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Abstract

We study how to learn optimal interventions
sequentially given causal information repre-
sented as a causal graph along with associ-
ated conditional distributions. Causal model-
ing is useful in real world problems like online
advertisement where complex causal mecha-
nisms underlie the relationship between inter-
ventions and outcomes. We propose two al-
gorithms, causal upper confidence bound (C-
UCB) and causal Thompson Sampling (C-TS),
that enjoy improved cumulative regret bounds
compared with algorithms that do not use
causal information. We thus resolve an open
problem posed by |[Lattimore et al.|(2016)). Fur-
ther, we extend C-UCB and C-TS to the linear
bandit setting and propose causal linear UCB
(CL-UCB) and causal linear TS (CL-TS) algo-
rithms. These algorithms enjoy a cumulative
regret bound that only scales with the feature
dimension. Our experiments show the benefit
of using causal information. For example, we
observe that even with a few hundreds of iter-
ations, the regret of causal algorithms is less
than that of standard algorithms by a factor of
three. We also show that under certain causal
structures, our algorithms scale better than the
standard bandit algorithms as the number of in-
terventions increases.

1 INTRODUCTION

In a multi-armed bandit (MAB) problem, an agent adap-
tively learns to pull arms from a finite set of arms based
on the past knowledge. At each pull, it observes a single
reward corresponding to the arm pulled and its goal is to
maximize the cumulative reward received within a time
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horizon. Bandit models are widely used in various appli-
cations, such as education (Williams et al., 2016), clini-
cal trials (Villar et al [2015; Tewari and Murphyl, [2017)
and marketing (Burtini et all 2015 Mersereau et al.,
2009).

There are many well-studied stochastic bandit algo-
rithms, such as upper confidence bound (UCB) (Auer
et all 2002) and Thompson Sampling (TS) (Agrawal
and Goyal, 2012)), that can both achieve a regret bound
OWVK T where K is the number of arms and 7' is the
time horizon. However, in many real world applications
where we search for good interventions, the number of
actions (interventions) is extremely large. An interven-
tion here is defined as a forcible change to the value of a
set of variables.

As an example of a real world problem with a large space
of available interventions, we focus on the email cam-
paign problem. Online advertising companies are con-
stantly looking for an optimal trade-off between explo-
ration and exploitation efforts in order to convert a po-
tential buyer to an actual buyer. In case of email cam-
paigns, the overall target is to maximize the user inter-
action with the emails that could be defined as opening
an email, clicking on a link or eventually buying a prod-
uct. To achieve these goals, marketers adjust several vari-
ables in the process. For instance, they may know that
the length of subject, the template, the time of day to
send, the product and the type (promotion, online events,
etc.) of an email can affect whether a customer who re-
ceives the email will click the links inside or not. Every
possible assignment of values to these variables can be
an intervention leading to an extremely large number of
interventions. Therefore, strategic utilization of such in-
terventions is necessary for maximizing the cumulative
user conversion throughout the campaign horizon.

A natural approach to deal with a large number of inter-
ventions is to exploit relationships between the way dif-

10 ignores constant and poly-logarithmic factors.



ferent interventions affect the outcome. In this paper, we
focus on causal relations among interventions. In par-
ticular, we use causal graphs (Pearl, |2000) to represent
relationships between interacting variables in a complex
system. We study the following problem: using previ-
ously acquired knowledge about the causal graph struc-
ture, how to quickly learn good interventions sequen-
tially (Sen et al.,|2017; Hyttinen et al.,2013)? Our goal is
to optimize over a given set of interventions in a sequen-
tial decision making framework where the dependence
among reward distribution of these interventions is cap-
tured through a causal structure.

Lattimore et al.[(2016) proposed two causal bandit algo-
rithms, but they only provided simple regret guarantees
and their bounds scale with the number of interventions
in the worst case. Indeed, one of the open problems in
their paper is to design algorithms that enjoy a O(v/T)
cumulative regret bound, and utilize the causal structure
at the same time. Cumulative regret is appropriate when
both exploration and exploitation are needed, while sim-
ple regret is useful when it is important to identify a good
intervention at the end of a pure exploration phase. In
many real world problems, we are not simply looking for
the best intervention as quickly as possible without con-
sideration of outcomes obtained during the exploration
phase. In email campaign or clinical trials problems,
a good policy should lead to high revenue and conver-
sions or good health outcomes cumulatively, which are
not what a pure exploration method can achieve. There-
fore we focus on cumulative regret in this paper.

