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Abstract

We perform a simulation-based analysis of
keyword auctions modeled as one-shot games
of incomplete information to study a series of
mechanism design questions. Our first ques-
tion addresses the degree to which incentive
compatibility fails in generalized second-price
(GSP) auctions. Our results suggest that sin-
cere bidding in GSP auctions is a strikingly
poor strategy and a poor predictor of equi-
librium outcomes. We next show that the
rank-by-revenue mechanism is welfare opti-
mal, corroborating past results. Finally, we
analyze profit as a function of auction mech-
anism under a series of alternative settings.
Our conclusions coincide with those of Lahaie
and Pennock [2007] when values and qual-
ity scores are strongly positively correlated:
in such a case, rank-by-bid rules are clearly
superior. We diverge, however, in showing
that auctions that put little weight on quality
scores almost universally dominate the pure
rank-by-revenue scheme.

1 Introduction

Sponsored search (or keyword) auctions have become
one of the primary sources of revenue for the major
search engines. Since their beginnings these auctions
have undergone a series of changes, from a first-price
to a next-price format, from rank-by-bid to rank-by-
revenue. Roughly, the consensus today stands at the
rank-by-revenue schemes, which augment the ranking
rule to include advertiser quality scores1 and a next-
price (or generalized second-price (GSP)) format.2

1Quality scores reflect the effect of the ad quality on the
probability it is clicked.

2In a GSP an advertiser pays the minimum amount
sufficient to remain in the currently allocated slot.

There have been several close analyses of the revenue
and welfare properties of alternative keyword auction
designs. The most relevant to our work is that by La-
haie and Pennock [2007], who provide a detailed anal-
ysis of an entire space of ranking rules, parametrized
by a scalar q which determines the importance of qual-
ity scores in the ranking, with the corresponding GSP
policy. Lahaie and Pennock [2007] show that rank-
by-revenue yields optimal social welfare, but revenue
rankings are highly dependent on the joint distribu-
tions of values per click and quality scores. Qualita-
tively, they demonstrate that higher correlation be-
tween values and quality scores yields a lower revenue-
optimal q (i.e., lower weight on quality score).

We analyze equilibrium bidding strategies and alterna-
tive sponsored search auction designs using a similar
basic model of keyword auctions as Lahaie and Pen-
nock [2007], but perform a somewhat different kind of
equilibrium analysis: whereas they used a complete in-
formation equilibrium, we report outcomes where play-
ers submit bids under incomplete information about
each other’s values. While much of the literature on
sponsored search auctions to date focuses on complete
information Nash equilibrium outcomes [Borgers et al.,
2006, Lahaie and Pennock, 2007, Varian, 2007, Edel-
man et al., 2007], we believe that an incomplete in-
formation model may be a better fit for the actual
auctions, since the bidders do not, in fact, know each
other’s valuations, never observe each other’s bids,
and, significantly, valuations likely change over time.3

We perform a simulation-based analysis to estimate
Bayes-Nash equilibria of keyword auctions and study
a series of mechanism design questions. While it is
widely known that GSP auction mechanisms are not

3Edelman et al. [2007] do consider an incomplete in-
formation model of keyword auctions, but their model re-
quires the bidders to know the history of “drop out” prices
(effectively, all players’ bids), which we feel is unreason-
able, both in forming predictions of final outcomes, and in
developing effective advertiser bidding strategies.



truthful (i.e., submitted bids do not reflect true valu-
ations), since these mechanisms attempt to generalize
Vickrey auctions, a natural question is to what degree
this core property of single-item second-price auctions
is lost. Our results suggest that sincere bidding in GSP
auctions is a strikingly poor strategy and just as poor
a predictor of equilibrium outcomes. We then proceed
to study welfare properties of alternative keyword auc-
tion designs, with our results largely corroborating the
welfare superiority of a pure rank-by-revenue mecha-
nism shown by Lahaie and Pennock [2007]. Finally, we
present a close analysis of profit as a function of auc-
tion mechanism under a series of alternative settings.
Our conclusions coincide with those of Lahaie and Pen-
nock [2007] when values and quality scores are strongly
positively correlated: in such a case, rank-by-bid rules
are clearly superior. We diverge, however, in showing
that ranking rules with a low weight on quality scores
almost universally dominate rank-by-revenue.

