Uncertainty with logical, procedural and relational languages

David Poole

Department of Computer Science, University of British Columbia

UAI 2006 Tutorial

Outline

Background

- Logic and Logic Programming
- Knowledge Representation and Ontologies
- Probability

Pirst-order Probabilistic Models

- Parametrized Networks and Plates
- Procedural and Relational Probabilistic Languages
- Inference and Learning

Identity, Existence and Ontologies

- Identity Uncertainty
- Existence Uncertainty
- Uncertainty and Ontologies

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Knowledge Representation

▲ □ ▶ ▲ □ ▶ ▲

Logic and Logic Programming Knowledge Representation and Ontologies Probability

What do we want in a representation?

We want a representation to be

- rich enough to express the knowledge needed to solve the problem.
- as close to the problem as possible: compact, natural and maintainable.
- amenable to efficient computation; able to express features of the problem we can exploit for computational gain.
- learnable from data and past experiences.
- able to trade off accuracy and computation time

- 4 同 1 4 日 1 4 日

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Notational Minefield

- Variable (probability and logic and programming languages)
- Model (probability and logic)
- Parameter (mathematics and statistics)
- Domain (science and logic and probability and mathematics)
- Grounding (logic and cognitive science)
- Object/class (object-oriented programming and ontologies)
- (probability and logic)
- First-order (logic and dynamical systems)

・ロト ・同ト ・ヨト ・ヨト

Logic and Logic Programming Knowledge Representation and Ontologies Probability

First-order predicate calculus

- 4 同 🕨 - 4 目 🕨 - 4 目

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Skolemization and Herbrand's Theorem

Skolemization: give a name for an object said to exist

 $\forall x \exists yp(x, y) \text{ becomes } p(x, f(x))$

Herbrand's theorem [1930]:

- If a logical theory has a model it has a model where the domain is made of ground terms, and each term denotes itself.
- If a logical theory *T* is unsatisfiable, there is a finite set of ground instances of formulas of *T* which is unsatisfiable.

- 同 ト - ヨ ト - - ヨ ト

Logic and Logic Programming

Logic Programming

definite clauses: $\begin{cases} part_of(r123, cs_building).\\ in(alan, r123).\\ in(X, Y) \leftarrow part_of(Z, Y) \land in(X, Z) \end{cases}$

A logic program can be interpreted:

- Logically
- Procedurally: non-deterministic, pattern matching language where predicate symbols are procedures and function symbols give data structures
- As a database language

・ロト ・同ト ・ヨト ・ヨト

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Unique Names Assumption & Negation as Failure

- Unique Names Assumption: different names denote different individuals different ground terms denote different individuals
- Negation as Failure:
 - -g is false if it can't be proven true
 - Clark's completion:

$$\forall X \forall Y \text{ in}(X, Y) \iff (X = a lan \land Y = r123) \lor \\ (\exists Z \text{ part}_of(Z, Y) \land in(X, Z))$$

— stable model is a minimal model M such that an atom g is true in M if and only if there is a rule $g \leftarrow b$ where b is true in M.

- 同 ト - ヨ ト - - ヨ ト

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Acyclic Logic Programs

In acyclic logic programs

- All recursions are well-founded
- You can't have:

$$\begin{array}{l} a \leftarrow \neg a. \\ b \leftarrow \neg c, \ c \leftarrow \neg b. \\ d \leftarrow \neg e, \ e \leftarrow \neg f, \ f \leftarrow \neg d. \end{array}$$

▲ □ ▶ ▲ □ ▶ ▲

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Acyclic Logic Programs

In acyclic logic programs

- All recursions are well-founded
- You can't have:

$$\begin{array}{l} a \leftarrow \neg a. \\ b \leftarrow \neg c, \ c \leftarrow \neg b. \\ d \leftarrow \neg e, \ e \leftarrow \neg f, \ f \leftarrow \neg d \end{array}$$

- With acyclic logic programs:
 - -One stable model

-Clark's completion specifies what is true in that model

- —Can conclude $\neg g$ if g can't be proved
- Cyclic logic programs can have multiple stable models —exploited by answer-set programming

- 4 同 6 4 日 6 4 日 6

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Choosing Objects and Relations

How to represent: "Pen #7 is red."

