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Abstract

When an AI system interacts with multiple
users, it frequently needs to make allocation
decisions. For instance, a virtual agent decides
whom to pay attention to in a group, or a fac-
tory robot selects a worker to deliver a part.
Demonstrating fairness in decision making is
essential for such systems to be broadly ac-
cepted. We introduce a Multi-Armed Bandit
algorithm with fairness constraints, where fair-
ness is defined as a minimum rate at which a
task or resource is assigned to a user. The pro-
posed algorithm uses contextual information
about the users and the task and makes no as-
sumptions on how the losses capturing the per-
formance of different users are generated. We
provide theoretical guarantees of performance
and empirical results from simulation and an
online user study. The results highlight the
benefit of accounting for contexts in fair de-
cision making, especially when users perform
better at some contexts and worse at others.

1 INTRODUCTION

We focus on the problem of an AI system assigning tasks
or distributing resources to multiple humans, one at a
time, while maximizing a given performance metric. For
instance, a virtual agent decides whom to pay attention
to in a group setting, or a factory robot selects a worker
to deliver a part.

If there is clearly a user who outperforms everyone else,
the solution to this optimization problem would result in
the agent constantly selecting that user. This approach,
however, fails to account that this may be perceived as
unfair by others, affecting their acceptance of the system.
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How can we integrate fairness in the agent’s decisions?
The aim of our work is to address this question. Re-
cent works [16, 10, 20] have proposed multi-armed ban-
dit algorithms for fair task allocation, where fairness is
defined as a constraint on the minimum rate of arm se-
lection. A user study on an online Tetris game, where
the computer (player) selects users (arms) based on their
score, has shown that users’ trust is significantly im-
proved when a fairness constraint is satisfied [10].

These works, however, have assumed that the perfor-
mance of each user, observed in the form of a loss vector
by the agent, follows a fixed distribution that is specific
to that particular user. It thus fails to account that peo-
ple may have different task-related skills. For instance,
when making a pin, one worker may be specialized in
cutting the wire, while another worker in measuring it.
It also fails to account for cases where we cannot make
statistical assumptions about the generation of losses, for
instance in an adversarial domain.

We generalize this work by proposing a fair multi-armed
bandit algorithm that accounts for different contexts in
task allocation. The algorithm also does not make any
assumption on how the loss vector is generated, allowing
for applications in non-stationary and even adversarial
settings.

We provide theoretical guarantees on performance, as
well as empirical results from simulations and a proof-
of-concept online user study, where an algorithm assigns
knowledge-based questions to participants from differ-
ent cultural backgrounds. The results show the benefit
of the proposed algorithm when allocating tasks fairly to
different users, especially when they are better in some
contexts and worse in others.

2 PROBLEM DEFINITION

We study the online learning problem of contextual ban-
dits (CB) with fairness constraints.



We assume M possible contexts and K available actions
(arms), and use the notation [M ] and [K] to denote the
set {1, . . . ,M} and {1, . . . ,K}. For each time step t =
1, ..., T :

1. The environment first decides the context jt ∈ [M ]
and the loss vector lt ∈ [0, 1]K .

2. The learner observes the context jt ∈ [M ] and se-
lects the action it ∈ [K].

3. The learner suffers the loss lt(it).

We assume that the contexts j1, . . . , jT are i.i.d. sam-
ples of a fixed distribution q ∈ ∆M which is known to
the learner (see supplemental material for extension to
the case when q is unknown). However, we make no
assumption on how the loss vectors l1, . . . , lT are gener-
ated, and in general lt could depend on the entire history
before round t, which is a key difference compared to
previous work [10].

Let ∆K be the set of distributions over K arms. Given
the history up to the beginning of round t and that context
jt is j, we let pjt ∈ ∆K be the conditional distributions
of the player’s selected arm it, for j = 1, . . . ,M . We
require the following fairness constraint parameterized
by v ∈ (0, 1/K):

M∑
j=1

q(j)pjt (i) ≥ v, ∀t, i (1)

that is, the marginal probability of each arm being pulled
is at least v for each time.

For notational convenience, we denote a collection of M
distributions over arms by P = (p1, ..., pM ) and the fea-
sible set of these collections in terms of the above con-
straint by:

Ω =

{
P = (p1, ..., pM )

∣∣∣∣ p1, ..., pM ∈ ∆K and∑M
j=1 q(j)p

j(i) ≥ v,∀i ∈ [K]

}
(2)

which is clearly a convex set and is non-empty since the
uniform distribution (for all contexts) is always in the set.