Returning to the question of the actual ranking rules
used by the search engines, there are a few possibil-
ities. It may well be that experience of the search
engines accords with our theory and the actual use
of rank-by-revenue mechanisms in their pure form is
quite limited. Alternatively, there may be factors that
our model (or most models in the literature) simply
fail to capture. For example, a higher weight on the
ad quality score may generate incentives for advertisers
to improve their targeting, thereby enhancing search
engine user satisfaction.

2 Preliminaries

In this section we review terminology, definitions,
and core concepts from game theory that we employ
throughout the paper. Our key solution concept is the
Nash equilibrium and approximations thereof.

2.1 One-Shot Games of Incomplete
Information

In much of this work we analyze one-shot games of
incomplete information (Bayesian games) [Mas-Colell
et al., 1995], denoted by [I, {Ri}, {Ti}, F (·), {ui(r, t)}],
where I refers to the set of players and m = |I| is the
number of players. Ri is the set of actions available to
player i ∈ I, and R = R1×· · ·×Rm is the joint action
space. Ti is the set of types (private information) of
player i, with T = T1×· · ·×Tm representing the joint
type space. Since we presume that a player knows his
type prior to taking an action, but does not know types
of others, we allow him to condition his actions on own
type. Thus, we define a strategy of a player i to be a
function si : Ti → Ri, and use s(t) to denote the vector
(s1(t1), . . . , sm(tm)). F (·) is the distribution over the

joint type space.

We use s−i to denote the joint strategy of all players
other than player i. Similarly, t−i designates the joint
type of all players other than i. We denote the payoff
(utility) function of each player i by ui : R × T → R,
where ui(ri, r−i, ti, t−i) indicates the payoff to player
i with type ti for playing action ri ∈ Ri when the
remaining players with joint types t−i play r−i. Given
a strategy profile s ∈ S, the expected payoff of player
i is ũi(s) = Et[ui(s(t), t)].

Given a fixed strategy profile of players other than
i, we define the best response of player i to s−i

to be a strategy s∗i that maximizes expected utility
ũi(si, s−i). If we know a best response of every player
to a strategy profile s, we can evaluate the maximum
amount that any player can gain by deviating from s.
Such an amount, which we call regret, is denoted by
ε(s) = maxi∈I [ũi(s∗i , s−i)− ũi(si, s−i)].

Faced with a one-shot game of incomplete informa-
tion, an agent would ideally play a strategy that is a
best response to strategies of others. A joint strategy
s where all agents play best responses to each other
constitutes a Nash equilibrium (ε(s) = 0); when ap-
plied to games of incomplete information, it is called
a Bayes-Nash equilibrium (BNE).

2.2 Keyword Auctions

A typical model of keyword auctions specifies a rank-
ing rule, whereby advertisers are allocated slots on a
search page, click-through-rates for each player and
slot, and players’ valuations or distributions of valu-
ations per click. Let a player i’s click-through-rate
in slot s be denoted by ci

s and his value per click
by vi. Like many models in the literature (e.g., [La-
haie, 2006, Lahaie and Pennock, 2007]) we assume that
click-through-rate can be factored into eics for every
player i and every slot s. The parameter ei is often
referred to as a quality score of advertiser i, and cs is
the slot-specific click-through-rate. If player i pays ps

i

in slot s, then his utility is ui(ei, vi, p
s
i ) = eics(vi−ps

i ).
We assume that cs are exponentially decreasing at a
constant rate γ, so that cs = c1/γs−1.

Lahaie and Pennock [2007] describe a family of rank-
ing rules which display bidders on a search page in
order of the product of their bids bi and some weight
function wi. Given any weighted ranking rule, the cor-
responding GSP price is defined to be ps

i = ws+1bs+1
wi

.
In this work we focus on a particular weight function
w(ei) = eq

i , with q ∈ [0, 1], first introduced by Lahaie
and Pennock [2007].