▲ □ ▶ ▲ □ ▶ ▲

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Choosing Objects and Relations

How to represent: "Pen #7 is red."

 red(pen₇). It's easy to ask "What's red?" Can't ask "what is the color of pen₇?"

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Choosing Objects and Relations

How to represent: "Pen #7 is red."

- red(pen₇). It's easy to ask "What's red?" Can't ask "what is the color of pen₇?"
- color(pen₇, red). It's easy to ask "What's red?" It's easy to ask "What is the color of pen₇?" Can't ask "What property of pen₇ has value red?"

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Choosing Objects and Relations

How to represent: "Pen #7 is red."

- red(pen₇). It's easy to ask "What's red?" Can't ask "what is the color of pen₇?"
- color(pen₇, red). It's easy to ask "What's red?" It's easy to ask "What is the color of pen₇?" Can't ask "What property of pen₇ has value red?"
- prop(pen7, color, red). It's easy to ask all these questions.

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Choosing Objects and Relations

How to represent: "Pen #7 is red."

- red(pen₇). It's easy to ask "What's red?" Can't ask "what is the color of pen₇?"
- color(pen₇, red). It's easy to ask "What's red?" It's easy to ask "What is the color of pen₇?" Can't ask "What property of pen₇ has value red?"

• prop(pen₇, color, red). It's easy to ask all these questions. prop(Object, Property, Value) is the only relation needed: object-property-value representation, Semantic network, entity relationship model

- 同 ト - ヨ ト - - ヨ ト

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Universality of prop

To represent "a is a parcel"

- prop(a, type, parcel), where type is a special property
- prop(a, parcel, true), where parcel is a Boolean property

▲ □ ▶ ▲ □ ▶ ▲

Reification

Logic and Logic Programming Knowledge Representation and Ontologies Probability

- To represent *scheduled*(*cs*422, 2, 1030, *cc*208). "section 2 of course *cs*422 is scheduled at 10:30 in room *cc*208."
- Let b123 name the booking: prop(b123, course, cs422).
 prop(b123, section, 2).

prop(b123, time, 1030).

prop(b123, room, cc208).

- We have reified the booking.
- Reify means: to make into an object.

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Triples and Semantics Networks

When you only have one relation, *prop*, it can be omitted without loss of information.

prop(Obj,Att,Value) can be depicted as $\langle\textit{Obj},\textit{Att},\textit{Val}\rangle$ or

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Triples and Semantics Networks

Att

When you only have one relation, *prop*, it can be omitted without loss of information.

prop(Obj, Att, Value) can be depicted as $\langle Obj, Att, Val \rangle$ or

David Poole Uncertainty with logical, procedural and relational languages

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Frames

The properties and values for a single object can be grouped together into a frame. We can write this as a list of *property* : *value* or *slot* : *filler*.

 $[\textit{owned}_\textit{by}:\textit{craig},$

deliver_to : ming,

model : lemon_laptop_10000,

brand : lemon_computer,

logo : lemon_disc,

color : brown,

· · ·]

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Classes

- A class is a set of individuals. E.g., house, building, officeBuilding
- Objects can be grouped into classes and subclasses
- Property values can be inherited
- Multiple inheritance is a problem if an object can be in multiple classes (no satisfactory solution)
- Need to distinguish class properties from properties of objects in the class

| 4 同 1 4 三 1 4 三 1

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Knowledge Sharing

- If more than one person is building a knowledge base, they must be able to share the conceptualization.
- A conceptualization is a map from the problem domain into the representation. A conceptualization specifies:
 - What sorts of objects are being modeled
 - The vocabulary for specifying objects, relations and properties
 - The meaning or intention of the relations or properties
- An ontology is a specification of a conceptualization.