The learner’s goal is to minimize her regret, defined as
the difference between her total loss and the loss of the
best fixed distribution satisfying the fairness constraint:

Reg = max
P∗∈Ω

E

[
T∑
t=1

〈
pjtt − pjt∗ , lt

〉]
Achieving sublinear regret Reg = o(T ) thus implies that
in the long run the average performance of the learner
is arbitrarily close to the best fixed distribution in hind-
sight.

3 BACKGROUND

Adversarial Bandits. In the case when M = 1 and
v = 0 (that is, only one context and no fairness con-
straint), our problem is exactly the adversarial version
of the classic Multi-armed Bandits (MAB) problem,
first proposed in [4] and extensively studied since then.
It is well-known that the minimax optimal regret is of
order O(

√
TK). The most common algorithm with

optimal regret is Exp3 [4], which can be regarded as
a special case of the Follow-the-Regularized-Leader
(FTRL) algorithm when we choose the regularizer to be
the negative entropy.

Contextual Bandits (without fairness). When there are
multiple contexts but no fairness constraint, with our re-
gret definition there is no connection between the con-
texts, and the optimal algorithm is to treat each context
separately and to run an individual instance of a stan-
dard MAB algorithm (such as Exp3) for each context
(see Section 4 of [6]).

We assume finite number of contexts and are interested
in the case when M is small. There is a different line of
research where M could potentially be infinite, in which
case a different measure of regret is studied or additional
assumptions are made. For example, in [4, 3], the learner
is given a fixed set of mappings from contexts to actions,
and regret is defined in terms of the difference between
the learner’s total loss and the loss of the best mapping
from the given set. Other works make assumptions
on how the losses are connected with the context.
Among those, the linear assumption is the most common
one, resulting in the so-called contextual linear bandit
problem (e.g. [17, 9, 2]). Another common assumption
is imposing some Lipschitz conditions [7, 22].

Fair Bandits. Joseph et al. [13, 14] study fairness for
bandits and draw inspiration from the idea of fair treat-
ment suggested by Dwork et al. [11] which states that
“similar individuals should be treated similarly.” The
definition of fairness there is quite different from ours, in
that a worse arm should not be picked compared to a bet-
ter arm, despite the uncertainty on payoffs. The authors
provide a provably fair algorithm for the linear contex-
tual bandit problem. Liu et al. [18] build upon this work
to achieve smooth fairness, which requires arms with
similar distributions to be selected with similar proba-
bilities. They further define calibrated fairness, where an
arm is selected with a probability equal to the probabil-
ity of its loss being the lowest. These definitions are quite
different from our notion of fairness which is a constraint
on the minimum rate at which each arm is selected.



Most relevant to ours is the work by Claure et al. [10],
where fairness is defined as a minimum rate on the selec-
tion of each arm, satisfied strictily throughout the task.
Similarly, Li et al. [16] define fairness as the minimum
rate satisfied in expectation at the end of the task. Very
recent work by Patil et al. [20] further extends this defi-
nition by denoting an unfairness tolerance allowed in the
system. The aformentioned works focus on a stochastic
MAB setting, where the losses are independent and iden-
tically distributed. Instead, we propose an algorithm for
the contextual MAB setting and we showcase the benefit
of accounting for contexts in an online user study, where
the system estimates the performance of players of dif-
ferent backgrounds in knowledge-based questions.

4 ALGORITHM

As mentioned earlier, without the fairness constraint,
there is no connection among the contexts and the op-
timal algorithm is just to run M instances of any stan-
dard MAB algorithm separately for each possible con-
text. For example, classic FTRL algorithm would com-
pute for each context j ∈ [M ]:

pjt = arg min
p∈∆K

∑
s:js=j

〈
p, l̂s

〉
+

1

η

K∑
i=1

ψ(p(i)) (3)

at the beginning of round t, where ψ : [0, 1] → R is
some regularizer, η > 0 is some learning rate, and l̂ is the
standard unbiased importance-weighted estimator with:

l̂s(i) =
ls(i)

pjss (i)
1{is = i}, ∀i ∈ [K]

Upon observing the actual context jt for round t, the
algorithm then samples it from pjtt . Standard re-
sults [6] show that the j-th instance of FTRL suffers
regret O(

√
|{t : jt = j}|K), and thus the total regret

is
∑M
j=1O(

√
|{t : jt = j}|K) = O(

√
TMK) via the

Cauchy-Schwarz inequality.

