Causal Inference and Graphical Models - II

Jin Tian

Iowa State University

Outline

- Computing the effects of manipulations
- Inferring constraints implied by DAGs with hidden variables
- on nonexperimental data
- on experimental data
- Determining the causes of effects
- Counterfactuals
- Probabilities of causation

Causal Bayesian Networks

- Causal graph, a DAG,
- Nodes: random variables.
- Edges: direct causal influence.

Smoking Tar in lungs

- Modularity: Each parent-child relationship represents an autonomous causal mechanism.
- Functional: $v_{i}=f\left(p a_{i}, \varepsilon\right)$
- Probabilistic: $P\left(v_{i} \mid p a_{i}\right)$

Atomic Intervention/Manipulation

- $d o(T=t)$: fixing a set T of variables to some constants $T=t$.

Smoking

Tar in
Cancer lungs

$$
\begin{gathered}
P(u, x, z, y)=P(u) P(x \mid u) P(z \mid x) P(y \mid z, u) \\
P_{X=F a l s e}(u, z, y)=P(u) P(z \mid X=\text { False }) P(y \mid z, u)
\end{gathered}
$$

Terminologies and Notations

- Effects of manipulations/interventions/actions
- The causal effect of T on $S: P_{t}(s)$.
- Notations:

$$
P_{t}(s)=P(s \mid \operatorname{do}(t))=P(s \mid \operatorname{set}(t))=P(s \mid \hat{t})=P(s| | t)
$$

Computing Causal Effects

- Given:
- observational data: distribution $P(v)$
- qualitative causal assumptions: a causal graph
- Can we compute the causal effect $P_{t}(s)$.
- Causal BNs with no hidden common causes

$$
\begin{gathered}
P(v)=\prod_{i} P\left(v_{i} \mid p a_{i}\right) \\
P_{t}(v)=\prod_{\left\{i \mid V_{i} \notin T\right\}} P\left(v_{i} \mid p a_{i}\right)
\end{gathered}
$$

Computing Causal Effects

- The presence of unobserved (hidden, latent) variables.

Input: causal graph $+P(x, y)$.
Can we predict $P_{x}(y)$?

Computing Causal Effects

- Unidentifiable

$$
\begin{aligned}
P(x, y) & =\sum_{u} P^{M_{1}}(x \mid u) P^{M_{1}}(y \mid x, u) P^{M_{1}}(u) \\
& =\sum_{u} P^{M_{2}}(x \mid u) P^{M_{2}}(y \mid x, u) P^{M_{2}}(u) \\
P_{x}^{M_{1}}(y) & =\sum_{u} P^{M_{1}}(y \mid x, u) P^{M_{1}}(u) \\
P_{x}^{M_{2}}(y) & =\sum_{u} P^{M_{2}}(y \mid x, u) P^{M_{2}}(u) \\
& P_{x}^{M_{1}}(y) \neq P_{x}^{M_{2}}(y)
\end{aligned}
$$

Computing Causal Effects

Input: causal graph $+P(x, y, z)$.

Computing Causal Effects

Input: causal graph $+P(x, y, z)$.
Output:

$$
P_{x}(y)=\sum_{z} P(z \mid x) \sum_{x^{\prime}} P\left(y \mid x^{\prime}, z\right) P\left(x^{\prime}\right)
$$

- Identifiable

Causal Calculus

- Pearl's do-calculus

Rule 1: Ignoring observations

$$
P_{x}(y \mid z, w)=P_{x}(y \mid w) \quad \text { if }(Y \perp Z \mid X, W)_{G_{\bar{X}}}
$$

Rule 2: Action/observation exchange

$$
P_{x, z}(y \mid w)=P_{x}(y \mid z, w) \quad \text { if }(Y \perp Z \mid X, W)_{G_{\bar{X} \underline{Z}}}
$$

Rule 3: Ignoring actions

$$
P_{x, z}(y \mid w)=P_{x}(y \mid w) \quad \text { if }(Y \perp Z \mid X, W)_{G_{\overline{X Z}(W)}}
$$

