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Outline

Computing the effects of manipulations

Inferring constraints implied by DAGs with hidden
variables

on nonexperimental data

on experimental data

Determining the causes of effects

Counterfactuals

Probabilities of causation
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Causal Bayesian Networks

Causal graph, a DAG,

Nodes: random
variables.

Edges: direct causal
influence.

CancerSmoking Tar in
lungs

Z Y

U

X

Modularity: Each parent-child relationship
represents an autonomous causal mechanism.

Functional: vi = f (pai,ε)
Probabilistic: P(vi|pai)
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Atomic Intervention/Manipulation

do(T = t): fixing a set T of variables to some
constants T = t.

P(U)

P(X|U)
P(Y|Z,U)

Tar in
lungs

CancerSmoking

P(Z|X)

Z YX

U

Tar in

do(X=False)

P(U)

lungs
CancerSmoking

P(Z|X)
P(Y|Z,U)

Z Y

U

X

P(u,x,z,y) = P(u)P(x|u)P(z|x)P(y|z,u)

PX=False(u,z,y) = P(u)P(z|X = False)P(y|z,u)
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Terminologies and Notations

Effects of manipulations/interventions/actions

The causal effect of T on S: Pt(s).

Notations:

Pt(s)= P(s|do(t))= P(s|set(t))= P(s|t̂ )= P(s||t)

– p.5



Computing Causal Effects

Given:

observational data: distribution P(v)
qualitative causal assumptions: a causal graph

Can we compute the causal effect Pt(s).

Causal BNs with no hidden common causes

P(v) = ∏
i

P(vi|pai)

Pt(v) = ∏
{i|Vi 6∈T}

P(vi|pai)
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Computing Causal Effects

The presence of unobserved (hidden, latent)
variables.

X Y

U

Input: causal graph + P(x,y).
Can we predict Px(y)?
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Computing Causal Effects

Unidentifiable

X Y

U

P(x,y) = ∑
u

PM1(x|u)PM1(y|x,u)PM1(u)

= ∑
u

PM2(x|u)PM2(y|x,u)PM2(u)

PM1
x (y)=∑

u
PM1(y|x,u)PM1(u)

PM2
x (y)=∑

u
PM2(y|x,u)PM2(u)

PM1
x (y) 6= PM2

x (y)

– p.8



Computing Causal Effects

X Z Y

U

Input: causal graph + P(x,y,z).

Output:

Px(y) = ∑
z

P(z|x)∑
x′

P(y|x′,z)P(x′)

Identifiable

– p.9



Computing Causal Effects

X Z Y

U

Input: causal graph + P(x,y,z).
Output:

Px(y) = ∑
z

P(z|x)∑
x′

P(y|x′,z)P(x′)

Identifiable
– p.9



Causal Calculus

Pearl’s do-calculus

Rule 1: Ignoring observations

Px(y|z,w) = Px(y|w) if (Y⊥⊥Z|X ,W )GX

Rule 2: Action/observation exchange

Px,z(y|w) = Px(y|z,w) if (Y⊥⊥Z|X ,W )GXZ

Rule 3: Ignoring actions

Px,z(y|w) = Px(y|w) if (Y⊥⊥Z|X ,W)GXZ(W)

– p.10



Computing In Do-calculus

X Z Y

U

Px(y) = ∑
z

Px(y|z)Px(z)

= ∑
z

Px(y|z)P(z|x) Rule 2

= ∑
z

Px,z(y)P(z|x) Rule 2

= ∑
z

Pz(y)P(z|x) Rule 3

= ∑
z

∑
x′

Pz(y|x
′)Pz(x

′)P(z|x) = . . .

= ∑
z

P(z|x)∑
x′

P(y|x′,z)P(x′)

When to use which rule of do-calculus?
– p.11



Semi-Markovian Models

For convenience of presentation, consider models
in which each hidden variable is a root node and
has exactly two observed children.