1.1 OUR CONTRIBUTIONS

We propose two natural and efficient algorithms, causal
UCB (C-UCB) and causal TS (C-TS), by incorporat-
ing the available causal knowledge in UCB and TS for
multi-armed bandit problems. We use causal knowledge
to greatly reduce the amount of exploration needed to
achieve low cumulative regret.

Suppose there are N variables that are related to the
reward and each of them takes on &k distinct values,
which means changing the value of any of these vari-
ables can affect the reward distribution. Note the num-
ber of interventions can be as large as (k + 1), which
means that standard bandit algorithms are only guar-
anteed to achieve O(y/(k + 1)NT) regret. Our pro-
posed causal algorithms exploit the causal knowledge to
achieve O(+/(k + 1)"T) regre where n is the num-
ber of variables that have direct causal effects on the re-
ward. These bounds suggest that causal UCB and TS

2Our regret bounds for confidence bound based algorithms
will be frequentist while for Thompson sampling they will be
Bayesian.

algorithms are preferable to standard UCB and TS algo-
rithms when n < V.

We further extend the causal bandit algorithms to lin-
ear bandit setting, that leads to our causal linear UCB
(CL-UCB) and causal linear TS (CL-TS) algorithms. We
show that CL-UCB and CL-TS both achieve O(dv/T) re-
gret, where d is the dimension of the coefficient vector in
the linear reward model.

To complement our upper bounds, we also provide a
lower bound for standard UCB algorithm. For some
structured bandit instances with n < N, we show a lower
bound on the cumulative regret of standard UCB which
comes arbitrarily close to Q(y/(k + 1)NT), which is
much larger than the upper bounds of our proposed al-
gorithms that utilize causal structures. It demonstrates
that a standard MAB algorithm is provably worse than
causal algorithms in certain cases.

Our experiments show the benefit of using causal struc-
ture: we observe (see Section [5] Figure [2) that within
hundreds of iterations, our causal algorithms are already
achieving regret within 1/3 of the standard algorithms’
regret. In addition, we validate numerically that for cer-
tain causal graph structure, C-UCB, C-TS, CL-UCB and
CL-TS indeed scale better than standard multi-armed
bandit algorithms as the size of intervention set grows.

1.2 RELATED WORK

Causal bandit problems can be treated as multi-armed
bandit problems by simply ignoring the causal struc-
ture information and the extra observations. So existing
bandit algorithms such as UCB (Auer et al., [2002) and
TS (Agrawal and Goyal, 2012) can be applied. However,
causal information should help us learn about an inter-
vention based on the performance of other interventions,
which can accelerate the whole learning process.

Combinatorial bandits (Cesa-Bianchi and Lugosi, [2012)
also deal with an action set that is exponentially large.
For example, the action set is usually a subset of the d-
dimensional binary hypercube. In combinatorial bandits,
the goal is to feasibly learn in the large action space by
assuming certain structure (e.g., linear) in the reward de-
pendence on actions and the availability of an efficient
optimization solver over the action set. However, our
emphasis is on reducing the statistical complexity by ex-
ploiting the given causal structures.

We build on the work of [Lattimore et al.| (2016). They
studied the problem of identifying the best interventions
in a stochastic bandit environment with known causal
graph and some conditional probabilities of variables in
the graph. They proposed two algorithms depending on



the type of causal graphs: parallel graph/general graph,
and proved two simple regret bounds accordingly. Both
bounds scale with a measure for causal graph’s underly-
ing distribution, which is small if every intervention has
similar effect on the reward and can be as large as the
number of interventions otherwise. Moreover, their al-
gorithm for general graph contains as many parameters
as the number of interventions, which are hard to tune.
We focus on the cumulative regret and our algorithms are
universal for all directed acyclic causal graphs defined in
Section [2] with no tuning parameters other than that of
standard MAB algorithms.

Another work (Sen et al., 2017) also considered best in-
tervention identification via importance sampling, and
their interventions are soft. Instead of forcing a node
to take a specific value, soft intervention only changes
the conditional distribution of a node given its parent
nodes. However, they also only considered simple re-
gret and their bounds scale with the number of interven-
tions. |Sachidananda and Brunskill (2017) studied the
most closest setting as our paper. They showed the ef-
fectiveness of their causal Thompson Sampling method,
but did not provide any regret analysis. |[Lee and Barein-
boim| (2018]) empirically showed that a brute-force way
to apply standard bandit algorithms on all interventions
can suffer huge regret. Therefore they proposed a way to
carefully choose an intervention subset by observing the
causal graph structures. Our lower bound (Theorem
provides a theoretical explanation for the phenomenon
they observe, namely that brute-force algorithms that try
all possible interventions can incur huge regret.