Computing In Do-calculus

$$
\begin{aligned}
P_{x}(y) & =\sum_{z}^{z} P_{x}(y \mid z) P_{x}(z) \\
& =\sum_{z}^{z} P_{x}(y \mid z) P(z \mid x) \quad \text { Rule 2 } \\
& =\sum_{x_{x, z}(y) P(z \mid x) \quad \text { Rule 2 }}^{z} P^{z}\left(\begin{array}{l}
\end{array}\right) \\
& =\sum_{z} P_{z}(y) P(z \mid x) \quad \text { Rule 3 } \\
& =\sum_{z} \sum_{x^{\prime}} P_{z}\left(y \mid x^{\prime}\right) P_{z}\left(x^{\prime}\right) P(z \mid x)=\ldots \\
& =\sum_{z} P(z \mid x) \sum_{x^{\prime}} P\left(y \mid x^{\prime}, z\right) P\left(x^{\prime}\right)
\end{aligned}
$$

- When to use which rule of do-calculus?

Semi-Markovian Models

- For convenience of presentation, consider models in which each hidden variable is a root node and has exactly two observed children.

Semi-Markovian Models

- For convenience of presentation, consider models in which each hidden variable is a root node and has exactly two observed children.

- Represent the presence of hidden variables with bidirected links.

C-components

- Variables are partitioned into c-components.
- Two variables are in the same c-components iff they are connected by a bi-directed path.
- Bi-directed path: each link on the path is a bidirected link.

Two c-components:

$$
\begin{aligned}
& S_{1}=\left\{X, Z_{2}\right\} \\
& S_{2}=\left\{Z_{1}, Y\right\}
\end{aligned}
$$

Decomposition of $P(v)$

$$
P(v)=\sum_{u} \prod_{\left\{i \mid V_{i} \in V\right\}} P\left(v_{i} \mid p a_{v_{i}}\right) \prod_{\left\{i \mid U_{i} \in U\right\}} P\left(u_{i}\right)
$$

For any set $S \subseteq V$, define

$$
Q[S](v)=P_{v \backslash s}(s)=\sum_{u} \prod_{\left\{i \mid V_{i} \in S\right\}} P\left(v_{i} \mid p a_{v_{i}}\right) \prod_{\left\{i \mid U_{i} \in U\right\}} P\left(u_{i}\right)
$$

Decomposition of $P(v)$

$$
P(v)=\sum_{u} \prod_{\left\{i \mid V_{i} \in V\right\}} P\left(v_{i} \mid p a_{v_{i}}\right) \prod_{\left\{i \mid U_{i} \in U\right\}} P\left(u_{i}\right)
$$

For any set $S \subseteq V$, define

$$
Q[S](v)=P_{v \backslash s}(s)=\sum_{u} \prod_{\left\{i \mid V_{i} \in S\right\}} P\left(v_{i} \mid p a_{v_{i}}\right) \prod_{\left\{i \mid U_{i} \in U\right\}} P\left(u_{i}\right)
$$

Theorem (Decomposition of joint) Let a causal graph be partitioned into c-components S_{1}, \ldots, S_{k}. Then

$$
P(v)=\prod_{i} Q\left[S_{i}\right](v)=\prod_{i} P_{v \backslash s_{i}}\left(s_{i}\right)
$$

Decomposition of $P(v)$

$$
\begin{aligned}
& P\left(x, y, z_{1}, z_{2}\right) \\
& =\sum_{u_{1}, u_{2}} P\left(x \mid u_{1}\right) P\left(z_{1} \mid x, u_{2}\right) P\left(z_{2} \mid z_{1}, u_{1}\right) \\
& \quad P\left(y \mid x, z_{1}, z_{2}, u_{2}\right) P\left(u_{1}\right) P\left(u_{2}\right)
\end{aligned}
$$

Two c-components:
$S_{1}=\left\{X, Z_{2}\right\}$
$S_{2}=\left\{Z_{1}, Y\right\}$