We view a specific instance of a keyword auction as
a game of incomplete information described in the



preceding section. Specifically, we assume that each
player i knows his value per click, vi, but only knows
the distribution F () of values of other players (we do
assume that the number of players is common knowl-
edge). Additionally, no player knows their (or anyone
else’s) quality score. Rather, all know the distribution
of quality scores conditional on values. While in most
of our experiments below we assume that values and
quality scores alike are drawn i.i.d. for every player, in
some we allow values to be correlated among the play-
ers, in which case the joint distribution of values of all
the players is taken to be common knowledge. Finally,
we assume that all players are ex-ante symmetric in
that they share identical distributions of values and
quality scores. The symmetric expected utility of any
player i with value vi is

u(vi) = Ev−i,e

[
ei

m∑
s=1

cs(vi − ps
i ) Pr{i is in slot s}|vi

]
,

where e is the vector of quality scores of all players
and v−i the vector of values of all players other than
i. Naturally, the utility depends on the actual joint
strategic choices of all players, since the probability of
being ranked in a particular slot, as well as the actual
payments, are both affected by these.

In addition to providing strategic guidance for adver-
tising agents, we address two classical mechanism de-
sign questions: maximizing welfare (the sum of player
utilities) and maximizing revenue (total expected pay-
ment to the search engine). Formally, expected welfare
is defined as

W (q) = Ev,e

[∑
i∈I

m∑
s=1

cseivi Pr{i is in slot s}

]

and search engine profit (revenue) is

Π(q) = Ev,e

[∑
i∈I

m∑
s=1

cseip
s
i Pr{i is in slot s}

]
,

both of which involve implicit dependence on player
equilibrium strategies as well as on the search engine
ranking and pricing policy.

3 Simulation-Based Game Theoretic
Analysis

The first (and key) step of a computational game-
theoretic analysis of Bayesian games is to define a re-
stricted space of strategies within which to limit the
equilibrium search. The choice of such a restricted
strategy space should be reasonable in the sense that
we expect (approximate) equilibrium strategies found

within it to be good approximations of actual equi-
libria. Below we identify two low-dimensional strat-
egy classes (one a subset of the other) and justify our
choices via analogies from the auction theory literature
and previous results in sponsored search auctions.

3.1 Bidding Strategy Classes

Much of our analysis below will be in the context
of a simple strategy space parametrized by a scalar
α ∈ [0, 1] which serves as a multiple (shading) of the
player’s valuation per click. Specifically,

b(v) = αv. (1)

Equilibrium strategies of many one-item private-value
auction models often fall in this strategy space. First-
price and second-price (Vickrey) sealed-bid auctions
are good examples. In a first-price sealed-bid private-
value auction (with uniformly distributed values), the
well-known equilibrium bidding strategy is b(v) =
m−1

m v (α = m−1
m ) [Krishna, 2002]. In Vickrey (second-

price) auctions, a dominant strategy equilibrium is to
bid the actual value, that is, b(v) = v (α = 1). An
analysis restricted to linear strategies of the above
form is not new and was undertaken, for example,
by Rothkopf [1980] to study bidding in common-value
auctions.

Of course, keyword auctions are rather different from
one-item auctions. One important simplifcation made
by the scalar bidding strategy class is that the param-
eter α does not depend on the valuation. A plausible
alternative is that bidders with lower valuations may
shade their bids less in equilibrium. For example, it
has been observed in a complete-information analysis
of generalized second-price auctions that a bidder who
fails to attain a slot (when the number of slots is lim-
ited) has no incentive to bid incencerely in equilibrium,
which is certainly not true of a bidder who is allocated
a slot.4

To accommodate α that decreases with the player’s
value, we let α(0) = ᾱ, α(1) = α, and linearly inter-
polate between these to obtain α(v) = ᾱ − (ᾱ − α)v.
Incorporating this into a bidding strategy with b(v) =
α(v)v, we obtain a strategy of the form

b(v) = αv − βv2, (2)

where 0 ≤ β ≤ α ≤ 1 ensures that 0 ≤ b(v) ≤ v.