X Z Y

U

X Z Y

U

X Y

U

X Y

U

Represent the presence of hidden variables with
bidirected links.
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C-components

Variables are partitioned into c-components.

Two variables are in the same c-components iff
they are connected by a bi-directed path.

Bi-directed path: each link on the path is a
bidirected link.

2

1

U

U

Z1

Z

Y

X

2

Two c-components:
S1 = {X ,Z2}
S2 = {Z1,Y}

– p.13



Decomposition of P(v)

P(v) = ∑
u

∏
{i|Vi∈V}

P(vi|pavi) ∏
{i|Ui∈U}

P(ui)

For any set S ⊆V , define

Q[S](v) = Pv\s(s) = ∑
u

∏
{i|Vi∈S}

P(vi|pavi) ∏
{i|Ui∈U}

P(ui)

Theorem (Decomposition of joint) Let a causal graph be

partitioned into c-components S1, . . . ,Sk. Then

P(v) = ∏
i

Q[Si](v) = ∏
i

Pv\si
(si)
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Decomposition of P(v)

2

1

U

U

Z1

Z

Y

X

2

Two c-components:

S1 = {X ,Z2}

S2 = {Z1,Y}

P(x,y,z1,z2)

= ∑
u1,u2

P(x|u1)P(z1|x,u2)P(z2|z1,u1)

P(y|x,z1,z2,u2)P(u1)P(u2)
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Decomposition of P(v)

2

1

U

U

Z1

Z

Y

X

2

Two c-components:

S1 = {X ,Z2}

S2 = {Z1,Y}

P(x,y,z1,z2)

= ∑
u1,u2

P(x|u1)P(z1|x,u2)P(z2|z1,u1)

P(y|x,z1,z2,u2)P(u1)P(u2)

=
(

∑
u1

P(x|u1)P(z2|z1,u1)P(u1)
)

(

∑
u2

P(z1|x,u2)P(y|x,z1,z2,u2)P(u2)
)

= Q[S1](x,z1,z2)Q[S2](x,z1,z2,y)

= Py,z1(x,z2)Px,z2(y,z1)

– p.15



Computing Q[Si]’s

Theorem Let a causal graph be partitioned into
c-components S1, . . . ,Sk. Then each Q[Si] is
identifiable and is given by

Q[Si](v) = Pv\si
(si) = ∏

{ j|V j∈Si}

P(v j|v1, . . . ,v j−1),

assuming a topological order over V be V1 < .. . < Vn.

– p.16



Conditional Independences

Theorem Let a topological order over V be
V1 < .. . < Vn,

P(vi|v1, . . . ,vi−1) = P(vi|pa(Ti)\{vi})

where Ti is the c-component of the subgraph
G{V1,...,Vi} that contains Vi.

In the presence of hidden variables, each variable
is independent of its non-descendants given its
parents, the non-descendant variables in its
c-component, and the parents of the
non-descendant variables in its c-component.

– p.17



An Example

2

1

U

U

Z1

Z

Y

X

2

Two c-components:
S1 = {X ,Z2}
S2 = {Z1,Y}
Topological order:
X < Z1 < Z2 < Y

P(x,y,z1,z2) = Q[{X ,Z2}]Q[{Z1,Y}]

Q[{X ,Z2}] = Py,z1(x,z2) = P(x)P(z2|x,z1)

Q[{Z1,Y}] = Px,z2(y,z1) = P(z1|x)P(y|x,z1,z2)

– p.18
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Decomposition of Pv\h(h)

Theorem Let H ⊆V , and GH denote the subgraph of
G composed only of the variables in H. Assume GH is
partitioned into c-components H1, . . . ,Hl. Then

1.

Q[H] = ∏
i

Q[Hi], i.e., Pv\h(h) = ∏
i

Pv\hi
(hi).

2. Each Q[Hi] = Pv\hi
(hi) is computable in terms of

Q[H] = Pv\h(h).