With the fairness constraint, however, we can no longer
treat each context separately. A natural idea is to opti-
mize jointly over the feasible set Ω defined in Eq. (2),
that is, to find Pt = (p1

t , · · · , pMt ) at round t such that:

Pt = arg min
P∈Ω

t−1∑
s=1

〈
pjs , l̂s

〉
+

1

η

M∑
j=1

K∑
i=1

ψ(pj(i))

It is clear that when v = 0 (that is, no fairness constraint),
the feasible set Ω simply becomes ∆K × · · · ×∆K and
the joint optimization above decomposes over j so that
the algorithm degenerates to that described in Eq. (3).

Algorithm 1 Fair CB with Known Context Distribution

1: Input: learning rate η > 0, fairness constraint pa-
rameter v

2: Define: Ψ(P ) =
∑M
j=1

∑K
i=1 ψ(pj(i)) where

ψ(p) = p ln p
3: for t = 1, . . . , T do
4: Compute Pt = arg minP∈Ω

∑t−1
s=1

〈
pjs , l̂s

〉
+

1
ηΨ(P )

5: Observe jt and play it ∼ pjtt
6: Construct loss estimator l̂t(i) = lt(i)

p
jt
t (i)

1{it =

i}, ∀i ∈ [K]
7: end for

When v 6= 0, the algorithm satisfies the fairness con-
straint automatically and can be seen as an instance of
FTRL over a more complicated decision set Ω.

We deploy the standard entropy regularizer ψ(p) =
p ln p, used in the classic Exp3 algorithm [4] for MAB.
See Algorithm 1 for the complete pseudocode. We re-
mark that even though unlike Exp3, there is no closed
form for computing Pt, one can apply any standard con-
vex optimization toolbox to find Pt when implementing
the algorithm.

We provide the following regret guarantee of our algo-
rithm, which is essentially the same as the aforemen-
tioned bound for v = 0. We note that the regret bound
is tight with respect to all parameters, since it matches
the known lower bound even in the case when there is
no fairness constraint. On the other hand, also note that
when v increases, the feasible set Ω becomes smaller and
so does its range D, meaning that our algorithm suffers
smaller regret when the fairness constraint is more strin-
gent. The proof is included in the supplemental material.

Theorem 1. With learning rate η =
√

D
TK , where D =

maxP∈Ω Ψ(P )−minP∈Ω Ψ(P ) ≤M lnK, Algorithm 1

achieves Reg = O
(√

TKD
)

= O
(√

TMK lnK
)
.

5 EXPERIMENTS

This section illustrates different behaviors of the Fair CB
algorithm, highlighting the interplay between choice of
loss distributions, fairness and context.

For each experiment we define the empirical perfor-
mance of the algorithm in each experiment trial as one
minus the average loss.

Performance = 1−
∑T
t=1 lt(it)

T
.

In all experiments we set the learning rate as: η =



(a) i1 better at both contexts (b) i1 better only at j1

Figure 1: Performance of algorithm for different levels of fair-
ness for T = 2000. The performance is averaged over 2000
timesteps and 100 simulations.

√
M lnK/TK, following the theoretical result of sec-

tion 4.

We are motivated by settings where a system assigns re-
sources to human users (arms) based on whether they
succeed in a task or they exhibit a desired behavior. In
Sections 5.1 and 5.2 we thus focus on the case where
the loss induced by an arm i under context j follows a
Bernoulli distribution parametrized by µi,j ∈ [0, 1], so
that lt(i) is 1 with probability µi,j and 0 with probability
1 − µi,j , when the context is j. To showcase the advan-
tage of our adversarial algorithm, in Section 5.3 we also
consider time-varying Bernoulli distributions. The fair-
ness level v specifies the minimum rate that an arm is
selected as defined in Eq. (1).

5.1 FAIRNESS AFFECTS PERFORMANCE

With the presence of contexts, having a fairness con-
straint does not always lead to worse performance. For
instance, if for each arm, the probability of seeing the
contexts in which this arm is the best is larger than v, then
the fairness constraint can be satisfied trivially by pick-
ing the best arm for each context and the performance
is also the best. However, in the case where the fair-
ness constraint forces the algorithm to select suboptimal
arms, larger value of v unavoidably leads to worse per-
formance. Below we demonstrate this phenomenon em-
pirically with our Fair CB algorithm.
We start with the simplest case of two arms (i1 and i2)
and two contexts (j1 and j2), and then we show how our
insights generalize to more contexts and arms.

Even distribution of both contexts: We first let the con-
texts be distributed evenly, that is, q(j1) = q(j2) = 0.5.