3.2 Equilibrium Estimation and Mechanism
Design

At the core of our analysis lies the problem
of estimating sets of Bayes-Nash Equilibria using

4An exception is an auction with exactly one slot, in
which case we recover the Vickrey auction.



simulation-based game representations. We formal-
ize a simulation-based game (with incomplete infor-
mation) as [I, {Ri}, {Ti}, O], where I, Ri, and Ti are
as in the definition of one-shot games in Section 2.1,
and O is an oracle which takes as input a joint strategy
vector s and outputs an unbiased sample payoff vec-
tor. Each payoff sample returned by O is generated
by first drawing a joint type profile of all players (in
our case, values and quality scores), and returning the
corresponding payoff vector u(s(t), t).

The algorithm we use to estimate equilibria for the
parametrized strategy classes builds on a technique de-
scribed in Vorobeychik and Wellman [2008]. We now
provide a high-level sketch, filling in the details actu-
ally used in our experiments. First, consider a subrou-
tine which approximates (estimates) a best response
strategy for each player. To this end, we run a simu-
lated annealing search5 for a series of rounds (100 in
our experiments), estimating the payoff of a candidate
strategy in each iteration by taking K (in our case,
1000) samples from the oracle (simulator) O.

In the main loop, we use a well-known iterative best re-
sponse dynamic [Fudenberg and Levine, 1998] to gen-
erate a sequence of profiles and corresponding payoff
samples. Iterative best response proceeds through a
sequence of strategy profiles that are myopic best re-
sponses of all players to a profile in the previous itera-
tion. A key deviation from the standard iterative best
response method, however, is in our actual choice of
equilibrium estimates. For each profile generated on
the algorithm path, we store the corresponding esti-
mate of the game-theoretic regret (the amount to be
gained by any player from playing his best response).
Vorobeychik and Wellman [2008] used the profile with
smallest estimated regret as a Bayes-Nash equilibrium
estimate upon termination of the best response dy-
namics. We found this approach to be somewhat too
susceptible to noise. Instead, we choose the set of all
profiles with regrets below a predetermined threshold
to estimate a set of Bayes-Nash equilibria. The spe-
cific thresholds chosen are still a bit of an art, but are
set to 0.005 or 0.01 in most experiments below.6 We
evaluate any design choice (e.g., profit or welfare at a
specific q) as the average over all strategy profiles in a
set of equilibrium estimates.

In principle, the above procedure can be used as a sub-

5Simulated annealing is a local search algorithm which
also probabilistically explores on a global scale. For details
see, for example, [Spall, 2003].

6In general, an appropriate choice of a threshold de-
pends on the scaling of the payoffs. Currently, we do not
have any automated technique for choosing these intelli-
gently, and automating such choices (or at least devising a
more principled technique for making them) is an interest-
ing subject for future work.

routine for mechanism design, which would use its own
stochastic search algorithm to proceed through the de-
sign space [Vorobeychik et al., 2007]. In our case,
however, since the design space is one-dimensional,
we found that it paid to visualize the entire objective
functions and, subsequently, employ simple regression
techniques to smooth out the noise. Hence, our con-
clusions in the sections below are made with respect to
the smooth regression outcomes rather than the raw
data. In fitting the regression models, we used poly-
nomials of degree at most three, and often stopped at
linear regression whenever it would explain most of the
variance in the data.7

4 Results

4.1 (Un)Truthful Bidding

As the name suggests, generalized second-price auc-
tions were conceived as a generalization to the well-
known one-item second-price (Vickrey) auction [Kr-
ishna, 2002]. Consequently, it seems likely that one
of the design gaols was to create a simple extension
of Vickrey prices in order to achieve (at least approx-
imately) incentive compatibility (that is, truthful bid-
ding in equilibrium). As is well known, GSP auctions
are, in fact, not truthful [Lahaie, 2006]. We now in-
vestigate to what extent the incentive compatibility is
lost. It seems intuitive, for example, that the second-
price flavor of the keyword auctions should be at least
approximately truthful in some formally meaningful
way.