- 4 周 ト 4 戸 ト 4 戸 ト

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Ontologies

- Philosophy:
 - Study of existence
- AI:
 - "Specification of a Conceptualization"
 - Map: Concepts in head \leftrightarrow symbols in computer
 - Allow some inference and consistency checking

□ > < = > <

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Shared Conceptualization

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Semantic Web Ontology Languages

- RDF language for triples in XML. Everything is a resource (with URI)
- RDF Schema define resources in terms of each other: type, subClassOf, subPropertyOf
- OWL allows for equality statements, restricting domains and ranges of properties, transitivity, cardinality...
- OWL-Lite, OWL-DL, OWL-Full

- 同 ト - ヨ ト - - ヨ ト

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Three views of KR

• KR as semantics We want to devise logics in which you can state whatever you want, and derive their logical conclusions.

Examples: Logics of Bacchus and Halpern

• KR as common-sense reasoning We want something where you can throw in any knowledge and get out 'reasonable' answers.

Examples: non-monotonic reasoning, maximum entropy.

 KR as modelling We want a symbolic modelling language for 'natural' modelling of domains.
 Examples: logic programming, Bayesian networks.

・ロト ・同ト ・ヨト ・ヨト

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Logic and Uncertainty

Choice:

- Rich logic including all of first-order predicate logic use both probability and disjunction to represent uncertainty.
- Weaker logic where all uncertainty is handled by Bayesian decision theory. The underlying logic is weaker. You need to make assumptions explicit.

・ 同 ト ・ ヨ ト ・ ヨ

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Logic and Uncertainty

tell $a \lor b$ ask P(a)

• Rich logics try to give an answer:

$$P(a) = 2/3$$

 $P(a) \in [0.5, 0.75]$

• Weaker logics: you have not specified the model enough.

Image: A = A

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Probability over possible worlds or individuals

To mix probability and logic, two main approaches:

- a probability distribution over possible worlds
 - a possible world is like an interpretation but can have other properties.

— measure over sets of possible worlds where the sets are described by finite logical formulae

・ 同 ト ・ ヨ ト ・ ヨ

Logic and Logic Programming Knowledge Representation and Ontologies Probability

Probability over possible worlds or individuals

To mix probability and logic, two main approaches:

- a probability distribution over possible worlds
 - a possible world is like an interpretation but can have other properties.

— measure over sets of possible worlds where the sets are described by finite logical formulae

a probability distribution over individuals

 proportion of individuals obeys the axioms of
 probability.

- 4 周 ト 4 戸 ト 4 戸 ト

Background

- Logic and Logic Programming
- Knowledge Representation and Ontologies
- Probability

Pirst-order Probabilistic Models

- Parametrized Networks and Plates
- Procedural and Relational Probabilistic Languages
- Inference and Learning

Identity, Existence and Ontologies

- Identity Uncertainty
- Existence Uncertainty
- Uncertainty and Ontologies

David Poole

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Parametrized Bayesian networks / Plates

Parametrized Bayes Net:

 $i_{1},...,i_{k}$

- **→** → **→**

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Parametrized Bayesian networks / Plates (2)

(日) (同) (三) (三)

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Creating Dependencies

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Creating Dependencies: Exploit Domain Structure

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Creating Dependencies: Relational Structure

・ 同 ト ・ ヨ ト ・ ヨ ト

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Probabilistic Relational Models

 In the object-property-value representation, there is a random variable:

— for each object-property pair for each functional property

- The range of the property is the domain of the variable. — for each object-property-value there is a Boolean random variable for non-functional properties
- Plate for each class.

・ 同 ト ・ ヨ ト ・ ヨ

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Probabilistic Relational Model Example

Procedural and Relational Probabilistic Languages

A Bayesian network can be represented as a deterministic system with (independent) stochastic inputs.