Decomposition of $P(v)$

Two c-components:
$S_{1}=\left\{X, Z_{2}\right\}$
$S_{2}=\left\{Z_{1}, Y\right\}$

$$
\begin{aligned}
& P\left(x, y, z_{1}, z_{2}\right) \\
&= \sum_{u_{1}, u_{2}} P\left(x \mid u_{1}\right) P\left(z_{1} \mid x, u_{2}\right) P\left(z_{2} \mid z_{1}, u_{1}\right) \\
& \quad P\left(y \mid x, z_{1}, z_{2}, u_{2}\right) P\left(u_{1}\right) P\left(u_{2}\right) \\
&=\left(\sum_{u_{1}} P\left(x \mid u_{1}\right) P\left(z_{2} \mid z_{1}, u_{1}\right) P\left(u_{1}\right)\right) \\
&\left(\sum_{u_{2}} P\left(z_{1} \mid x, u_{2}\right) P\left(y \mid x, z_{1}, z_{2}, u_{2}\right) P\left(u_{2}\right)\right) \\
&= Q\left[S_{1}\right]\left(x, z_{1}, z_{2}\right) Q\left[S_{2}\right]\left(x, z_{1}, z_{2}, y\right) \\
&= P_{y, z_{1}}\left(x, z_{2}\right) P_{x, z_{2}}\left(y, z_{1}\right)
\end{aligned}
$$

Computing $Q\left[S_{i}\right]^{\prime} \mathbf{s}$

Theorem Let a causal graph be partitioned into c-components S_{1}, \ldots, S_{k}. Then each $Q\left[S_{i}\right]$ is identifiable and is given by

$$
Q\left[S_{i}\right](v)=P_{v \backslash s_{i}}\left(s_{i}\right)=\prod_{\left\{j \mid V_{j} \in S_{i}\right\}} P\left(v_{j} \mid v_{1}, \ldots, v_{j-1}\right),
$$

assuming a topological order over V be $V_{1}<\ldots<V_{n}$.

Conditional Independences

Theorem Let a topological order over V be
$V_{1}<\ldots<V_{n}$,

$$
P\left(v_{i} \mid v_{1}, \ldots, v_{i-1}\right)=P\left(v_{i} \mid p a\left(T_{i}\right) \backslash\left\{v_{i}\right\}\right)
$$

where T_{i} is the c-component of the subgraph
$G_{\left\{V_{1}, \ldots, V_{i}\right\}}$ that contains V_{i}.

- In the presence of hidden variables, each variable is independent of its non-descendants given its parents, the non-descendant variables in its c-component, and the parents of the non-descendant variables in its c-component.

An Example

Two c-components:
$S_{1}=\left\{X, Z_{2}\right\}$
$S_{2}=\left\{Z_{1}, Y\right\}$
Topological order:
$X<Z_{1}<Z_{2}<Y$

An Example

$$
\begin{array}{ll}
& \text { Two c-components: } \\
& S_{1}=\left\{X, Z_{2}\right\} \\
Z_{1}=\left\{Z_{1}, Y\right\} \\
& \text { Topological order: } \\
& X<Z_{1}<Z_{2}<Y \\
P\left(x, y, z_{1}, z_{2}\right)= & Q\left[\left\{X, Z_{2}\right\}\right] Q\left[\left\{Z_{1}, Y\right\}\right]
\end{array}
$$

An Example

$$
\begin{array}{cl}
& \begin{array}{l}
\text { Two c-components: } \\
S_{1}=\left\{X, Z_{2}\right\} \\
U_{1}
\end{array} \\
P\left(x, y, z_{1}, z_{2}\right)=Q\left[\left\{X, Z_{2}\right\}\right] Q\left[\left\{Z_{1}, Y\right\}\right] \\
Q\left[\left\{X, Z_{2}\right\}\right]=P_{y, z_{1}}\left(x, z_{2}\right)=P(x) P\left(z_{2} \mid x, z_{1}\right) \\
Q\left[\left\{Z_{1}, Y\right\}\right]=P_{x, z_{2}}\left(y, z_{1}\right)=P\left(z_{1} \mid x\right) P\left(y \mid x, z_{1}, z_{2}\right)
\end{array}
$$

Decomposition of $P_{v \backslash h}(h)$

Theorem Let $H \subseteq V$, and G_{H} denote the subgraph of G composed only of the variables in H. Assume G_{H} is partitioned into c-components H_{1}, \ldots, H_{l}. Then
1.

$$
Q[H]=\prod_{i} Q\left[H_{i}\right], \quad \text { i.e., } \quad P_{\nu \backslash h}(h)=\prod_{i} P_{\nu \backslash h_{i}}\left(h_{i}\right) .
$$

2. Each $Q\left[H_{i}\right]=P_{\nu \backslash h_{i}}\left(h_{i}\right)$ is computable in terms of $Q[H]=P_{\nu \backslash h}(h)$.