We judge the level of truthfulness of the GSP mecha-
nism with respect to two approximation metrics. The
first of these, game-theoretic regret, evaluates the most
any player can gain by deviating from truthful bidding
to another strategy. The second measures the (aver-
age) distance between the actual equilibrium bidding
function(s) and truthful bidding (i.e., b(v) = v). We
estimate a set of Bayes-Nash equilibria with respect
to the linear strategy class b(v) = αv. Observe that
truthful bidding is in this strategy space, with α = 1,
and, furthermore, regret with respect to this restricted
strategy space is certainly amplified (in general) if we
allow deviations to an arbitrary strategy. The distance
between any two symmetric strategy profiles b1 = α1v
and b2 = α2v in this restricted space is just the abso-
lute difference between α1 and α2. Hence, if α∗ ∈ [0, 1]
is a parameter of an equilibrium strategy, the error (in
Euclidean distance) of truthful bidding is just 1− α∗.

Figure 1 shows the incentives to deviate for a range
of values of q when values and quality scores are uni-

7Specifically, we used R2 values to determine if there
was much added value to a higher-degree regression.
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Figure 1: Incentives to deviate from sincere bidding
(vi and ei are i.i.d. uniform in [0, 1]).

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" !#%" !#'" !#)" !#+" $"

-
.
/
01
2
/
"!
"

!"

!"#$%&&$'()*+,-$

.%&&$'()*+,-.$

!"#$/&$'()*+,-$

./&$'()*+,-.$

!"#$0$'()*+,-$

.0$'()*+,-.$

Figure 2: Average fraction of true value bid in equilib-
rium (vi and ei are i.i.d. uniform in [0, 1]) with varying
numbers of players.

formly and indepedently distributed, i.i.d. for each
player. Clearly, the truthful bidding strategy is highly
unstable (incentives to deviate are always more than
100% of player payoffs), making it a rather poor strate-
gic choice to adopt for any advertiser. What is perhaps
most surprising, however, is that the incentives actu-
ally increase as the number of players grows: increased
competitiveness seems to exacerbate the problem!

Figure 2 plots the average equilibrium values of α as
a function of q. From this figure we can observe that
truthful bidding is a poor equilibrium prediction, with
equilibrium values of α rather different from 1 (and
increasingly so as q increases). However, we do ob-
serve that average amount of shading (i.e., bidding
under true value) decreases as the number of players
grows. So, it seems that from the perspective of the de-
signer, GSP equilibrium bidding strategies draw closer
to truthfulness as the level of competition increases,
but from the perspective of advertisers themselves, es-
sentially the opposite is true.

4.2 Welfare

Lahaie and Pennock [2007] showed that rank-by-
revenue keyword auctions (that is, q = 1) are effi-
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Figure 3: Welfare for an 8-player keyword auction
when values and quality scores are independently dis-
tributed on [0, 1].

cient in the complete information case. In general,
it is not difficult to see that they are welfare optimal
if we assume that bids are strictly increasing in val-
uations. This is obviously true when b(v) = αv and,
thus, any outcome (not just an equilibrium outcome)
under q = 1 is efficient if we restrict bidding strate-
gies to be linear. As the following results testify, this
need no longer be the case if we consider the family of
quadratic bidding strategies defined in Equation 2.

Lemma 4.1. Suppose players bid according to the
quadratic bidding rule in Equation 2. Then there are
v1, v2 ∈ [0, 1] with v1 < v2 and b(v1) > b(v2) if and
only if α < 2β.

Theorem 4.2. Suppose players bid according to the
quadratic bidding rule in Equation 2. Then the allo-
cation is always (ex post) efficient for any α ∈ [0, 1] if
and only if β = 0.

The proofs of both are provided in the appendix (the
theorem follows rather easily from the lemma). The
question that the theorem raises is whether q = 1 re-
mains welfare optimal in equilibrium if we allow play-
ers to select strategies from the quadratic family. From
Figures 3 and 4 we observe that the move from lin-
ear to quadratic strategies is rather inconsequential
for welfare. Indeed, the quadratic coefficient tends to
be relatively small, always below a half of α (satisfying
the condition of Lemma 4.1), and usually considerably
lower. We can also see that essentially optimal welfare
is already achieved when q > 1/2, consistent with the
results of Lahaie and Pennock [2007].

