Especially,
when ~y is obtained by adding noise of some known
density to ~x, L and its adjoint may have simple close
form solutions (e.g., the additive Gaussian noise case
corresponds to the Fisher divergence and original score
matching). However, not all complete linear operators
suitable for L affords such an interpretation, such as
the marginalization operator M. On the other hand,
it is hard to check the completeness of operators orig-
inated from the posterior means in general.

5 Generalized Score Matching for
Discrete Data

There are two important restrictions in the origi-
nal score matching method, being that ~x has to be
continuous-valued and the densities have to be differ-
entiable in the space of Rd. Due to these restrictions,
one cannot directly apply score matching to discrete
data as ∇ log p(~x) is not well defined in such cases.
In this section, we show that using the marginaliza-
tion operator M (Eq.(14)) with the generalized score
matching leads to a natural extension of score match-
ing to discrete data.

Consider discrete vectors ~x ∈ {c1, · · · , cm}d with den-
sity p(~x). Correspondingly, the integration in Eq.(12)
is replaced with summation. As in the continuous case,
learning is to find the optimal parameter for qθ(~x) that
minimizes its generalized Fisher divergence with p(~x),
which is

DM(p‖qθ) =
∑
~x

p(~x)
d∑
i=1

(
Mip(~x)
p(~x)

− Miqθ(~x)
qθ(~x)

)2

.

Substituting with Eq.(15), and using dummy variable
ξi where we need to marginalize over the ith component
of ~x in the inner integral, we have

DM(p‖qθ) =
∑
~x

p(~x)
d∑
i=1

∑
ξi

(
p(ξi|~x\i)− qθ(ξi|~x\i)

)2

(16)
On the other hand, with Eq.(13) and the adjoint op-
erator of M (Lemma 4), it is further expanded to:

∑
~x

p(~x)
d∑
i=1

[(
Mip

p

)2

+
(
Miqθ
qθ

)2

− 2Mi

(
Miqθ
qθ

)]
.

Dropping the first term that is independent of θ, we
have:

∑
~x

p(~x)
d∑
i=1

[(
Miqθ
qθ

)2

− 2Mi

(
Miqθ
qθ

)]

=
∑
~x

p(~x)
d∑
i=1

∑
ξi

[
1

q2θ(ξi|~x\i)
− 2
qθ(ξi|~x\i)

]

=
∑
~x

p(~x)
d∑
i=1

∑
ξi

1− 2qθ(ξi|~x\i)
q2θ(ξi|~x\i)

.

Further rearrangement leads to:

∑
~x

p(~x)
d∑
i=1

∑
ξi

(
1− 2qθ(ξi|~x\i) + q2θ(ξi|~x\i)

q2θ(ξi|~x\i)
− 1
)

=
∑
~x

p(~x)
d∑
i=1

∑
ξi

(1− qθ(ξi|~x\i))2

q2θ(ξi|~x\i)
−md

=
∑
~x

p(~x)
d∑
i=1

∑
ξi

(
qθ(∼ξi|~x\i)
qθ(ξi|~x\i)

)2

−md, (17)

where we use qθ(∼ ξi|~x\i) to shorthand the condi-
tional probability for the ith element of ~x not taking
value ξi. As

∑
ξi
qθ(ξi|~x\i) = 1, and

∑
ξi

(1−qθ(ξi|~x\i))2
q2θ(ξi|~x\i)

reaches its minimum when qθ(ξi|~x\i) approaches con-
stant value, minimizing the generalized Fisher diver-
gence has an overall effect of balancing the values of
the singleton conditional densities.

5.1 Relation with Ratio Matching

We compare the aforementioned discrete extension
of generalized score matching with another similar
method, known as ratio matching [Hyv07a]. Origi-
nally, the ratio matching algorithm was described for
binary data. Here we describe an extended version
that can be applied to general discrete data types.
First define a scalar function φ, as φ(u) = 1

1+u , for u ∈



R+. In ratio matching [Hyv07a], we find the optimal
parameter θ that minimizes

∑
~x

p(~x)
d∑
i=1

∑
ξi

[
φ

(
p(ξi, ~x\i)
p(∼ξi, ~x\i)

)
−φ
(
qθ(ξi, ~x\i)
qθ(∼ξi, ~x\i)

)]2
.

Here we use qθ(∼ξi, ~x\i) to denote the joint probabil-
ity with ~x\i fixed and xi taking values other than ξi.
This is slightly different from that used in [Hyv07a],
as a result of merging identical terms and dropping
irrelevant terms. Using the definition of φ, we have
φ
(
p(ξi,~x

\i)
p(∼ξi,~x\i)

)
= p(∼ξi|~x\i). The ratio matching objec-

tive function is:

∑
~x

p(~x)
d∑
i=1

∑
ξi

(
p(∼ξi|~x\i)− qθ(∼ξi|~x\i)

)2

=
∑
~x

p(~x)
d∑
i=1

∑
ξi

(
p(ξi|~x\i)− qθ(ξi|~x\i)

)2

.

Note the similarity of this function to that in our ex-
tension, Eq.(16). As shown in [Hyv07a], the ratio
matching objective function can be further reduced to

∑
~x

p(~x)
d∑
i=1

∑
ξi

(
φ

(
qθ(ξi, ~x\i)
qθ(∼ξi, ~x\i)

))2

=
∑
~x

p(~x)
d∑
i=1

∑
ξi

(
1− qθ(ξi|~x\i)

)2

+ const.

Note that the minimum of
∑
ξi

(
1− qθ(ξi|~x\i)

)2
is also

reached when qθ(ξi|~x\i) is a constant, therefore at op-
timum, ratio matching and our extension agree with
each other, and both of them are different from maxi-
mum pseudo-likelihood. On the other hand, note that
the objective function in ratio matching is quite differ-
ent from that in score matching [Hyv07a].