2 PROBLEM SETUP

We follow standard terminology and notation (Koller and
Friedman, [2009)) to state the causal bandit problem in-
troduced by Lattimore et al.| (2016). A directed acyclic
graph G is used to model the causal structure over a set of
random variables X = {X7,..., Xy }. Let P denote the
joint distribution over X that factorizes over G. For sim-
plicity, we assume each variable can take on k distinct
values, but extending our algorithm to various % values
for different variables poses no difficulty. The parents of
a variable X;, denoted by Pay, is the set of all variables
X such that there is an edge from X; to X; in graph G.
A size m intervention (action) is denoted by do(X = x),
which assigns the values x = {x1, ..., } to the corre-
sponding variables X = {X1,..., X,,} C X. Anempty
intervention is do(). The intervention on X also removes
all edges from Pax, to X; for each X; € X. Thus
the resulting underlying probability distribution that de-
fines the graph is denoted by P(X¢|do(X = x)) over
Xe:= X\ X.

In this causal bandit problem, the reward variable Y is
real-valued. A learner is given the causal model’s graph
QEI, a set of interventions (actions) .4 and conditional dis-
tributions of parent variables of Y given an intervention
a € A: P(Pay|a). We denote the expected reward for
action a = do(X = x) and the optimal action a* by:

e = E[Y]do(X = x)]

a” 1= argmax,c 4 la-
We assume p, € [0,1] for every a € A. In round ¢,
the learner pulls a; = do(X; = x;) based on previ-
ous round knowledge and causal information, then ob-
serves the reward Y; and the values of Pay, denoted by
Zyy = {2(t),. .., zn(t)}, where n is the number of re-
ward’s parent variables. However, in the work of [Lat-
timore et al.[ (2016), they need to observe the values of
all variables after taking an action. Thus, comparing
to them, the problem we face is more challenging. We
know there are k™ different value assignments on Pay-,
for convenience, we denote them by Z, . .., Z;n, where
each Z; is a vector of length n.

The objective of the learner is to minimize the expected
cumulative regret E [Ryp] = T'u* — Zthl E [tta,] using
causal knowledge.

Bayesian Regret: Let w €  denote the entire param-
eters of the distribution of Y|p,, —z. Reward can be
expressed by ¥ = E[Y|ps, =z] + €, where € is a 1-
subgaussian error variable. Thus, the cumulative regret
Ry for a given w can be formally written as Ry (w). We
particularly focus on the case where w is random with
distribution ) and bound the following Bayesian regret:
BRr = EwNQEERT(w).

Worst Case Regret: Using same notations as above,
the worst case (frequentist) regret is defined as:
max,eq EcRr(w). ERyp is used to represent the worst
case regret from now for short.

3 CAUSAL BANDIT ALGORITHMS

In this section we propose and analyze algorithms for
achieving minimal regret when causal information is
known. We generalize standard UCB and standard TS
algorithms to their causal counterparts in a natural way.
We show how the regret bounds of the causal versions
scale with a factor that can be much smaller than what
would be the case for the standard algorithms. We also
extend linear bandit algorithms to their causal version
and demonstrate how it further helps us reduce the cu-
mulative regret.

3Even though our algorithms take G as input, the only in-
formation used is the identity of Pay variables.



Algorithm 1 C-UCB
Input: Horizon T, action set A, 4, causal graph G,
number of parent variables n, number of values each
parent variable can take on: k.
Initialization: Values assignment to parent variables:
Zj, jiz,(0) = 0,Tz,;(0) =0,forj =1,...,k".
fort=1,...,Tdo
forj=1,..., k™ do
UCBgz, (t — 1) = jiz, (t — 1) +
end for .
a; = argmax,c 4 Z?:l UCBg,(t — 1)P(Pay =
Zj|a)
Pull arm a; and observe reward Y; and its parent
nodes’ values Z ).

