
Learning Behaviors with Uncertain Human Feedback

Xu He1, Haipeng Chen2, Bo An1

1 School of Computer Science and Engineering, Nanyang Technological University, Singapore
2 Department of Computer Science, Dartmouth College, United States

hexu0003@e.ntu.edu.sg, haipeng.chen@dartmouth.edu, boan@ntu.edu.sg

Abstract

Human feedback is widely used to train agents

in many domains. However, previous works

rarely consider the uncertainty when humans

provide feedback, especially in cases that the

optimal actions are not obvious to the trainers.

For example, the reward of a sub-optimal ac-

tion can be stochastic and sometimes exceeds

that of the optimal action, which is common

in games or real-world. Trainers are likely to

provide positive feedback to sub-optimal ac-

tions, negative feedback to the optimal actions

and even do not provide feedback in some con-

fusing situations. Existing works, which uti-

lize the Expectation Maximization (EM) algo-

rithm and treat the feedback model as hidden

parameters, do not consider uncertainties in the

learning environment and human feedback. To

address this challenge, we introduce a novel

feedback model that considers the uncertainty

of human feedback. However, this incurs in-

tractable calculus in the EM algorithm. To this

end, we propose a novel approximate EM al-

gorithm, in which we approximate the expec-

tation step with the Gradient Descent method.

Experimental results in both synthetic scenar-

ios and two real-world scenarios with human

participants demonstrate the superior perfor-

mance of our proposed approach.

1 INTRODUCTION

Training agents for tasks with human feedback has many

application scenarios such as games and recommenda-

tion systems. Previous works [13, 14] recognize the

fact that humans as trainers may have different training

strategies, i.e., different habits of giving positive/negative

feedback, or not giving feedback in some confusing

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

cases. They usually solve the problem using Expectation

Maximization (EM) by treating human feedback model

as hidden parameters. However, in environments with

uncertainties, trainers may not know exactly the opti-

mal action themselves, and therefore could only provide

feedback with uncertainty. For example, in many games

like Texas hold’em poker, the rewards of all the actions

are not deterministic. A sub-optimal action may get huge

reward in some cases. Then, trainers are likely to pro-

vide positive feedback to the sub-optimal action or not

sure which kind of feedback they should give. Moreover,

existing works do not differentiate non-optimal actions,

i.e., they assume the expected rewards of different sub-

optimal actions are the same, whereas in practice, differ-

ent actions might have different levels of optimality, and

the expected rewards of different sub-optimal actions are

usually dependent on their distances to the optimal one.

In this paper, we address these two issues by propos-

ing a novel human feedback model, which takes the un-

certainty of trainer’s feedback into account. Instead of

assuming that humans will only give positive feedback

when the action taken by the agent is optimal, we model

the way that humans give feedback as a probability dis-

tribution (e.g., Gaussian), where the probability of giving

positive (negative) feedback increases (decreases) w.r.t.

the distance of action towards the optimal action. It

brings new challenges, in the sense that the newly in-

troduced probabilistic human feedback model makes the

calculation of the integration intractable. To this end,

we propose a novel approximate EM algorithm, which

decomposes the original EM algorithm into two proce-

dures. First, we use an approximated EM step where we

assume a subset of the parameters in the human feedback

model (e.g., standard deviation of the Gaussian) are fixed

and known a-priori. In the second step, we use the Gra-

dient Descent (GD) method to compute the most likely

parameter values that we fix in the first step.

Our key contributions are summarized as follows. First,

we propose a novel probabilistic human feedback model,

which considers the uncertainties in humans while giv-

ing feedback to agents in an uncertain environment. Sec-

ond, to handle the new computational challenges brought

by the new feedback model, we propose a novel ap-

proximate EM approach, which integrates Expectation-

Maximization (EM) and Gradient Descent (GD). Last,

We conduct extensive experimental evaluations of our

proposed approach on both synthetic scenarios and two

different real-world scenarios with human participants.

1) We show that our approach outperforms existing

works under various settings and metrics. 2) Abla-

tion study shows the effectiveness of our proposed tech-

niques. 3) Robustness analysis demonstrates that our al-

gorithm still performs well even if trainers do not follow

our feedback model.

2 RELATED WORK

If we only consider the problem in one scenario, it is

similar to the multi-armed bandits problem, in which

algorithms need to choose a bandit to obtain the max-

imum reward. However, traditional bandits algorithms

like UCB [1] do not consider the human feedback model.