Computing $Q[S]$

A procedure for computing $Q[S](v)=P_{v \backslash s}(s)$ is developed, that

1. Determine the identifiability of $Q[S]$.
2. Express identifiable $Q[S]$ in terms of $P(v)$.

Identifying Causal Effects $P_{t}(s)$

Let $D=\operatorname{An}(S)_{G_{V \backslash T}}$, and assume that the subgraph G_{D} is partitioned into c-components D_{1}, \ldots, D_{k}. Then

$$
\begin{aligned}
P_{t}(s) & =\sum_{(\nu \backslash t) \backslash s} P_{t}(v \backslash t) \\
& =\sum_{(v \backslash t) \backslash s} Q[V \backslash T] \\
& \cdots \\
& =\sum_{d \backslash s} \prod_{i} Q\left[D_{i}\right] .
\end{aligned}
$$

- $P_{t}(s)$ is identifiable iff each $Q\left[D_{i}\right]$ is identifiable.

Computing $P_{t}(s)$ - Summary

- A complete algorithm is developed that will either determine $P_{t}(s)$ to be unidentifiable or express $P_{t}(s)$ in terms of $P(v)$
- Do-calculus is complete for computing causal effects
- Open questions:
- computing causal effects in partially known DAGs, or PAGs

Outline

- Computing the effects of manipulations
- Inferring constraints implied by DAGs with hidden variables
- Determining the causes of effects

Implications of Causal Models

- The validity of a causal model can be tested only if it has empirical implications, that is, it must impose constraints on data.
- No hidden variables:
- observational implications of a BN are completely captured by conditional independence relationships
- read by d-separation

Implications of Causal Models

- The validity of a causal model can be tested only if it has empirical implications, that is, it must impose constraints on data.
- No hidden variables:
- observational implications of a BN are completely captured by conditional independence relationships
- read by d-separation
- When hidden variables are present:
- other types of constraints on the observed distribution.

An Example

- $P(a, b, c, d)$ must satisfy:

$$
\begin{gathered}
\sum_{b} P(d \mid a, b, c) P(b \mid a)=f(c, d) \\
i . e . \quad \sum_{b} P(d \mid a, b, c) P(b \mid a)=\sum_{b} P\left(d \mid a^{\prime}, b, c\right) P\left(b \mid a^{\prime}\right)
\end{gathered}
$$

- Functional constraints

Applications

- Empirically validating causal models.
- Distinguishing causal models with the same set of conditional independence relationships.

(a)

(b)

Independence statements: A is independent of C given B.

Inferring Functional Constraints

- Consider

$$
Q[\{D\}]=P_{a, b, c}(d)=\sum_{u} P(d \mid c, u) P(u) \equiv Q[\{D\}](c, d)
$$

- $Q[\{D\}]$ is identifiable as

$$
Q[\{D\}](v)=\sum_{b} P(d \mid a, b, c) P(b \mid a) .
$$

- Therefore $\sum_{b} P(d \mid a, b, c) P(b \mid a)$ is independent of a.

Inferring Functional Constraints

Basic Ideas

- $Q[S](v)$ is a function of values only of a subset of V.
- Whenever $Q[S]$ is computable from $P(v)$, it may lead to some constraints - conditional independence relations or functional constraints.

The Arguments of $Q[S]$

$$
Q[S](v)=\sum_{u} \prod_{\left\{i \mid V_{i} \in S\right\}} P\left(v_{i} \mid p a_{v_{i}}\right) \prod_{\left\{i \mid U_{i} \in U\right\}} P\left(u_{i}\right)
$$

- $P a(S)$: the union of S and the set of parents of S.
- $Q[S](v)$ is a function of $\mathrm{Pa}(S)$:

$$
Q[S](v)=Q[S](p a(S))
$$

Identifying Functional Constraints

1. Find a computable $Q[S]$ expressed in terms of $P(v)$

- A procedure is developed that systematically find computable $Q[S]$.

2. $Q[S]$ is a function only of $p a(S)$
\Longrightarrow conditional independence relations or functional constraints.