– p.19



Computing Q[S]

A procedure for computing Q[S](v) = Pv\s(s) is
developed, that

1. Determine the identifiability of Q[S].

2. Express identifiable Q[S] in terms of P(v).

– p.20



Identifying Causal Effects Pt(s)

Let D = An(S)GV\T
, and assume that the subgraph GD

is partitioned into c-components D1, . . . ,Dk. Then

Pt(s) = ∑
(v\t)\s

Pt(v\ t)

= ∑
(v\t)\s

Q[V \T ]

. . .

= ∑
d\s

∏
i

Q[Di].

Pt(s) is identifiable iff each Q[Di] is identifiable.

– p.21



Computing Pt(s) – Summary

A complete algorithm is developed that will
either determine Pt(s) to be unidentifiable or
express Pt(s) in terms of P(v)

Do-calculus is complete for computing causal
effects

Open questions:

computing causal effects in partially known
DAGs, or PAGs

– p.22



Outline

Computing the effects of manipulations

Inferring constraints implied by DAGs with
hidden variables

Determining the causes of effects

– p.23



Implications of Causal Models

The validity of a causal model can be tested only
if it has empirical implications, that is, it must
impose constraints on data.

No hidden variables:

observational implications of a BN are
completely captured by conditional
independence relationships

read by d-separation

When hidden variables are present:

other types of constraints on the observed
distribution.

– p.24
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An Example

A B C D

U

P(a,b,c,d) must satisfy:

∑
b

P(d|a,b,c)P(b|a) = f (c,d)

i.e. ∑
b

P(d|a,b,c)P(b|a)=∑
b

P(d|a′,b,c)P(b|a′)

Functional constraints
– p.25



Applications

Empirically validating causal models.

Distinguishing causal models with the same set of
conditional independence relationships.

A B C D

U

A B C D

U

(a) (b)
Independence statements: A is independent of C given B.

– p.26



Inferring Functional Constraints

A B C D

U

Consider

Q[{D}] = Pa,b,c(d) = ∑
u

P(d|c,u)P(u) ≡ Q[{D}](c,d)

Q[{D}] is identifiable as

Q[{D}](v) = ∑
b

P(d|a,b,c)P(b|a).

Therefore ∑b P(d|a,b,c)P(b|a) is independent of a.
– p.27



Inferring Functional Constraints

Basic Ideas

Q[S](v) is a function of values only of a subset of
V .

Whenever Q[S] is computable from P(v), it may
lead to some constraints — conditional
independence relations or functional constraints.

– p.28



The Arguments of Q[S]

Q[S](v) = ∑
u

∏
{i|Vi∈S}

P(vi|pavi) ∏
{i|Ui∈U}

P(ui)

Pa(S): the union of S and the set of parents of S.

Q[S](v) is a function of Pa(S):

Q[S](v) = Q[S](pa(S))

– p.29



Identifying Functional Constraints

1. Find a computable Q[S] expressed in terms of
P(v)

A procedure is developed that systematically
find computable Q[S].

2. Q[S] is a function only of pa(S)
=⇒ conditional independence relations or
functional constraints.

– p.30



Another Example

U

V VVV1

U2

2

1

43

The model does not imply any conditional
independences

Q[{V4}](v3,v4) =
∑v1 P(v4|v3,v2,v1)P(v3|v2,v1)P(v1)

∑v1 P(v3|v2,v1)P(v1)
.

The right hand side is independent of v2.

– p.31



Inequality Constraints

Z X

U

Y

Pearl’s instrumental inequality,

for discrete variables

max
x ∑

y
[max

z
P(xy|z)] ≤ 1.

E.g., binary variables

P(x0,y0|z0)+P(x0,y1|z1) ≤ 1

P(x1,y0|z0)+P(x1,y1|z1) ≤ 1

P(x0,y1|z0)+P(x0,y0|z1) ≤ 1

P(x1,y1|z0)+P(x1,y0|z1) ≤ 1
– p.32



Inequality Constraints

Empirically validating causal models.