Update Tz, (t) = ZZ=1 1(z.,=z;} and fiz,(t) =
1 t R n
m 2821 Ysl{z(s):zj}, fOI'_] = 1, ceey k .
end for

2log(1/6)
1VTz; (t—1)"

3.1 CAUSAL MAB ALGORITHMS

In the first part of this section we consider causal MAB
problem and present causal upper confidence bound al-
gorithm (C-UCB) and causal Thompson Sampling algo-
rithm (C-TS).

3.1.1 Causal UCB (C-UCB)

Without causal knowledge, UCB algorithm updates the
confidence interval of the reward mean for each arm. At
every round, the learner chooses the arm with the high-
est upper confidence bound value. However, thanks to
causal graph structures, we are able to make use of the
expectation decomposition formula

o
pta =Y _E[Y|Pay = Zj] P(Pay = Zjla).

j=1

At every round t, Algorithm [T] only updates the reward
mean and upper confidence bound for every possible
value assignment on reward’s parent variables denoted
by UCBgz, (t — 1) as P(Pay = Zj|a) terms are known.
It provides the upper confidence bound for each arm by:

.
UCB,(t — 1) = Y UCBg,(t — 1)P(Pay = Zj]a).

j=1

We pull a; that can maximize UCB,(t — 1) over all
a € A. There remain fewer upper confidence bounds
to construct since usually k" < (k+ 1)V, so it is reason-
able to expect that the cumulative regret can be reduced.

Theorem 1 (Regret Bound for C-UCB). Let
Ylpay=z, = E[Y|Pay =Z;] + ¢ forj = 1,..., k",

where € is a mean zero, 1-subgaussian distributed
random error. If 6 = 1/T?, the regret of policy defined
in Algorithm[l|is bounded by

E[Ryr] :O(\/W).

3.1.2 Causal TS (C-TS)

Thompson Sampling (TS) algorithm needs to update
the posterior distributions for all arms. In this prob-
lem, there are (k + 1)V distributions to update, which
leads to huge regret when N is large. Similar to
UCB algorithms, causal information can greatly help
TS improve the performance when k" < (k + 1)V.
Again, by using the expectation decomposition formula
o = YN E[Y|Pay = Z;] P(Pay = Zj]a), our C-
TS algorithm only updates the posterior distributions for
Ylpay=2,,J = 1,...,k™ as the P(Pay = Zj|a) terms
are known.

We provide two C-TS algorithms where Algorithm
uses Beta distribution as its prior and Algorithm [3] uses
Gaussian distribution as its prior. At every round t, both
C-TS algorithms sample from the posterior distributions
for Y|pay=z,,j = 1,...,k", then construct the esti-
mated reward mean denoted by /i, for Va € A using
causal information. The intervention arm with the high-
est estimated reward will be pulled, reward Y; and parent
node values Z ;) will be revealed accordingly. Param-
eters for Beta or Gaussian distribution are updated ac-
cording to Beta-Bernoulli and Gaussian-Gaussian prior-
posterior updating formulas.

Theorem 2 (Bayesian Regret Bound for C-TS). Let
Yl|pay=z, = E[Y|Pay =Zj| + ¢ for j = 1,... k",
where € is a mean zero, 1-subgaussian distributed ran-

dom error. Then the Bayesian regret of policies in Algo-
rithm 2 and Algorithm[3|are both be bounded by:

BRT:O(\/W).

3.2 CAUSAL LINEAR BANDIT ALGORITHMS

Previous section demonstrates how we use causal knowl-
edge to improve the multi-armed bandit algorithms. In
our setting, the reward Y directly depends on its n parent
nodes, then a natural extension is to consider the linear
modeling case: Y|py, —z = f(Z)T0 + ¢, where f de-
notes the feature function applied on the parent nodes of
Y, 6 denotes the linear coefficient and € is a zero mean,
1-subgaussian distributed random error.

We can write the expected reward mean for Va € A as:

.
fra = (Z f(Z;)P(Pay = Zj|a),0).



Algorithm 2 C-TS with Beta Prior If Y € [0, 1])
Input: Horizon T, action set .4, causal graph G, all
P(Pay|a), number of parent variables n, number of
values each parent variable can take on: k.
Initialization: Value assignments to parent variables:
Z;,S;, =F; =Ll forj=1.. k"
fort e {1,...,T}do

Sample éj (t) from beta distn with parameters
(St Fy ), forj=1,... k™
for action a € Ado
fia = 25—, 0;(t) P(Pay = Z;la)
end for
ap = argmax, flq
Pull arm a; and observe reward }7} and its parent
nodes values of Z ;. Perform a Bernoulli trial with
success probability Y; and observe the output Y;.
if Y; = 1 then
Stz(t) - StZ::) +1
else
Fé(t) - Féj +1
end if
end for

To this point, we demonstrate that linearly modeling the
reward’s parent nodes is just a special case of standard
linear bandit problem, where the feature vector for a € A
ismg := Zf; f(Z;)P(Pay = Zj|a). Thus, we easily
extend C-UCB and C-TS to this particular linear bandit
setting.