	Independent Inputs	Deterministic System
A	а	
	bifa bifna	$b \leftrightarrow (a \wedge bifa) \ \lor (eg a \wedge bifna)$
Ċ	cifb cifnb	$c \leftrightarrow (b \wedge cifb) \ \lor (\neg b \wedge cifnb)$

Procedural and Relational Probabilistic Languages

- A choice space is a set of random variables.
 Each random variable has a domain.
 [A set of the exclusive propositions corresponding to a random variable is an alternative.]
- There is a possible world for each assignment of a value to each random variable.
 [or from each selection of one proposition from each alternative.]
- The deterministic system specifies what is true in the possible world.
- You can also represent decision/game theory by having multiple agents making choices.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 戸

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Meaningless Example

Alternatives: $\{c_1, c_2, c_3\}, \{b_1, b_2\}$

$$P_0(c_1) = 0.5$$
 $P_0(c_2) = 0.3$ $P_0(c_3) = 0.2$
 $P_0(b_1) = 0.9$ $P_0(b_2) = 0.1$

 $f \leftrightarrow (c_1 \wedge b_1) \lor (c_3 \wedge b_2), d \leftrightarrow c_1 \lor (\neg c_2 \wedge b_1), e \leftrightarrow f \lor \neg d$ Possible Worlds:

P(e) = 0.45 + 0.27 + 0.03 + 0.02 = 0.77

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Some Representation Languages

- Independent Choice Logic (ICL): deterministic system is given by an acyclic logic program
- IBAL: deterministic system is given by a ML-like functional programming language
- A-Lisp: deterministic system is given in Lisp
- CES: deterministic system is given in a C-like language

A (1) > (1) = (1)

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Diagnosing students errors

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Diagnosing students errors

What if there were multiple digits

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Diagnosing students errors

What if there were multiple digits, problems

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Diagnosing students errors

What if there were multiple digits, problems, students

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Diagnosing students errors

What if there were multiple digits, problems, students, times?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Example: Multi-digit addition

(日) (同) (三) (三)

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

ICL rules for multi-digit addition

$$z(D, P, S, T) = V \leftarrow$$

$$x(D, P) = Vx \land$$

$$y(D, P) = Vy \land$$

$$carry(D, P, S, T) = Vc \land$$

$$knowsAddition(S, T) \land$$

$$\neg mistake(D, P, S, T) \land$$

$$V \text{ is } (Vx + Vy + Vc) \text{ div } 10.$$

 $\begin{aligned} z(D, P, S, T) &= V \leftarrow \\ knowsAddition(S, T) \land \\ mistake(D, P, S, T) \land \\ selectDig(D, P, S, T) &= V. \\ z(D, P, S, T) &= V \leftarrow \\ \neg knowsAddition(S, T) \land \\ selectDig(D, P, S, T) &= V. \end{aligned}$

Alternatives:

 $\forall DPST \{ noMistake(D, P, S, T), mistake(D, P, S, T) \} \\ \forall DPST \{ selectDig(D, P, S, T) = V \mid V \in \{0..9\} \}$

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

First-order Probabilistic Inference

- Ground the representation to a ground Bayes net
- Carry out inference in the lifted representation (without grounding unless necessary)
- Compile to secondary structure, where first-order representations lead to structure sharing.

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Lifted Inference Example

Suppose we observe:

- Joe has purple hair, a purple car, and has big feet.
- A person with purple hair, a purple car, and who is very tall was seen committing a crime.

What is the probability that Joe is guilty?

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Background parametrized belief network

Inference and Learning

Observing information about Joe

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Observing Joe and the crime

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Guilty as a function of population

Parametrized Networks and Plates Procedural and Relational Probabilistic Languages Inference and Learning

Learning

- Although there can be an unbounded number of variables, parameter sharing means that are only a finite number of distribution parameters to learn.
- You can also define a score on structure and search for the optimal structure.

/□ ▶ < 글 ▶ < 글

Background

- Logic and Logic Programming
- Knowledge Representation and Ontologies
- Probability

Pirst-order Probabilistic Models

- Parametrized Networks and Plates
- Procedural and Relational Probabilistic Languages
- Inference and Learning

3 Identity, Existence and Ontologies

- Identity Uncertainty
- Existence Uncertainty
- Uncertainty and Ontologies

Identity Uncertainty Existence Uncertainty Uncertainty and Ontologies

Identity Uncertainty

- Is this reference to the same paper as another reference?
- Is this the person who committed the crime?
- Is this patient the same as the patient who was here last week?
- Is this car the same car that was identified 3km ago?