Distinguishing causal models with the same set of
conditional independence relationships.

Open problem: how to identify inequality
constraints

– p.33



Constraints on Experimental Data

A causal BN not only imposes constraints on the

nonexperimental distribution but also on the experimental

distributions

A causal BN can be tested and falsified by using two types

of data:

nonexperimental data are passively observed,

experimental data are produced by manipulating

(randomly) some variables and observing the states of

other variables.

The ability to use a mixture of nonexperimental and

experimental data will greatly increase our power of causal

reasoning and learning. – p.34



Constraints on Experimental Data

Let H ⊆V and assume the subgraph GH is
partitioned into c-components H1, . . . ,Hl. Then

Pv\h(h) = ∏
i

Pv\hi
(hi).

Ppai,s(vi) = Ppai(vi), ∀S ⊆V \ (PAi ∪{Vi})

If a set T is composed of nondescendants of V j,

Pv j,s(t) = Ps(t).

– p.35



Constraints on Experimental Data

Z X

U

Y

Pz(xy) = P(xy|z)

Pyz(x) = P(x|z)

Pxz(y) = Px(y)

– p.36



Inequalities on Experimental Data

Consider discrete random variables

A type of inequality constraints on experimental
distributions

Let V be partitioned into c-components
T1, . . . ,Tk. For i = 1, . . . ,k, ∀S1 ⊆ Ti,

∑
S2⊆Ti\S1

(−1)|S2|Pv\(s1∪s2)(s1,s2) ≥ 0, ∀v ∈ Dm(V )

Not complete

– p.37



Inequalities on Experimental Data

Z X

U

Y

For all x ∈ Dm(X), y ∈ Dm(Y ), z ∈ Dm(Z)

1−Pyz(x)−Pxz(y)+Pz(xy) ≥ 0
Pyz(x)−Pz(xy) ≥ 0
Pxz(y)−Pz(xy) ≥ 0

– p.38



Applications of Inequalities

Model testing using a mixture of nonexperimental
and experimental data

Bounding (unidentifiable) causal effects from
nonexperimental data

Bounding the effects of untried interventions from
experiments involving auxiliary interventions that
are easier or cheaper to implement

Pz(x,y) ≤ Pxz(y) ≤ 1−Pz(x)+Pz(x,y)

– p.39



Deriving Instrumental Inequality

Z X

U

Y

Equality constraints: Pz(xy) = P(xy|z), Pxz(y) = Px(y)

Inequality: Pz(xy) ≤ Pxz(y)

We have

P(xy|z) ≤ Px(y)

max
z

P(xy|z) ≤ Px(y)

∑
y

max
z

P(xy|z) ≤ 1
– p.40



Deriving Instrumental Inequality

W1 X

U1

Y Z

U2

W2
U3

The following instrumental type inequality can be
derived

∑
yz

max
w1

P(z|w1xw2y)P(y|w1xw2)P(x|w1) ≤ 1.

– p.41



Experimental Implications

What if causal structures unknown?

Given a collection of experimental distributions

P∗ = {Pt(v)|T ⊆V, t ∈ Dm(T )}

Is the collection P∗ compatible with some
underlying causal Bayesian network?

– p.42



Three Properties

If no hidden variables

1. Effectiveness
Pt(t) = 1.

2. Markov

Pv\(s1∪s2)(s1,s2) = Pv\s1(s1)Pv\s2(s2)

3. Recursiveness
Define X ; Y as ∃w, Px,w(y) 6= Pw(y),

(X0 ; X1)∧ . . .∧ (Xk−1 ; Xk) ⇒¬(Xk ; X0)

– p.43



A Complete Characterization

Theorem (Soundness) Effectiveness, Markov, and
recursiveness hold in all causal Bayesian networks.

Theorem (Completeness) If a P∗ set satisfies effective-

ness, Markov, and recursiveness, then there exists a

causal Bayesian network with a unique causal graph

that can generate this P∗ set.