Causal linear UCB (CL-UCB) algorithm (Algorithm
and causal linear TS (CL-TS) algorithm (Algorithm E])
are straightforward linear UCB and linear TS algorithms.
It is helpful in the sense that the regret dependence on
V/E™ can be further reduced to the dimension of linear
coefficient 6 denoted by d while linear reward over parent
variables holds.

Theorem 3 (Regret Bound for CL-UCB & CL-TS
adapted from Chapter 19 in |[Lattimore and Szepesvari
(2020)). Assume that ||0||, < 1 and ||f(Z)||, < 1, the

dimension of 6 and f(Z) are both d, then run CL-UCB
with § = 1+ /2log () + dlog (1 + §) and CL-TS,

the regret of CL-UCB and Bayesian regret of CL-TS can
both be bounded by

E I:RTCL—UC‘B] 7BRTCL,TS = O (dﬁ) .

Remark: Our algorithms are easily adapted to a more
general setup, e.g. there exist a set of observable vari-
ables W that d-separates the manipulable variables and
the reward variable and P(W/|a) are known for all real-
izations W, a. In this senario, one can replace Pay and

Algorithm 3 C-TS with Gaussian Prior
Input: Horizon T, action set A, causal graph G, all
P(Pay|a), number of parent variables n, number of
values each parent variable can take on: k.
Initialization: Value assignments to parent variables:
Zj,kzj :O,ﬂzj :O,fOI‘j = 1,...,]6".
fort e {1,...,T}do

Sample 0;(t) ~ N(fiz,, ﬁ) Jorj=1,... k"

for action a € A do
fia = 25— 0;(t) P(Pay = Z;la)
end for
a¢ = argmax,, flq
Pull arm a; and observe the parent nodes values of
Y denoted by Z(; and reward Y.
Update kz, := kz, +1
Update iz, := %
end for

P(Pay |a) in above algorithms with W and P(W/|a) and
achieve O (\/|W|T) regret, where |W/| refers to the

number of realizations of W. This is beneficial when
|[W| < A or the reward’s direct parents are not known
nor observable, but the variables W are.

4 LOWER BOUND FOR NON-CAUSAL
METHODS

In this section, we show that it is necessary to use an al-
gorithm that utilizes the causal structure. We prove that
there exists a simple bandit environment with causal in-
formation, for which the regret of the standard UCB al-
gorithm scales at least exponentially with the size N of
all variables. For the same environment, our regret upper
bounds of C-UCB and C-TS scale at most exponentially
with the size n of parents. Since it is possible to have
N > n, this demonstrates the necessity of using causal
bandits algorithms.

We now describe the environment. The bandit environ-
ment v has N variables X1,..., Xy, each can take a
value from {1,2}. The marginal distribution for X; is
P(X; =1) = p;, fori = 1,...,N. The reward node
Y is generated by Y = AX; + ¢, where A is a posi-
tive coefficient to be determined and € ~ N(0,1). Ac-
tions are denoted by do(X; = 41,..., Xy = in), where
i1,...,ix € {0,1,2}, and 0 is an additional dimension
for the case that we do not set any value for a variable.

In this example, there are three types of actions:

o Type 0: Actions with ¢; = 0.



Algorithm 4 Causal Linear UCB (CL-UCB)
Input: horizon T', action set A, all P(Pay|a).
Initialization: Vo = I, 6y = 0g, g = 0g, 8 = 1 +
\/210g (T) +dlog (1+%).
fort=1,...,Tdo
fora € Ado
UCB, (1) =

<ét71>ma> + 5”maHVt—_11, where C;
{9 €Rd: Hefét_l(

)
Vie1
end for

a; = argmax, . 4 UCB,(?)
Pull arm a; and observe parent node Z(;y and reward

maxpee, (0,ma) =

Y;.
Update Vi=Vi1+ matmgta g =9+ maty;f,
b=V g

end for

Algorithm 5 Causal Linear TS (CL-TS)

Input: Horizon T, action set A, all P(Pay |a), stan-
dard deviation parameter v.
Initialization: V = I, 6= 04, g = 0g4.
forte{1,...,T} do
Sample 6, ~ N (6, vV, 1)
for action a € A do
fia(t) = (ma;, 0)
end for
a; = argmax, fiq(t)
Pull arm a; and observe the parent nodes values of
Y denoted by Z ;) and reward Y;.
Update V; = V1 + matmaTt, g =9+ mgY; and
0=V, g
end for

e Type 1: Actions with ¢; = 1.

o Type 2: Actions with ¢; = 2.