6 Conclusion

In this paper, we show two new results regarding the
recently developed parameter learning method known
as score matching. First, we establish a formal link
between maximum likelihood and score matching, by
showing the relation between the corresponding diver-
gence functions. Specifically, we show that the Fisher
divergence is the derivative of the KL divergence in
a scale space with regards to the scale factor. This
suggests that score matching searches for parameters
that are stable with small noise perturbation in train-
ing data. Second, we provide a generalization of score
matching by employing general linear operators in the
Fisher divergence, and demonstrate a specific instan-
tiation of the generalized score matching to discrete

data to be a more natural extension of score matching
to discrete data.

There are several directions that we hope to further
explore in the future. First, by using other type of
diffusion kernels, it may be possible to establish a sim-
ilar relation between the maximum likelihood and the
generalized score matching. Secondly, the generalized
score matching provides more flexibility in applying
the score matching methodology to different parame-
ter estimation problems. Especially, it will be of great
interest to study appropriate complete linear opera-
tors for specific high dimensional data models such
as Markov random fields. Finally, we are currently
working on applying the generalized score matching
learning to practical problems such as bioinformatics
and image modeling. We hope the work presented in
this paper may deepen our understanding on score
matching and help to extend its applications in ma-
chine learning and related fields.

Appendix

Proof. [Lemma 1] For conciseness, we drop ~x from the
gradient and Laplacian operator. Using the definition
of Laplacian, we have

4 log f(~x) =
∇T∇f(~x)
f(~x)

−
(
∇f(~x)
f(~x)

)T ∇f(~x)
f(~x)

=
4f(~x)
f(~x)

− |∇ log f(~x)|2.

Rearranging terms proves the Lemma.

Proof. [Lemma 2] First, use the definition of p̃t(~y),

p̃t(~y) =
∫
~x

1
(2πt)d/2

exp
(
−|~y − ~x|

2

2t

)
p(~x),

and

d

dt
p̃t(~y) =

∫
~x

|~y − ~x|2

2t2
1

(2πt)d/2
exp

(
−|~y − ~x|

2

2t

)
p(~x)

−
∫
~x

d

2t
1

(2πt)d/2
exp

(
−|~y − ~x|

2

2t

)
p(~x). (18)

On the other hand, note that

∇p̃t(~y) = −
∫
~x

(~y − ~x)
t

1
(2πt)d/2

exp
(
−|~y − ~x|

2

2t

)
p(~x).

Taking derivative again, we have

4p̃t(~y) =
∫
~x

|~y − ~x|2

t2
1

(2πt)d/2
exp

(
−|~y − ~x|

2

2t

)
p(~x)

−
∫
~x

d

t

1
(2πt)d/2

exp
(
−|~y − ~x|

2

2t

)
p(~x). (19)

Combining (18) and (19) proves the lemma.



Proof. [Lemma 3] We prove this by showing that
the ratio of the joint probability of two assignments,
(ξ1, · · · , ξn) and (ξ̃1, · · · , ξ̃n), of random variables
(x1, · · · , xn), p(ξ1, · · · , ξn)/p(ξ̃1, · · · , ξ̃n), can be deter-
mined using only the singleton conditionals. As the
joint density has to be normalized to one, this shows
the uniqueness of the joint density given the singletons.

p(ξ1, · · · , ξn)
p(ξ̃1, · · · , ξ̃n)

=
p(ξ1, ξ2, · · · , ξn)
p(ξ̃1, ξ2, · · · , ξn)

p(ξ̃1, ξ2, ξ3 · · · , ξn)
p(ξ̃1, ξ̃2, ξ3 · · · , ξn)

· · ·p(ξ̃1, · · · , ξn−1, ξn)
p(ξ̃1, · · · , ξ̃n−1, ξn)

p(ξ̃1, · · · , ξ̃n−1, ξn)
p(ξ̃1, · · · , ξ̃n−1, ξ̃n)

=
p(ξ1|ξ2, · · · , ξn)
p(ξ̃1|ξ2, · · · , ξn)

p(ξ2|ξ̃1, ξ3 · · · , ξn)
p(ξ̃2|ξ̃1, ξ3 · · · , ξn)

· · ·p(ξn−1|ξ̃1, · · · , ξn)
p(ξ̃n−1|ξ̃1, · · · , ξn)

p(ξn|ξ̃1, · · · , ξ̃n−1)
p(ξ̃n|ξ̃1, · · · , ξ̃n−1)

.

In the first step, we introduce terms that cancel out
each other. The second step then cancels out common
joint densities from each ratio, and result is completely
determined by the singleton conditionals.

Proof. [Lemma 4] We use the shorthand nota-
tion f(ξi, ~x\i) for the otherwise longer notation
f(x1, · · · , xi−1, ξi, xi+1, · · · , xd) to emphasize on one
variable.∫

~x

M(f(~x))T g(~x)d~x =
∫
~x

d∑
i=1

Mif(~x)gi(~x)d~x

=
∫
~x\i

d∑
i=1

∫
xi

∫
ξi

f(ξi, ~x\i)gi(xi, ~x\i)dξidxid~x\i

Define ~x′ = (x1, · · · , xi−1, ξi, xi+1, · · · , xd), and switch
the integration order for xi and ξi, from which the last
step above can be rewritten as∫

~x′
f(~x′)

d∑
i=1

∫
ξi

gi(ξi, ~x\i)dξid~x′,

which is equivalent to
∫
~x′
f(~x′)

∑d
i=1Migi(~x′)d~x′.
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