If each arm is better than the other in one of the contexts,
we expect that fairness does not affect the performance of
an optimal algorithm, since the probability of the context
occuring – and thus that arm being selected – is q(j) =
0.5 which is always greater than a fairness constraint v ∈(
0, 1

K

)
. On the other hand, if one arm is better than the

other in both contexts, we expect the algorithm to enforce

(a) v = 0 (b) v = 0.45

Figure 2: Probabilities of pulling an arm over time averaged
over 100 simulations when one arm is better in both contexts.

(a) v = 0 (b) v = 0.45

Figure 3: Probabilities of pulling an arm over time averaged
over 100 simulations when one arm is better in one context and
worse in another.

the fairness constraint and choose the weakest arm with
the minimum rate in at least one of the contexts.

Arm 1 is better in both contexts. For instance, we let
µ1 = (µi1,j1 , µi1,j2) = (0.6, 0.6) be the expected val-
ues of the loss distributions for contexts 1 and 2 for arm
1, and µ2 = (µi2,j1 , µi2,j2) = (0.8, 0.8) for arm 2. We
run the algorithm in simulation for varying levels of fair-
ness. We expect that increasing fairness results in select-
ing the suboptimal arm (i2) with increasing frequency,
which subsequently increases the total loss.

Fig. 1(a) shows the performance of our algorithm for six
different values of v over T = 2000 rounds (and av-
eraged over 100 simulations). As expected, the perfor-
mance degrades as v gets larger. Note that performance
was similar across the first three fairness levels. We at-
tribute this to the inherent exploration of the FTRL al-
gorithm from the regularization term and the relatively
small difference between the expected losses µ1 and µ2

of the two players. A linear regression established that
the fairness level significantly predicted performance,
with F (1, 598) = 1168.5, p < .0001 and fairness ac-
counted for 66.1% of the explained variability in perfor-
mance. The regression equation was: predicted perfor-
mance = 0.37− 0.11v.

Fig.2 shows the assigned probabilities by the algorithm
for every timestep, averaged over 100 simulations. Since
i1 is better than i2 in both contexts, it eventually gets
selected with probability close to 1 in both contexts when



Figure 4: Performance for 2-arm 2-context with q(j1) =
0.9, q(j2) = 0.1, T = 10000, averaged over 100 simulations.

fairness v = 0 and with probability 0.55 when fairness
v = 0.45.

There is no arm that is better in both contexts. In this case
fairness level does not affect the performance of our algo-
rithm, as shown in Fig.1(b), where µ1 = (0.2, 1.0), µ2 =
(1.0, 0.6).

Fig.3 shows the assigned probabilities over time. Re-
gardless of the fairness parameter, since i1 is better than
i2 in j1 but worse in j2, i1 will be selected with proba-
bility close to 1 for j1 and i2 with probability close to 1
for j2. Since j1 and j2 are distributed with probability
0.5, the fairness constraint is naturally satisfied.

Uneven distribution of contexts: We then examine the
general case where contexts are distributed with differ-
ent probabilities. We expect that increasing fairness will
result in worse performance when one arm is better than
the other arm in both contexts, or when one arm i1 is
better than the other arm i2 in only one context j1 and
v > q(j2). We let q(j1) = 0.9, q(j2) = 0.1 be the distri-
bution of the two contexts.

The case for one arm being better in both contexts fol-
lows the same reasoning as before. On the other hand,
if one arm i1 is better than the other arm in one of the
contexts j1 with probability q(j1), we expect increasing
fairness to reduce performance for v > q(j2) = 0.1.

Indeed, for different combinations of µi1,j1 , µi1,j2 ∈
{0.2, 0.6, 1}, µi2,j1 , µi2,j2 ∈ {0.6, 0.8, 1}, a mul-
tiple regression model statistically significantly pre-
dicted performance, with F (2, 2397) = 7294, p <
.0001, adj. R2 = 0.86 and fairness being a significant
predictor (p < 0.001). Fig. 4 shows the performance
for different configurations. We see that indeed fairness
starts decreasing the performance once v > 0.1.

Multiple contexts and arms: We evaluate the perfor-
mance of the Fair CB algorithm when there are more than
two contexts and arms for completeness.

More arms than contexts. We first show the performance
of the Fair CB algorithm if we have more arms than con-
texts. In that case, there will be one remaining arm that is
sub-optimal in all contexts. Since the fairness constraint
specifies a minimum rate for all arms, increasing fairness
will decrease performance, as we observed in the previ-
ous section.