The expected reward for three types actions are 2A —
p1A, A and 2A respectively. Type 2 actions are optimal
arms, while the gaps for type 0 and type 1 are p; A and
A respectively.

Now we present the lower bound of standard UCB for
this environment.

Theorem 4 (Lower Bound for Standard UCB). For any
€ > 0, there exists a constant C. > 0 such that the
following holds. In the bandit environment v described

above, running standard UCB algorithm for T steps will
incur regret at least C.\/3NT1/2—¢,

This theorem can be generalized to provide lower bounds
for a broad class of MAB algorithms (p-order policies,

see appendix), including standard TS. We give a proof
outline of this theorem. The main idea is to apply The-
orem E] in |Lattimore and Szepesvari| (2020). This is an
algorithm-dependent lower bound that shows if an al-
gorithm has a uniform regret upper bound for all in-
stances in the unstructured bandit environment class (de-
fined below), then it must have a particular instance-
dependent regret lower bound. We first show v belongs
to the unstructured bandit environment class. Next, since
the standard UCB has a uniform regret upper bound for
this class, we can apply Theorem [5 in [Lattimore and
Szepesvari (2020) to obtain a lower bound of standard
UCSB for v.

Now we give more details. The unstructured Gaussian
bandit environment class is defined as follows.

Definition 1 (Unstructured Gaussian bandit environment
class). A Gaussian bandit environment class £ is un-
structured if A is finite and there exists set of Gaussian
distributions M, = {N(u,0%),n € R,0% < 1} for
each a € A such that

E={v=(P,:acA): P, € M,,Va € A}.

Note this environment class is the Cartesian product over
all distributions in M, for each arm. This is a large class,
and in particular it contains the environment v, which we
formalize in the claim below.

Claim 1. Denote a unstructured K -arm Gaussian bandit
environment class by Exc (N). Given any causal graph G
and conditional probabilities P(Pay |a),Va € A where
Y is the reward variable and Pay are its parents, for any
bandit instance V' that satisfies:

e arms are K interventions over a set of variables that
are consistent with G and the corresponding condi-
tional probabilities, and

e the conditional reward given parent values are in-
dependent Gaussian distributions:

YlPaY:Z =E [Y|Pay = Z] + €,

where € ~ N(0,1),

we have that V' € Ex (N).

The proof of this claim is given in the appendix. We
can finish the proof of Theorem [ by applying Theorem
16.4 in [Lattimore and Szepesvari (2020) (presented in
Theorem [5]in the appendix) on the environment v.

Note that Theorem E]in Lattimore and Szepesvari| (2020)
cannot be applied to causal algorithms. Causal algo-
rithms proposed in this paper can only perform well



Figure 1: Causal Graph for Pure Simulation: only blue
variables can be intervened.

on environments equipped with the fixed input causal
graph G and the corresponding conditional probabilities,
and thus causal algorithms cannot provide uniform (sub-
linear) regret upper bounds for all environments in the
unstructured bandit environment class.

S EXPERIMENTS

We compare the performance of standard bandit with
causal bandit algorithms to validate that causal informa-
tion plays an important role in bandit algorithms. We
also show that when the reward is truly generated by a
linear combination of the reward’s parent node, CL-TS
and CL-UCB can further achieve smaller regrets compar-
ing with C-TS and C-UCB that only use causal structures
but not the linear property.

5.1 PURE SIMULATION

We set up a pure simulation environment that will allow
us to run scaling experiments in order to qualitatively test
the scaling predictions of our theory. Throughout our
pure simulations, we use a model in which there is a re-
ward variable Y, reward’s parent variables W7, ..., W,,
taking values from {1,2}, and non-parent variables
X1,...,Xp, taking values from {1,...,m}. Reward
Y directly depends on its parent variables Wy, ..., W,,,
while each parent variable W; directly depends on the
corresponding non-parent variable X; (¢ = 1,...,n).
The causal graph is displayed in Figure|[l]

Intervention set: Denote an intervention by

a:dO(X1 = 2'17...,Xn :i7,),

where i1,...,4, € {0,1,...,m}, 0 is an additional di-
mension for the case that we do not set any value for a
variable. That means only non-parent variables can be
intervened, the parent variables of the reward are not un-
der control.