4.3 Profit

In this section we analyze the expected profit to the
search engine in a variety of keyword auction contexts.
Since in the section above we saw that expanding the
strategy space to include a quadratic term is relatively
inconsequential (quadratic term tends to be small), we
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Figure 5: Profit with varying numbers of players when
values and quality scores are independent and i.i.d. on
[0, 1] for all players.

focus on the linear strategy space for the remainder of
our analysis.

4.3.1 Independent Values and Quality Scores

From Figure 5 we can see that if values and quality
scores are independently distributed (and i.i.d. for ev-
ery player), even when the number of players is rather
large (20), the choice of q near zero (nearly rank-by-
bid) is optimal. This is in contrast with the results
of Lahaie and Pennock [2007], which suggest that q
near 0.5 is optimal when values and quality scores are
independently distributed.8 Nevertheless, the (near)
optimality of q = 0 no longer obtains when a par-
ticular keyword is highly competitive—in our case, if
the number of players is 100—where q ≈ 0.3 seems to
be nearly optimal (according to the cubic fit, in any
case). Combining this result with our observations of
welfare from the last section, we may note that when
competition is high, both high profit and high alloca-

8Their results were obtained with 13 players and a fixed
number of available advertising slots. They also used a log-
normal distribution of values and quality scores, although
our results are relatively distribution-robust based on other
experiments which we suppress due to space limitations.
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Figure 6: Π(0) − Π(1) when correlation between val-
ues and quality scores is positive (correlation decreases
with standard deviation). Values are drawn from a
log-normal distribution. Values and quality scores are
jointly drawn i.i.d. on [0, 1] for for all players .

tive efficiency can be achieved by a profit-maximizing
setting of q.

4.3.2 Correlated Values and Quality Scores

In many keyword auctions it is quite likely that there
is some correlation (positive or negative) between the
value of an advertiser and the quality of his ad. To
simulate correlated values and quality scores, we drew
each player’s valuation vi from a log-normal distribu-
tion (results for other distributions are similar and,
thus, suppressed for lack of space), then chose his qual-
ity score ei according to a normal distribution with vi

as its mean. This would yield vi and ei which are posi-
tively correlated. To simulate negative correlation, we
would subtract the result from 1 to obtain the quality
score. In either case, as the variance of the normal
distribution rises, correlation between vi and ei de-
creases. The results in Figure 6 and 7 suggest that
pure rank-by-revenue mechanisms are rarely superior
to pure rank-by-bid: only when values and quality
scores are highly negatively correlated does rank-by-
revenue win the “tug-of-war”.

4.3.3 Correlated Values Among Players

Many auction design problems become analytically in-
tractable when we remove the assumptions that bid-
der valuations are independent of each other [Krishna,
2002]. Unfortunately, interdependence seems more the
rule than the exception. To enhance the picture of the
mechanism design landscape, we now analyze the set-
ting with positively correlated bidder valuations.

To generate correlated values for the advertisers, we
first sampled a “center” uniformly randomly, and sub-
sequently drew bidders’ values uniformly randomly
clustered within a fixed distance from it. Figure 8
shows equilibrium profits as a function of q for
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Figure 8: Equilibrium profit as a function of q for three
clustering values (0.01, 0.1, and 0.5). A higher value
implies lower correlation. Quality scores are uniform
over the unit interval, independent of valuations.

three different clustering values (higher means less
clustered—less correlated—since bidders can spread
farther from the center). In all cases quality scores
were uniform, independent of valuations, and i.i.d. for
all bidders. As we can observe, while the results have
substantially more noise when values are more corre-
lated, the qualitative picture still suggests that small
settings of q yield higher revenue.

4.3.4 Constant Bidding Strategy

While a central element of a genuine mechanism de-
sign treatment is the analysis of resulting incentives,
analysis is typically performed with the assumption
that players are rational and, furthermore, coordinate
to choose an equilibrium (or nearly equilibrium) strat-
egy profile. The reality of sponsored search auctions is
that many of the advertisers use very simple strategies
and are unlikely to engage in sophisticated analysis of
incentives in response to auction design changes. This
is especially true if incentives to deviate to a strategy
which is superior under a new mechanism is small and
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Figure 9: Profit as a function of q when values are
constant and players bid constant strategies (i.e. a
fixed α independent of q).