Another Example

- The model does not imply any conditional independences
$Q\left[\left\{V_{4}\right\}\right]\left(v_{3}, v_{4}\right)=\frac{\sum_{v_{1}} P\left(v_{4} \mid v_{3}, v_{2}, v_{1}\right) P\left(v_{3} \mid v_{2}, v_{1}\right) P\left(v_{1}\right)}{\sum_{v_{1}} P\left(v_{3} \mid v_{2}, v_{1}\right) P\left(v_{1}\right)}$.
- The right hand side is independent of v_{2}.

Inequality Constraints

- Pearl's instrumental inequality, for discrete variables

$$
\max _{x} \sum_{y}\left[\max _{z} P(x y \mid z)\right] \leq 1
$$

$$
\begin{aligned}
& \text { E.g., binary variables } \\
& \qquad \begin{array}{r}
P\left(x_{0}, y_{0} \mid z_{0}\right)+P\left(x_{0}, y_{1} \mid z_{1}\right) \leq 1 \\
P\left(x_{1}, y_{0} \mid z_{0}\right)+P\left(x_{1}, y_{1} \mid z_{1}\right) \leq 1 \\
P\left(x_{0}, y_{1} \mid z_{0}\right)+P\left(x_{0}, y_{0} \mid z_{1}\right) \leq 1 \\
P\left(x_{1}, y_{1} \mid z_{0}\right)+P\left(x_{1}, y_{0} \mid z_{1}\right) \leq 1
\end{array}
\end{aligned}
$$

Inequality Constraints

- Empirically validating causal models.
- Distinguishing causal models with the same set of conditional independence relationships.
- Open problem: how to identify inequality constraints

Constraints on Experimental Data

- A causal BN not only imposes constraints on the nonexperimental distribution but also on the experimental distributions
- A causal BN can be tested and falsified by using two types of data:
- nonexperimental data are passively observed,
- experimental data are produced by manipulating (randomly) some variables and observing the states of other variables.
- The ability to use a mixture of nonexperimental and experimental data will greatly increase our power of causal reasoning and learning.

Constraints on Experimental Data

- Let $H \subseteq V$ and assume the subgraph G_{H} is partitioned into c-components H_{1}, \ldots, H_{l}. Then

$$
P_{\nu \backslash h}(h)=\prod_{i} P_{\nu \backslash h_{i}}\left(h_{i}\right) .
$$

-

$$
P_{p a_{i}, s}\left(v_{i}\right)=P_{p a_{i}}\left(v_{i}\right), \quad \forall S \subseteq V \backslash\left(P A_{i} \cup\left\{V_{i}\right\}\right)
$$

- If a set T is composed of nondescendants of V_{j},

$$
P_{v_{j}, s}(t)=P_{s}(t)
$$

Constraints on Experimental Data

$$
\begin{aligned}
& \text { Z } \xrightarrow{U} \xrightarrow[Y]{U} \\
& P_{z}(x y)=P(x y \mid z) \\
& P_{y z}(x)=P(x \mid z) \\
& P_{x z}(y)=P_{x}(y)
\end{aligned}
$$

Inequalities on Experimental Data

- Consider discrete random variables
- A type of inequality constraints on experimental distributions
- Let V be partitioned into c-components T_{1}, \ldots, T_{k}. For $i=1, \ldots, k, \forall S_{1} \subseteq T_{i}$,

$$
\sum_{S_{2} \subseteq T_{i} \backslash S_{1}}(-1)^{\left|S_{2}\right|} P_{v \backslash\left(s_{1} \cup s_{2}\right)}\left(s_{1}, s_{2}\right) \geq 0, \quad \forall v \in \operatorname{Dm}(V)
$$

- Not complete

Inequalities on Experimental Data

For all $x \in \operatorname{Dm}(X), y \in \operatorname{Dm}(Y), z \in \operatorname{Dm}(Z)$

$$
\begin{aligned}
& 1-P_{y z}(x)-P_{x z}(y)+P_{z}(x y) \geq 0 \\
& P_{y z}(x)-P_{z}(x y) \geq 0 \\
& P_{x z}(y)-P_{z}(x y) \geq 0
\end{aligned}
$$