- A 3 N

Identity Uncertainty Existence Uncertainty Uncertainty and Ontologies

Symbol Denotations

- ● ● ●

Identity Uncertainty Existence Uncertainty Uncertainty and Ontologies

Symbol Denotations

In logic, x = y is true if x and y refer to the same individual. $a \neq b$, b = c, b = f(a), d = e, $d \neq b$,...

Identity Uncertainty Existence Uncertainty Uncertainty and Ontologies

Equality

Equality can be axiomatized with:

•
$$x = x$$

• $x = y \Rightarrow y = x$
• $x = y \land y = z \Rightarrow x = z$
• $y = z \Rightarrow f(x_1, \dots, y, \dots, x_n) = f(x_1, \dots, z, \dots, x_n)$
• $y = z \land p(x_1, \dots, y, \dots, x_n) \Rightarrow p(x_1, \dots, z, \dots, x_n)$

A (1) > A (2) > A

Identity Uncertainty

Symbol Partitioning

Uncertainty with logical, procedural and relational languages

Identity Uncertainty Existence Uncertainty Uncertainty and Ontologies

Probability and Identity

- Have a probability distribution over partitions of the terms
- The number of partitions grows faster than any exponential (Bell number)
- The most common method is to use MCMC: one step is to move a term to a new or different partition.

Identity Uncertainty Existence Uncertainty Uncertainty and Ontologies

Existence Uncertainty

- What is the probability there is a plane in this area?
- What is the probability there is a large gold reserve in some region?
- What is the probability that there is a third bathroom given there are two bedrooms?
- What is the probability that there are three bathrooms given there are two bedrooms?

・ 同 ト ・ ヨ ト ・ ヨ

Identity Uncertainty Existence Uncertainty Uncertainty and Ontologies

Existence Uncertainty

Two approaches:

- BLOG: you have a distribution over the number of objects, then for each number you can reason about the correspondence.
- NP-BLOG: keep asking: is there one more? e.g., if you observe a radar blip, there are three hypotheses:
 - the blip was produced by plane you already hypothesized
 - the blip was produced by another plane
 - the blip wasn't produced by a plane

・ 同 ト ・ ヨ ト ・ ヨ

Identity Uncertainty Existence Uncertainty Uncertainty and Ontologies

Existence Example

David Poole Uncertainty with logical, procedural and relational languages

Identity Uncertainty Existence Uncertainty Uncertainty and Ontologies

Uncertainty and Ontologies

- We need to share conceptualizations.
 - People providing models and observations need to have common vocabulary.
- We need hierarchical type systems.
 - Probabilistic models may be at different levels of detail and abstraction than observations.
- ... therefore we need ontologies.

Identity Uncertainty Existence Uncertainty Uncertainty and Ontologies

Potential Confusions

- Object-oriented programming provides valuable tools for data/code sharing, abstraction and organization.
- Use the notion of class and object:

```
class person {
    int height;
}
```

An instance of this is not a person!

- You cannot be uncertain about your own data structures!
- The notion of class and instance means something different in ontologies
 - this difference matters when you have uncertainty.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Identity Uncertainty Existence Uncertainty Uncertainty and Ontologies

Ontologies and Uncertainty

- A community develops an ontology to allow semantic interoperability.
- People build probabilistic and/or preference models using this ontology.
- People describe the world using the ontology.
- e.g., models of apartments, geohazards (e.g., where is it possible that there will be a toxic spill?),...

- 4 同 ト 4 ヨ ト 4 ヨ ト

Identity Uncertainty Existence Uncertainty Uncertainty and Ontologies

Conclusions

- There has been much progress over 20 years.
- We don't yet have the "Prolog" of first-order probabilistic reasoning.
- We need more experience with real applications to see what we really need.