This, however, will not hold if there are multiple optimal
arms with identical loss distributions for a given context.
We let the example where µi1,j1 , µi1,j2 = (0.2, 1.0),
(µi2,j1 , µi2,j2) = (0.6, 1.0), (µi3,j1 , µi3,j2) = (0.8, 1.0),
and q(j1) = q(j2) = 0.5. If there is no fairness (v = 0),
the algorithm will pick i1 with probability 1 in context
j1, while in context j2 all arms are selected uniformly,
since they have identical losses. For v = 0.25, the algo-
rithm will keep picking i1 in j1, but it will pick evenly i2
and i3 in j2. The constraint is satisfied since each context
appears with probability q(j1) = q(j2) = 0.5. However,
larger value of fairness will instead result in one of the
two arms that are sub-optimal in j1 to get selected in that
context as well, resulting in a decrease in performance.

More contexts than arms. We then explore the case of
K = 2 arms and M = 3 contexts. Clearly, if one arm is
better than the second arm in all the contexts, increasing
fairness will decrease performance. We focus on the case
where i1 is better than i2 in two of the contexts, j1 and j2
and worse in the third context j3. We assume again equal
probability distribution of contexts q(j) = 1

M , j ∈ [M ].

(a) Overall performance (b) Final probabilities

Figure 5: 2-arm 3-context problem where i1 is better in j1 and
j2, T = 3000.

We let µ1 = (µi1,j1 , µi1,j2 , µi1,j3) = (0.2, 0.2, 1.0) and
µ2 = (µi2,j1 , µi2,j2 , µi2,j3) = (0.8, 0.8, 0.2). Fig.5
shows that the algorithm ends up picking i1 with proba-
bility 1.0 in context j1 and j2, and i2 with probability 1.0
in context j3 (see Fig.5(b)). However, when v > 0.33,
the algorithm needs to pull arm i2 in j1 and j2 leading to
decrease in performance. This result is supported by an
one-way ANOVA (F (1, 198) = 273.8, p < 0.0001.

Overall, our analysis shows that, for any number of con-



texts and arms, fairness matters if the fairness constraint
enforces an arm to be pulled in a context that is not opti-
mal, which occurs either when there is no context where
the arm is optimal, or when the probability of the con-
text(s) that the arm is optimal is smaller than the proba-
bility imposed by the fairness constraint.

5.2 IMPORTANCE OF CONTEXTS

(a) Non-contextual FTRL (b) Fair CB

Figure 6: Performance when i1 is better in both contexts,
q(j1) = q(j2) = 0.5 and T = 2000, averaged over 100 simu-
lations.

(a) Non-contextual FTRL (b) Fair CB

Figure 7: Performance when i1 is better in one of the contexts
only, q(j1) = q(j2) = 0.5 and T = 2000, averaged over 100
simulations.

To illustrate the importance of contexts, we compare
to an FTRL algorithm that ignores the context (equiva-
lently, our algorithm with M = 1). We consider two
arms and an even distribution among two contexts.

First, we examine the case where one arm is better
than the other in both contexts: ((µi1,j1 , µi1,j2) =
(0.2, 0.4), (µi2,j1 , µi2,j2) = (0.8, 0.6)). Fig. 6 shows
the result for increasing values of fairness. While for
0 fairness there is no noticeable difference, as fairness
increases, we observe that our Fair CB performs bet-
ter. A one-way ANOVA for v = 0.45 showed a sig-
nificant effect of the choice of algorithm on performance
(F (1, 198) = 1197.43, p < 0.0001). Despite arm i1
being better than arm i2 in both contexts, we see a dif-
ference in performance, since the difference between the
two arms’ loss is much higher for the first context than
the second. The contextual algorithm recognizes this dis-
parity and selects to impose the fairness constraint in the
second context rather than in both contexts.

Fig. 7 shows another result when one player is better in

one context and worse in the other ((µi1,j1 , µi1,j2) =
(0.2, 0.8), (µi2,j1 , µi2,j2) = (0.8, 0.2)). We observe that
the contextual algorithm outperforms the baseline in all
fairness levels, since it distributes the arms to different
contexts while satisfying the fairness constraint.

Figure 8: Performance of Fair UCB and Fair CB algorithms
for 2-arm 1-context problem with adversarial losses, with T =
1500 averaged over 100 simulations.

5.3 ADVERSARIAL LOSSES

An advantage of the Fair CB algorithm is that it makes no
assumptions on how losses are generated. This contrasts
previous work on fair task allocation [16, 10, 20], which
assume a fixed distribution.