advertisers have already settled into some particular
strategic “groove”. Additionally, the prevalent uncer-
tainty about actual ad auction design (including the
specific ranking rule used) will only reduce the likeli-
hood of fast strategy adaptation by bidding agents to
design changes. Perhaps, as the automated keyword
auctionbots become sophisticated and widespread, we
may see in the longer term strategies that closely re-
semble equilibria. For the time-being, however, it is
useful to consider how alternative mechanism design
options fare when bidders do not adjust their strate-
gies. Specifically, we assume that bidders play some
constant strategy b(v) = αv which will change negligi-
bly if the design parameter q is altered.

We present results for two settings. In the first, bid-
der values are constant (set to 1 for all players). In the
second, values are uniformly distributed, i.i.d. for all
bidders. In both cases, quality scores are distributed
uniformly and independently of player values. For sim-
plicity (and without loss of generality), we let α = 1.

The results, shown in Figure 9, are rather surprising:
even when strategies are constant, low settings of q
seem to be optimal or nearly so (and their advantage is
substantially stronger when values are constant). This
seems to be contrary to intuition: if bidding strategies
are constant, placing bidders into slots in order of eibi

(which is identical in our case as ranking by eivi) would
seem to align highest weight (click-through-rate) with
highest payments (eibi), and, thus, generate the most
profit. To see why this intuition breaks down, consider
the case with constant values (all equal q). Then, for
a given vector of quality scores, the profit is

Π = αv

m∑
s=1

cses+1

(
es

es+1

)1−q

,

where s indexes both a slot and a player ranked in that
slot.9 Now, suppose that q > 0. Since values are iden-

9Note that since the values of all players are identical we



tical for all players, they are ranked by their quality
score no matter what q is, but since es > es+1, the
profit is strictly decreasing in q. Observe that when
q = 0 (a rank-by-bid mechanism), values are identi-
cal, and bidding strategies constant, the actual ranking
scheme is not well-defined. While many tie-breaking
techniques can be considered and the results would in
principle be sensitive to these, the most natural one
here is to break ties in favor of higher quality scores:
this is the ranking that would obtain anyway for any
arbitrarily small q > 0. Clearly, this analysis no longer
holds when values are not identical, and, indeed, we
see from the figure that the profit advantage of low val-
ues of q begins to dissipate when values are uniformly
distributed rather than constant.

5 Conclusion

We used simulation-based game-theoretic analysis to
study equilibrium strategies and address mechanism
design problems in keyword auctions. First, we showed
that sincere bidding in GSP mechanisms is quite sub-
optimal, generating substantial incentives for bidders
to deviate, and, additionally, actual equilibrium strate-
gies involve significant shading (bidders submit bids
well below actual value), all this in spite of the fact
that GSP rules were meant to generalize the truthful
Vickrey auctions. Our second result is that rank-by-
revenue ranking rules are socially optimal, corroborat-
ing previous results from the literature. Finally, we
show that rank-by-bid ranking rules are revenue opti-
mal or nearly so over a range of settings.
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A Appendix

A.1 Proof of Lemma 4.1

Let v1 < v2, v1, v2 ∈ [0, 1]. Then b(v1) > b(v2) if and
only if

αv1 − βv2
1 > αv2 − βv2

2 ⇔
α(v2 − v1) < β(v2

2 − v2
1) ⇔

α < β(v1 + v2) ⇔
α

β
< v1 + v2.

For one direction, suppose that α ≥ 2β or, equiva-
lently, α

β ≥ 2. Since v1, v2 ∈ [0, 1], v1 + v2 ≤ 2. Thus,
we cannot find v1, v2 with v1+v2 > α

β ≥ 2. For the op-
posite direction, suppose that v1 < v2 exist that satisfy
the conditions of the lemma. Then 2 ≥ v1 + v2 > α

β ,
which implies that α < 2β.

A.2 Proof of Theorem 4.2

Let ei = 1 for all players i ∈ I. Then all mechanisms
in our design space parametrized by q are equivalent.
By Lemma 4.1, there will be no inefficient allocation
if and only if α ≥ 2β, which can hold for any α if and
only if β = 0.