– p.44



Semi-Markovian Models

Effectiveness

Recursiveness

Directionality
There exists a total order “<” such that

Pvi,w(s) = Pw(s) if ∀X ∈ S,X < Vi,

Inclusion-Exclusion Inequalities
For any subset S1 ⊆V ,

∑
S2⊆V\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0, ∀v ∈ Dm(V ),

– p.45



A Complete Characterization

Theorem (Soundness) Effectiveness, recursiveness,
directionality, and inclusion-exclusion inequalities hold
in all semi-Markovian models.

Theorem (Completeness) If a P∗ set satisfies effec-

tiveness, recursiveness, directionality, and inclusion-

exclusion inequalities, then there exists a semi-

Markovian model that can generate this P∗ set.

– p.46



Applications of Characterization

Reasoning about causal effects without
possessing causal structures

Is a collection of experimental distributions
compatible?

Predicting about or bounding interventions that
were not tried experimentally even if the structure
of the underlying model is unknown

– p.47



Open Problems

Identifying all constraints

on nonexperimental distributions

on experimental distributions

equalities

inequalities

constraints particular to a family of
distributions

Using constraints to guide learning BNs with
hidden variables

– p.48



Outline

Computing the effects of manipulations

Inferring constraints implied by DAGs with hidden
variables

Determining the causes of effects
Counterfactuals

Probabilities of causation

– p.49



Determining the Causes of Effects

Assessing the likelihood that one event was the
cause of another

Legal responsibility: Mr. A took a drug and died,

Lawsuit: the drug caused the death of Mr. A

Experimental and nonexperimental data on
patients

Court to decide:
Is it more probable than not that A would be
alive but for the drug?

– p.50



The Problem

Probability of necessary causation (PN):
“Probability that event y would not have occured if
it were not for event x, given that x and y did in
fact occur.”

What is the meaning of PN? How to define PN
mathematically?

Under what conditions can PN be learned from
statistical data?

– p.51



Functional Causal Models

Structural Equations

vi = fi(pai,ui), i = 1, . . . ,n.

U = {U1, . . . ,Un}: exogenous background/error
variables

Acyclic models

The values of the V variables will be uniquely
determined by those of the U variables.

The joint distribution P(v) is determined
uniquely by the distribution P(u).

P(u) defines a probabilistic causal model
– p.52



Counterfactuals

An intervention is represented as an alteration on
a select set of functions instead of a select set of
conditional probabilities.

The effect of do(Vi = vi) is represented by
replacing the equation vi = fi(pai,ui) with

Vi = vi

The counterfactual expression “The value that Y
would have obtained, had X been x”, denoted by
Yx(u), is interpreted as the solution for Y in the
modified set of equations in situation U = u.

– p.53



Probabilities of Counterfactuals

P(Y = y) = ∑
{u | Y (u)=y}

P(u)

P(Yx = y) = ∑
{u | Yx(u)=y}

P(u) ≡ Px(y)

P(Yx = y,X = x′) = ∑
{u|Yx(u)=y & X(u)=x′}

P(u)

P(Yx = y,Yx′ = y′) = ∑
{u | Yx(u)=y & Yx′(u)=y′}

P(u)

– p.54



Computing Counterfactuals

Given evidence X = x′,Y = y′, compute the probability
of Y = y had X been x (X and Y subsets of variables):

Step 1 (abduction): Update the probability P(u) to
obtain P(u|x′,y′).

Step 2 (action): Replace the equations corresponding
to variables in set X by the equations X = x.

Step 3 (prediction): Use the modified model to
compute the probability of Y = y.

– p.55



Computing Counterfactuals

Model 1 x = u1,

y = u2.

Model 2 x = u1,

y = xu2 +(1− x)(1−u2).

where U1 and U2 are two independent binary variables with

P(u1 = 1) = P(u2 = 1) = 1
2 , leading to the same distribution

P(x,y).