To showcase this advantage, we compare our algorithm
with Fair UCB, which assumes a stochastic setting and
implements the standard UCB algorithm with a min-
imum pulling rate constraint (fairness) for each arm.
While different implementations of Fair UCB were pro-
posed independently by Claure et al. [10] and Patil et
al. [20], we use the former stochastic-rate constrained
UCB implementation. Since we wish to focus on the ef-
fect of adversarial losses on performance, we used only
one context (M = 1) in both algorithms.

To simulate an adversarial setting, we generate the loss
vector as follows: every time the learner incurs a loss
of 0, the loss distribution switches between (µi1 , µi2) =
(0.1, 0.9) and (µi1 , µi2) = (0.9, 0.1) (note that the index
for j is omitted here since M = 1).

We evaluate the performance of our algorithm and Fair
UCB for different levels of fairness. A two-way ANOVA
comparing the main effects of algorithm selection (Fair
UCB and Fair CB) and fairness level (v) on perfor-
mance shows a significant difference for both algorithms
( F (1, 1188) = 1926.4, p < 0.001, Fair UCB M =
0.45, SE = 0.0017, Fair CB M = 0.496, SE = 5.46e− 4)
and fairness (F (5, 1188) = 220.41, p < 0.001). There
was a significant interaction between the effects of al-
gorithm selection and fairness (F (5, 1188) = 211.46,
p < 0.001).

Fig. 8 shows the performance of the two algorithms. We
observe that fairness does not affect performance for Fair
CB, since the switching loss vector makes the algorithm



already quite conservative in the arm selection. On the
contrary, Fair UCB has poor performance when fairness
is small, while performance improves for increasing lev-
els of fairness. This is because large fairness level makes
the algorithm rely less on the UCB bound which is ex-
ploited by the adversary in this setting.

5.4 MOVIELENS DATASET

We also test the performance of our algorithm for recom-
mending movie genres using the MovieLens 25m dataset
[12]. We formulate the bandit problem as selecting a
genre (arm) for a particular user (context) based on the
ratings provided by the user. Fairness is enforced over
genres to ensure that all genres are recommended to the
users at a rate of at least v. We consider the first two users
in the MovieLens dataset as the two contexts and the
five genres: Drama, Action, Comedy, Adventure,
and Crime (that are common between the users), as
the arms. We see that the performance of Fair CB de-
creases as the fairness level is increased. For fairness
values v = {0, 0.05, 0.1, 0.199}, a linear regression es-
tablished that the fairness level significantly predicted
performance, with F (1, 399) = 564 and p < 0.0001.
The regression equation was: predicted performance =
0.799 − 0.125v. When compared to a non-contextual
FTRL, a one-way ANOVA for v = 0.199 showed a sig-
nificant effect of the choice of algorithm on performance
(F (1, 198) = 26130, p < 0.0001), thus highlighting the
importance of contexts.

6 USER STUDY

We wish to assess whether accounting for contexts when
distributing the resources fairly, leads to a better perfor-
mance. Results from section 5.2 show that Fair CB is
particularly beneficial when the arms are better in one
context and worse in another. Therefore, we design a
proof-of-concept online user study, where we expect par-
ticipants to perform better in different contexts.

Previous studies on contextual bandits have mostly uti-
lized offline datasets of recommendation systems like
Yahoo! Today Module [17, 24, 23] and MovieLens [5],
without any fairness restrictions. A recent study on con-
textual bandits [19] considers fair distribution of infor-
mation in tutoring systems, however it assumes that the
context remains same in each round. On the contrary,
in our study, the system has to assign knowledge-based
questions from two different topics (contexts) to one of
two users (arms) in an online quiz. The system attempts
to assign questions such that the number of correct an-
swers are maximized while ensuring that each user re-
ceives at least a minimum number of questions.

6.1 EXPERIMENTAL SETUP

Methodology: We created an online quiz where users
have to identify states and famous people from either
USA or India, which are the 2 contexts. We paired two
users to simultaneously take the quiz by matching users
indicating India as their country of origin with users indi-
cating the United States. We did this with the expectation
that users from India would be better in questions related
to their country than users from USA and vice versa.

We had two quizzes, each assigned to one of the algo-
rithms: Fair CB and a non-contextual FTRL, which is
our Baseline. Each quiz had a fixed set of 44 questions
evenly distributed between the two topics (20 questions
about India, 20 about USA in alternating order). The
first four questions of each quiz were equally divided
among the two players for initialization. For each ques-
tion, users had 10 seconds to select one out of four can-
didate answers.