Applications of Inequalities

- Model testing using a mixture of nonexperimental and experimental data
- Bounding (unidentifiable) causal effects from nonexperimental data
- Bounding the effects of untried interventions from experiments involving auxiliary interventions that are easier or cheaper to implement

$$
P_{z}(x, y) \leq P_{x z}(y) \leq 1-P_{z}(x)+P_{z}(x, y)
$$

Deriving Instrumental Inequality

- Equality constraints: $P_{z}(x y)=P(x y \mid z), P_{x z}(y)=P_{x}(y)$
- Inequality: $P_{z}(x y) \leq P_{x z}(y)$
- We have

$$
\begin{aligned}
P(x y \mid z) & \leq P_{x}(y) \\
\max _{z} P(x y \mid z) & \leq P_{x}(y) \\
\sum_{y} \max _{z} P(x y \mid z) & \leq 1
\end{aligned}
$$

Deriving Instrumental Inequality

- The following instrumental type inequality can be derived

$$
\sum_{y z} \max _{w_{1}} P\left(z \mid w_{1} x w_{2} y\right) P\left(y \mid w_{1} x w_{2}\right) P\left(x \mid w_{1}\right) \leq 1
$$

Experimental Implications

- What if causal structures unknown?
- Given a collection of experimental distributions

$$
P_{*}=\left\{P_{t}(v) \mid T \subseteq V, t \in \operatorname{Dm}(T)\right\}
$$

- Is the collection P_{*} compatible with some underlying causal Bayesian network?

Three Properties

- If no hidden variables

1. Effectiveness

$$
P_{t}(t)=1
$$

2. Markov

$$
P_{\nu \backslash\left(s_{1} \cup s_{2}\right)}\left(s_{1}, s_{2}\right)=P_{\nu \backslash s_{1}}\left(s_{1}\right) P_{\nu \backslash s_{2}}\left(s_{2}\right)
$$

3. Recursiveness

Define $X \leadsto Y$ as $\exists w, P_{x, w}(y) \neq P_{w}(y)$,

$$
\left(X_{0} \leadsto X_{1}\right) \wedge \ldots \wedge\left(X_{k-1} \leadsto X_{k}\right) \Rightarrow \neg\left(X_{k} \leadsto X_{0}\right)
$$

A Complete Characterization

Theorem (Soundness) Effectiveness, Markov, and recursiveness hold in all causal Bayesian networks.

Theorem (Completeness) If a P_{*} set satisfies effectiveness, Markov, and recursiveness, then there exists a causal Bayesian network with a unique causal graph that can generate this P_{*} set.

Semi-Markovian Models

- Effectiveness
- Recursiveness
- Directionality

There exists a total order " $<$ " such that

$$
P_{v_{i}, w}(s)=P_{w}(s) \quad \text { if } \forall X \in S, X<V_{i}
$$

- Inclusion-Exclusion Inequalities For any subset $S_{1} \subseteq V$,

$$
\sum_{S_{2} \subseteq V \backslash S_{1}}(-1)^{\left|S_{2}\right|} P_{\nu \backslash\left(s_{1} \cup s_{2}\right)}(v) \geq 0, \quad \forall v \in \operatorname{Dm}(V)
$$

A Complete Characterization

Theorem (Soundness) Effectiveness, recursiveness, directionality, and inclusion-exclusion inequalities hold in all semi-Markovian models.

Theorem (Completeness) If a P_{*} set satisfies effectiveness, recursiveness, directionality, and inclusionexclusion inequalities, then there exists a semiMarkovian model that can generate this P_{*} set.

Applications of Characterization

- Reasoning about causal effects without possessing causal structures
- Is a collection of experimental distributions compatible?
- Predicting about or bounding interventions that were not tried experimentally even if the structure of the underlying model is unknown

Open Problems

- Identifying all constraints
- on nonexperimental distributions
- on experimental distributions
- equalities
- inequalities
- constraints particular to a family of distributions
- Using constraints to guide learning BNs with hidden variables

Outline

- Computing the effects of manipulations
- Inferring constraints implied by DAGs with hidden variables
- Determining the causes of effects
- Counterfactuals
- Probabilities of causation

Determining the Causes of Effects

- Assessing the likelihood that one event was the cause of another
- Legal responsibility: Mr. A took a drug and died,
- Lawsuit: the drug caused the death of Mr. A
- Experimental and nonexperimental data on patients
- Court to decide: Is it more probable than not that A would be alive but for the drug?