Reward Y is generated by: Y = (f(Wy,...,W,), 0)+e,
where f is a function applied on parent variables, 6 is a
n-dimensional vector, € is a sub-gaussian random error.

5.1.1 A Gentle Start: m =3,n =14

We begin with a simple case where m = 3,n = 4.
The marginal distributions for X, X5, X3, X4 and con-
ditional probabilities for W; = 1|X;,i = 1,...,4 are
displayed in Table I] (Section B).

For simplicity, we set f(Wy, Wo, W35, Wy) =
(W1, Wo, W5, W,), and the error is a Gaussian
variable € ~ N (0,0.12).

UCB algorithms: The true linear coefficient 6 is
(0.25,0.25,—0.25,—0.25). To approximate the ex-
pected regret, for each UCB algorithm we plot the av-
erage regret over 20 simulations.

TS algorithms: We plot both of the regret under 6 =
(0.25,0.25, —0.25, —0.25) and the Bayesian regret. For
the frequentist one, the procedure is same as UCB al-
gorithms described above. For the Bayesian one, the
“true” parameter 6 is generated from its prior distribu-
tion NV (0,0.1214) for 20 times as Monte Carlo simula-
tion. Then we plot the averaged regret over these 20 sim-
ulations to approximate the Bayesian regret.

Regret comparison plots are displayed in Figure 2}

5.1.2 Scaling with Non-Parent Variables’ Range: m

In this section, we fix n = 4 while changing the domain
range of non-parent variables m from 2 to 6 and see how
it affects the performance of all six algorithms.

In each simulation, the marginal probabilities for each
non-parent variable X;: {P(X; = j)}}L, are generated
from independent Dirichlet distributions with parame-
ter « = 1,, and the conditional probabilities P(W,; =
1X; = j),i = 1,...,n;5 = 1,...,m are gener-
ated randomly from [0, 1]. Throughout we fix the § =
(0.25,0.25, —0.25, —0.25). For each algorithm, the final
regret is averaged over 20 simulations. Regret compari-
son plot is displayed in Figure 3]

5.1.3 Scaling with Size of Parent Variables: n

In this section we fix m = 3 while changing the num-
ber of parent/non-parent variables n from 2 to 6. Since
X, takes value from {1,2,3} and W; takes value from
{1, 2}, by adding additional pair W; ~ X, the interven-
tion size increases much faster than the number of value
assignments on parent variables. We compare the perfor-
mance of six algorithms.

In each simulation, the marginal probabilities for each
non-parent variable { P(X; = j)}7., and conditional
probabilities for each parent variable P(W; = 1|X; =
j),4 = 1,...,m are sampled in the same way as Sec-
tion To keep the reward at the same scale as m
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Figure 4: Cumulative regret v.s. n, fix m = 3, time
horizon 7" = 10000.

varies, we use 8 = (1,0,...,0), where only the first el-
ement of linear coefficient is 1 and other elements are
all zeros. For each algorithm, the final regret is averaged
over 20 simulations. Regret comparison plot is displayed

in Figure
5.1.4 Conclusion of Pure Simulation

In Figure 2] the left and middle plots demonstrate the
performance of algorithms for a fixed causal bandit en-
vironment. We observe that for UCB and TS, causal
linear algorithms outperform the “non-linear” causal al-
gorithms moderately and all causal algorithms outper-
form the standard bandit algorithms significantly. In the

third plot, we demonstrate the performance in terms of
Bayesian regret for three TS algorithms, and their per-
formance order matches with the first two plots.

In Figure[3] we fix n and the time horizon 7" and compare
the performance of the algorithm as m increases. The
regret of C-UCB, C-TS, CL-UCB and CL-TS do not vary
as m increases as their regret only depends on the size of
parent variable value assignments. However, the regret
of UCB and TS keeps increasing as m grows. Thus, we
validate that the performance of our causal algorithms
are not affected by the number of interventions on non-
parent variables.