We adopted a within-subjects design, where the same
pair of users took both quizzes, one running the Fair
CB algorithm and other running the Baseline algorithm.
We counter-balanced the assignment of quizzes to algo-
rithms. While we did not expect any learning effects,
since the quizzes included knowledge-based questions,
we had a training section where subjects answered ex-
ample questions and we also counter-balanced the order
of the two algorithms.

Algorithm: In this experiment we had two contexts M =
{1, 2} and two human participants K = {1, 2}. We set
the fairness parameter v to 0.33. We tuned the learning
rate for both algorithms to η = 0.25.

To reduce variance from sampling, we implemented the
Fair CB algorithm with deterministic schedules by set-
ting a “window” of 10 questions, 5 for each context in
alternating order, and we assigned participants to ques-
tions deterministically, based on the output of each al-
gorithm. For instance, if pj1(i1) = 0.6 for context 1
and pj2(i1) = 1.0 for context 2, we assigned 3 of the 5
questions of context 1 to participant 1, all 5 questions of
context 2 to participant 1, and the remaining questions to
participant 2.

At the end of that window the system received the loss
values for each question corresponding to the context
and participant, and updated the participant probabilities.
Since we had a total of 44 questions, the algorithm per-
formed 4 updates.

Hypotheses: We make the following hypothesis:

H1. Fair CB algorithm will perform better than the
Baseline algorithm. Since we expect users to be more
knowledgeable in one of the contexts and less knowl-



edgeable in the other context, we expected that Fair CB
would result in better performance, compared to an algo-
rithm that assesses users based on their performance in
both contexts together. We base this on the results from
the simulations in section 5.2.

H2. Participants’ subjective responses will not be worse
in the Fair CB algorithm, compared to the baseline.
Since both algorithms account for fairness, we expected
users’ responses for the Fair CB to be at least as good as
in the baseline case.

We note that we did not compare against different fair-
ness levels, since simulations in section 5.1 show that
fairness matters only when one arm is better at both con-
texts, which we expect to happen infrequently in this
study. We refer the reader to previous studies [10] which
highlight the effects of fairness on users’ perceived fair-
ness and trust in the system.

Measures: We recorded the participants’ performance,
the number of the questions assigned, the loss values cor-
responding to the participant responses, and the probabil-
ities estimated at each time step. We additionally asked
participants questions related to their perceived fairness
and trust in the system, using survey questions (Table 1),
where each response was measured on a seven-point Lik-
ert scale.

Procedures: We recruited participants using Amazon
Mechanical Turk (AMT) and used Qualtrics to host the
survey. The AMT participants were instructed that they
would be paired with another person to take the quiz to-
gether and the computer would decide who gets to an-
swer a particular question. After the quiz the participants
were redirected to the survey, where they answered ques-
tions about their experience. The study was approved by
the Institutional Review Board of our University.

Participants: We recruited 80 participants (40 pairs)
from AMT. We removed the data for 3 pairs because they
did not complete the quiz. The final dataset has 37 pairs
of participants and is publicly available [1].

6.2 RESULTS

6.2.1 Performance

Figure 9: Performance of Fair CB compared to Baseline.

Figure 10: Responses to the subjective questions in Table 1 by
each player for the Baseline and Fair CB algorithms

We measure the performance of each algorithm by the to-
tal number of questions answered correctly for each quiz.
A paired t-test showed a statistical difference (t(36) =
−3.308, p = 0.002) in the performance of the users for
Baseline (M = 21.472, SE = 0.777) and Fair CB (M =
24.833, SE = 1.137) conditions. On average, the users
answered 48.8% questions correctly in the Baseline and
56.44% questions correctly in the Fair CB conditions.
We found no significant effect of the set of questions on
performance. This result supports hypothesis H1.

A post-hoc analysis of the data shows that the differ-
ence in performance was larger when one participant
was much better than the other in one of the contexts.
We show this by defining the disparity between the par-
ticipants as the average difference in participant perfor-
mances for each context. Higher disparity means that
one participant was much better in one of the contexts
and worse in the other context:

δ = |(µ̂i1,j1 − µ̂i2,j1)− (µ̂i1,j2 − µ̂i2,j2)|

where µ̂i1,j1 (and similarly for others) is the measured
performance per question of participant i1 in context j1
at the end of the experiment.