The Problem

- Probability of necessary causation (PN): "Probability that event y would not have occured if it were not for event x, given that x and y did in fact occur."
- What is the meaning of $P N$? How to define PN mathematically?
- Under what conditions can PN be learned from statistical data?

Functional Causal Models

- Structural Equations

$$
v_{i}=f_{i}\left(p a_{i}, u_{i}\right), \quad i=1, \ldots, n
$$

- $U=\left\{U_{1}, \ldots, U_{n}\right\}$: exogenous background/error variables
- Acyclic models
- The values of the V variables will be uniquely determined by those of the U variables.
- The joint distribution $P(v)$ is determined uniquely by the distribution $P(u)$.
- $P(u)$ defines a probabilistic causal mode|

Counterfactuals

- An intervention is represented as an alteration on a select set of functions instead of a select set of conditional probabilities.
- The effect of $d o\left(V_{i}=v_{i}\right)$ is represented by replacing the equation $v_{i}=f_{i}\left(p a_{i}, u_{i}\right)$ with

$$
V_{i}=v_{i}
$$

- The counterfactual expression "The value that Y would have obtained, had X been x ", denoted by $Y_{x}(u)$, is interpreted as the solution for Y in the modified set of equations in situation $U=u$.

Probabilities of Counterfactuals

$$
\begin{gathered}
P(Y=y)=\sum_{\{u \mid Y(u)=y\}} P(u) \\
P\left(Y_{x}=y\right)=\sum_{\left\{u \mid Y_{x}(u)=y\right\}} P(u) \equiv P_{x}(y) \\
P\left(Y_{x}=y, X=x^{\prime}\right)=\sum_{\left\{u \mid Y_{x}(u)=y \& X(u)=x^{\prime}\right\}} P(u) \\
P\left(Y_{x}=y, Y_{x^{\prime}}=y^{\prime}\right)=\sum_{\left\{u \mid Y_{x}(u)=y \& Y_{x^{\prime}}(u)=y^{\prime}\right\}} P(u)
\end{gathered}
$$

Computing Counterfactuals

Given evidence $X=x^{\prime}, Y=y^{\prime}$, compute the probability of $Y=y$ had X been x (X and Y subsets of variables):

Step 1 (abduction): Update the probability $P(u)$ to obtain $P\left(u \mid x^{\prime}, y^{\prime}\right)$.
Step 2 (action): Replace the equations corresponding to variables in set X by the equations $X=x$.
Step 3 (prediction): Use the modified model to compute the probability of $Y=y$.

Computing Counterfactuals

Model $1 \quad x=u_{1}$,

$$
y=u_{2} .
$$

Model $2 x=u_{1}$,

$$
y=x u_{2}+(1-x)\left(1-u_{2}\right) .
$$

where U_{1} and U_{2} are two independent binary variables with $P\left(u_{1}=1\right)=P\left(u_{2}=1\right)=\frac{1}{2}$, leading to the same distribution $P(x, y)$.

Model 1: $P\left(Y_{x=0}=0 \mid X=1, Y=1\right)=0$
Model 2: $P\left(Y_{x=0}=0 \mid X=1, Y=1\right)=1$

Computing Counterfactuals

- Probabilistic causal models are insufficient for computing probabilities of counterfactuals; knowledge of the actual process behind $P(y \mid x)$ is needed for the computation.
- A functional causal model constitutes a mathematical object sufficient for the computation and definition of such probabilities.

Probabilities of Causation

- Let X and Y be two binary variables
- Probability of necessity (PN)

$$
P N \equiv P\left(Y_{x^{\prime}}=y^{\prime} \mid X=x, Y=y\right) \equiv P\left(y_{x^{\prime}}^{\prime} \mid x, y\right)
$$

- PN stands for the probability that event y would not have occurred in the absence of event $x, y_{x^{\prime}}^{\prime}$, given that x and y did in fact occur.
- Applications in epidemiology, legal reasoning, and AI: a certain case of disease is attributable to a particular exposure, "the probability that disease would not have occurred in the absence of exposure, given that disease and exposure did in fact occur."