In Figure [d] we fix m and time horizon T and compare
the performance of all algorithms as n grows. The re-
gret of four causal algorithms does not vary a lot as n
increases. We show in our theorem that in worst case,
the regret of C-TS and C-UCB grow with v/k" and the
regret of CL-TS and CL-UCB grow with d for fixed time
horizon. And we also observe in this simulation that for
certain coefficient such as 6 = (1,0,...,0), the growth
is even slower. Clearly the regret of standard UCB and
TS algorithms keeps increasing as n grows.

5.2  EMAIL CAMPAIGN DATA

The experimental set up in this section is inspired by the
email campaign data from Adobe. The reward variable
is binary: whether the commercial links inside the email
are clicked or not by the recipient. Features under con-
trol are “product”, such as Photoshop, Acrobat XI Pro,
Adobe Stock, etc., “purpose”, such as awareness, pro-
motion, operation, nurture, etc., “send out time” that in-
cludes morning, afternoon and evening. Even though
these features are highly correlated with the reward vari-
able, but they are not the direct causes. The variables that
are actually causing the email links clicking are: the sub-
ject length, two different email templates, send out time,
so we set these variables as the reward’s parents. The
three features in blue that can be intervened are further
connected with reward’s parent variables as in Figure 3]
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Figure 5: Causal Graph for Email Campaign: only blue
nodes are under control.

Each combination of product and purpose has an email
pool, once they are fixed, the company picks out emails
from the pool. Thus, subject length and email body tem-
plate cannot be intervened, they depend on the emails
picking out from the pool, which is a random process.

From historical knowledge, email with “subject length”
fewer than 7 words are more likely to be opened, so we
denote “subject length” by Z1, taking values from {1, 2},
representing “less than 7 words” or not. “Template” is
denoted by Zs, taking values from {1, 2}, representing
template indices “1” or “2”. “Send out time” is denoted
by Zs, taking values from {1, 2, 3}, representing “morn-
ing”, “afternoon” and “evening”. We consider “Photo-
shop” (1), “Acrobat XI Pro”(2), “Adobe Stock” (3) for
the “product” variable, denoted by X;i; “Operational”
(1), “Promo” (2), “Nurture” (3) and “Awareness” (4) for
purpose variable, denoted by X5.

The marginal probabilities for X; and X, and Z3, con-
ditional distributions for Z;, Z, are displayed in Table 2]
(Section[B). The reward follows a Bernoulli distribution,
with parameter 1 — (Z, + Z2 + Z3)/9.

Interventions are denoted by do(X; = i1, Xo
i, X3 = ig), where 1,13 € {071,2,3}, g €
{0,1,2, 3,4}, 0 means no intervention on a variable.

In Figure [6] we compare the performance of UCB, C-
UCB, TS (beta prior) and C-TS (beta prior). We plot the
average regret over 20 simulations to approximate the ex-
pected cumulative regret for each method. Clearly both
of C-UCB and C-TS outperforms UCB and TS signifi-
cantly. Besides, we observe that TS algorithms gener-
ally perform better than the UCB algorithms. This phe-
nomenon is also consistent with previous empirical dis-
coveries (Chapelle and Lil 2011).

6 DISCUSSION & FUTURE WORK

We proposed C-UCB and C-TS algorithms and showed
that their regret can be bounded by O (\/ knT ) We fur-

ther extended linear bandit algorithms to their causal ver-
sions and showed the regret bound of CL-UCB and CL-
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Figure 6: Regret Comparison of UCB, TS, C-UCB and
C-TS for email campaign problem.

TS can be reduced to O (d\/f) There are several inter-

esting directions for future work.

Extension to MDPs: We plan to extend our causal ban-
dit framework to the MDP (Markov decision process)
setting. The key feature of causal MDP is that there is
an additional dimension: state, which can be affected by
the previous intervention and the reward behaves differ-
ently under different status. This phenomenon is typical
in many practical settings, including mobile health, on-
line advertising and online education.

Learning causal structure: In many cases the causal
structure is not known beforehand or only partially un-
derstood. Therefore it is desirable to develop methods
that can recover the underlying causal structure and min-
imize the cumulative regret at the same time. An ideal
algorithm that can efficiently learn the causal structure
and the bandit together should achieve lower regret than
normal bandit algorithms when the time horizon T is
large. |Ortega and Braun| (2014) empirically shows that
TS can recover causal structures in some cases. Combin-
ing causal learning algorithm with those that minimize
cumulative regret is an interesting direction to investi-
gate.
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