A linear regression on the performance of the Baseline
established that disparity (δ) did not show a significant
effect, F (1, 34) = 3.65, p = 0.0645 and accordingly
disparity accounted for only 7.04% of the explained vari-
ability. Whereas, a linear regression on the performance
of Fair CB established that disparity significantly pre-
dicted its performance, F (1, 34) = 32.9, p < 0.0001
and the model explained 47.7% of the variability in per-
formance. The regression equation was: predicted per-
formance = 16.871 + 9.448δ. Fig. 9 shows the positive
effect of disparity on the performance of Fair CB.

6.2.2 Subjective Responses

Out of the 37 pairs of participants that completed the
quiz, 27 pairs (54 participants) answered all the subjec-
tive responses. We compare the responses of participants
for the subjective questions given in Table 1 across the
Baseline and Fair CB algorithms (Fig. 10).



Index Question

Q1. How FAIR or UNFAIR was it for YOU that the computer gave you the designated number of questions?
Q2. How FAIR or UNFAIR was it for your PARTNER that the computer gave them the designated number of questions?
Q3. How much do you trust the computer to make a good decision about the distribution of questions?

Table 1: Survey questions answered for both algorithms after the quiz.

Example Quote

“Maximum from US based question to me while other India based”
“I feel my partner had more in section B (Baseline).”
“There seemed to be fewer questions in a row for each of us in Set B (Fair CB).”
“Part 1 (Fair CB) seemed to do a much better job of giving questions about the US to me, and questions about India to my partner.”
“The first (Fair CB) was more even, in the 2nd (Baseline) the other player got a lot more questions”

Table 2: Participants response to the question “Did you notice a difference in how each part distributed questions?”

To test our hypothesis that the perceived fairness of the
Fair CB algorithm is not worse than the Baseline,1 a one-
tailed paired t-test for a non-inferiority margin ∆ = 0.5
and a level of statistical significance α = 0.025 showed
that participants perceived the fairness of the Fair CB
algorithm not worse than the Baseline for all questions
(p < 0.0001).

We also asked participants to describe any difference
they noticed in the way the questions were distributed
between the two quizzes corresponding to the two al-
gorithms. Users that did not have a clear disparity in
their performance in the two contexts did not see a differ-
ence in the behaviour of the two algorithms. Users with
greater disparity noticed a difference between the two al-
gorithms, with some users even recognizing that Fair CB
did better at assigning them questions that were related
to their country. Table 2 shows some example responses.

7 DISCUSSION

We view our findings as valuable considerations regard-
ing AI systems that make fair allocation decisions to mul-
tiple users. Theoretically, we show how the classic FTRL
framework can be naturally generalized to ensure fair-
ness and we rigorously analyze the performance of our
proposed algorithm in terms of regret guarantees. In the
supplemental material, we provide an algorithm for the
case of unknown context distribution and we analyze its
performance in terms of fairness violation.

Empirically, our first finding is that increasing fairness
results in worse performance, when there is one user who
is outperformed in all contexts. On the other hand, if
there exists a context where a user outperforms all oth-
ers, whether fairness will affect performance depends on

1We define “not worse than” using the concept of “non-
inferiority” [15].

the distribution of contexts. If that context appears fre-
quently enough for the desired fairness constraint to be
satisfied, performance will not be affected.

We also found that having a fair algorithm with no statis-
tical assumptions about the process generating the losses
is particularly beneficial in adversarial domains. Interest-
ingly, increasing fairness in our adversarial setting was
beneficial to the Fair UCB algorithm, since fairness re-
duced the reliance on the optimistic bounds that was ex-
ploited by the adversary.

Finally, the benefit of the context-based algorithm de-
pends on the disparity between users, that is how much
they differ in their performance on each context. In our
user study, Fair CB performed best for pairs of partici-
pants where each participant was better on one context
and worse on another.

Future Directions. We are excited to further investigate
how our findings can generalize beyond online game set-
tings, in domains where multiple users interact with a
physically embodied robot : for instance, a robot recep-
tionist greeting customers, an assistive robot in a stroke
care facility helping patients eating a meal, or a factory
robot delivering parts to workers. We are also excited
about applications of this work in banking and advertis-
ing, where arms are partitioned into protected groups and
a decision maker needs to allocate resources across these
groups [21].

Conclusion. Overall, we are excited to have brought
about a better understanding of the interplay between
contexts, fairness and performance in task allocation set-
tings, in addition to the theoretical analysis [8]. De-
signing AI systems that ensure and demonstrate fairness
when interacting with people is critical to their accep-
tance, and deriving theoretical and experimental founda-
tions for these systems is yet an under-served aspect in
Human-AI Interaction.
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