Model 1: P(Yx=0 = 0|X = 1,Y = 1) = 0

Model 2: P(Yx=0 = 0|X = 1,Y = 1) = 1
– p.56



Computing Counterfactuals

Probabilistic causal models are insufficient for
computing probabilities of counterfactuals;
knowledge of the actual process behind P(y|x) is
needed for the computation.

A functional causal model constitutes a
mathematical object sufficient for the computation
and definition of such probabilities.

– p.57



Probabilities of Causation

Let X and Y be two binary variables

Probability of necessity (PN)

PN ≡ P(Yx′ = y′ | X = x,Y = y) ≡ P(y′x′ |x,y)

PN stands for the probability that event y would not have

occurred in the absence of event x, y′x′ , given that x and y

did in fact occur.

Applications in epidemiology, legal reasoning, and AI: a

certain case of disease is attributable to a particular

exposure, “the probability that disease would not have

occurred in the absence of exposure, given that disease and

exposure did in fact occur.” – p.58



Probabilities of Causation

Probability of sufficiency (PS)

PS ≡ P(yx|y
′,x′)

PS gives the probability that setting x would
produce y in a situation where x and y are in fact
absent.

Applications in policy analysis, AI, and
psychology: a policy maker interested in the
dangers that a certain exposure may present to
the healthy population, the “probability that a
healthy unexposed individual would have gotten
the disease had he/she been exposed.”

– p.59



Legal Responsibility

A lawsuit is filed against the manufacturer of drug
x, charging that the drug is likely to have caused
the death of Mr. A, who took the drug to relieve
symptom S associated with disease D

Experimental and nonexperimental data (in the
next page)

Court to decide:
Is it more probable than not that A would be alive
but for the drug?

Can PN be estimated from data?

– p.60



Data for Legal Responsibility

Table 0: (Hypothetical) frequency data obtained in ex-

perimental and nonexperimental studies, comparing

deaths (in thousands) among drug users, x, and non-

users, x′.
Experimental Nonexperimental

x x′ x x′

Deaths(y) 16 14 2 28

Survivals(y′) 984 986 998 972

– p.61



LINEAR PROGRAMMING

Parameters: p110 = P(yx,yx′ ,x′), . . .

Probabilistic constraints:

1
∑
i=0

1
∑
j=0

1
∑
k=0

pi jk = 1

pi jk ≥ 0 for i, j,k ∈ {0,1}

Nonexperimental constraints:

p111 + p101 = P(x,y)

p011 + p001 = P(x,y′)

p110 + p010 = P(x′,y)
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Bounding by LP

Experimental constraints:

P(yx) = p111 + p110 + p101 + p100
P(yx′) = p111 + p110 + p011 + p010

Maximize (Minimize)

PN = p101/P(x,y)

PS = p100/P(x′,y′)

– p.63



Typical Results

Bounds on the probabilities of causation given
combined nonexperimental and experimental data

max
{

0
P(y)−P(yx′)

P(x,y)

}

≤ PN ≤ min
{

1
P(y′

x′
)−P(x′,y′)
P(x,y)

}

max
{

0
P(yx)−P(y)

P(x′,y′)

}

≤ PS ≤ min
{

1
P(yx)−P(x,y)

P(x′,y′)

}
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Solution to Legal Responsibility

Plaintiff:

PN≥
P(y)−P(yx′)

P(y,x)
=

0.015−0.014
0.001 = 1

Jury: Guilty!
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PERSONAL DECISION MAKING

Mr. B, survived without drug. Would he risk death by
starting now?

Nonexperimental data: P(y|x) = 0.002
Experimental data: P(yx) = 0.016
Correct Answer: Risk = PS = P(yx|x′,y′)

0.002 ≤ PS ≤ 0.031

– p.66



Hierarchy of Causal Queries

Predictions (conditioning) require only a
specification of a joint distribution function.

Intervention analysis requires a causal structure
in addition to a joint distribution.

Counterfactual analysis requires information
about the functional relationships and the
distribution of the omitted factors.

– p.67
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