Probabilities of Causation

- Probability of sufficiency (PS)

$$
P S \equiv P\left(y_{x} \mid y^{\prime}, x^{\prime}\right)
$$

- PS gives the probability that setting x would produce y in a situation where x and y are in fact absent.
- Applications in policy analysis, AI, and psychology: a policy maker interested in the dangers that a certain exposure may present to the healthy population, the "probability that a healthy unexposed individual would have gotten the disease had he/she been exposed."

Legal Responsibility

- A lawsuit is filed against the manufacturer of drug x, charging that the drug is likely to have caused the death of Mr. A, who took the drug to relieve symptom S associated with disease D
- Experimental and nonexperimental data (in the next page)
- Court to decide:

Is it more probable than not that A would be alive but for the drug?

- Can PN be estimated from data?

Data for Legal Responsibility

Table 0: (Hypothetical) frequency data obtained in experimental and nonexperimental studies, comparing deaths (in thousands) among drug users, x, and nonusers, x^{\prime}.

| | Experimental | | | Nonexperimental | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| | x | x^{\prime} | | x | x^{\prime} |
| Deaths (y) | 16 | 14 | | 2 | 28 |
| Survivals $\left(y^{\prime}\right)$ | 984 | 986 | | 998 | 972 |

LINEAR PROGRAMMING

- Parameters: $p_{110}=P\left(y_{x}, y_{x^{\prime}}, x^{\prime}\right), \ldots$
- Probabilistic constraints:

$$
\begin{array}{r}
\sum_{i=0}^{1} \sum_{j=0}^{1} \sum_{k=0}^{1} p_{i j k}=1 \\
p_{i j k} \geq 0 \text { for } i, j, k \in\{0,1\}
\end{array}
$$

- Nonexperimental constraints:

$$
\begin{aligned}
p_{111}+p_{101} & =P(x, y) \\
p_{011}+p_{001} & =P\left(x, y^{\prime}\right) \\
p_{110}+p_{010} & =P\left(x^{\prime}, y\right)
\end{aligned}
$$

Bounding by LP

- Experimental constraints:

$$
\begin{aligned}
P\left(y_{x}\right) & =p_{111}+p_{110}+p_{101}+p_{100} \\
P\left(y_{x^{\prime}}\right) & =p_{111}+p_{110}+p_{011}+p_{010}
\end{aligned}
$$

- Maximize (Minimize)

$$
\begin{aligned}
P N & =p_{101} / P(x, y) \\
P S & =p_{100} / P\left(x^{\prime}, y^{\prime}\right)
\end{aligned}
$$

Typical Results

- Bounds on the probabilities of causation given combined nonexperimental and experimental data
$\max \left\{\begin{array}{c}0 \\ \frac{P(y)-P\left(y_{x^{\prime}}\right)}{P(x, y)}\end{array}\right\} \leq P N \leq \min \left\{\begin{array}{c}1 \\ \frac{P\left(y_{x^{\prime}}^{\prime}\right)-P\left(x^{\prime}, y^{\prime}\right)}{P(x, y)}\end{array}\right\}$
$\max \left\{\begin{array}{c}0 \\ \frac{P\left(y_{x} x\right.}{P\left(x^{\prime}, y^{\prime}\right)}\end{array}\right\} \leq P S \leq \min \left\{\begin{array}{c}1 \\ \frac{P\left(y_{x}\right)-P(x, y)}{P\left(x^{\prime}, y^{\prime}\right)}\end{array}\right\}$

Solution to Legal Responsibility

- Plaintiff:

$$
P N \geq \frac{P(y)-P\left(y_{x^{\prime}}\right)}{P(y, x)}=\frac{0.015-0.014}{0.001}=1
$$

- Jury: Guilty!

PERSONAL DECISION MAKING

Mr. B, survived without drug. Would he risk death by starting now?

- Nonexperimental data: $P(y \mid x)=0.002$
- Experimental data: $P\left(y_{x}\right)=0.016$
- Correct Answer: Risk $=P S=P\left(y_{x} \mid x^{\prime}, y^{\prime}\right)$

$$
0.002 \leq P S \leq 0.031
$$

Hierarchy of Causal Queries

- Predictions (conditioning) require only a specification of a joint distribution function.
- Intervention analysis requires a causal structure in addition to a joint distribution.
- Counterfactual analysis requires information about the functional relationships and the distribution of the omitted factors.