We now briefly review works in which agents learn form

human. The most related domain is interactive rein-

forcement learning, which aims at hastening the learn-

ing process via human feedback. Many existing works

[4, 7, 11, 14] show the efficiency of learning from human

trainers. Knox et al. [10, 11, 12] propose the TAMER

framework in which human feedback is learned by a su-

pervised learning method and then used to provide re-

wards to the agent. The TAMER framework is merged

with the deep neural network to address more difficult

problems [18]. MacGlashan et al. [15] propose a novel

Actor-Critic algorithm considering that human feedback

relates to agents’ policy. Policy shaping algorithms [4, 7]

utilize the difference between ‘good’ and ‘bad’ labels to

determine the best action by a Bayesian approach. How

a trainer implicitly expects a learner to interpret feedback

is studied in [8]. Trainers are allowed to directly slightly

change the action in paper [17]. Two works [5, 16] focus

on training agents to learn the meaning of language or

commands.

However, most of these approaches do not consider the

feedback model of trainers except Loftin et al. [13, 14,

16]. They consider trainers’ feedback model and pro-

pose a strategy-aware algorithm to infer the meaning of

no feedback via the trainer’s feedback history. How-

ever, their model assumes the positive feedback will only

be obtained when the agent chooses the optimal action,

which is not the case in our problem, as uncertainty af-

fects the feedback provided by trainers. In many cases,

trainers generally give positive feedback as long as the

action is close to the optimal one especially when they

not sure what is the optimal one. For example, if the

rewards of actions are not fixed and follow some distri-

butions, a sub-optimal action would obtain more reward

than the optimal one. Then, it is hard to only provide

positive feedback to the optimal action.

3 MODELLING UNCERTAIN
TRAINER FEEDBACK

In one time period, we define state s ∈ S, where S is

the set of states. After observing current state s, the

agent chooses an action a ∈ A. Following [13], we

define a discrete action space A = {a1, ..., aK}. Af-

ter the agent chooses an action, the trainer could provide

feedback f ∈ F = {f+, f−, f0} to describe his/her de-

gree of satisfaction, where {f+, f−, f0} corresponds to

positive, negative and no feedback respectively. Posi-

tive feedback indicates ‘good’ and negative feedback is

‘bad’, while no feedback could be used to indicate other

information such as confusion or ‘not bad’ (but also not

good). All of the trainer’s feedback will be recorded in

history h = {[st, at, ft]|t = 1, . . . , T}, where T is cur-

rent time period. st ∈ S, at ∈ A and ft ∈ F are state,

action and feedback obtained in the time period t.

To model the uncertainty when trainers give feedback,
we propose a novel probabilistic human feedback model,
the probabilities of obtaining different kinds of feedback
are represented by p(a, λ(s);σ, μ, f) in state s, where a
is the current action, λ(s) is the trainer’s preferred action
in state s. σ and μ = {μ+, μ−} are unknown parameters
of the probability function. Formally,

p(a, λ(s);σ, μ, f) =

⎧⎪⎪⎨
⎪⎪⎩

p+(a, λ(s);σ, μ+) f = f+

p−(a, λ(s);σ, μ−) f = f−

1− p+(a, λ(s);σ, μ+)
−p−(a, λ(s);σ, μ−) f = f0

where σ and μ = {μ+, μ−} control variance and

the maximum probability of providing different kinds of

feedback (positive feedback and negative feedback) re-

spectively. The parameters of the model could be ad-

justed to approximate different trainers’ habits of provid-

ing feedback. Many popular distributions can be writ-

ten in this form. For example, the Gaussian function

μe−
(a−λ(s))2

2σ2 and a simple extension of the density func-

tion of the Logistic distribution μ

σ(1+e−
(a−λ(s))

σ)
. We

can divide the functions p+ and p− into μ ∈ [0, 1] and

another term êσ ∈ [0, 1], formally, p+ = μ+êσ and

p− = μ− [1− (1− ε)êσ], where ε is a positive con-

stant whose value is close to 0 in order to ensure that

the probability of obtaining negative feedback is not 0 at

a = λ(s). We constrain that the upper bound of the sum

of p+(a, λ(s);σ, μ+) and p−(a, λ(s);σ, μ−) cannot be

larger than 1 for any s and a. Then, we have

μ+êσ + μ− [1− (1− ε)êσ] ≤ 1

⇒1− μ− − êσ
[
μ+ + μ−(1− ε)

] ≥ 0.

where êσ ∈ [0, 1]. Notice that the function on the left

side is monotonous for the term êσ , which means that

the minimum of the function is obtained when êσ = 1
since μ ≥ 0 and ε → 0+. Thus, we have

1− μ+ − εμ− ≥ 0 ⇒ μ+ + εμ− ≤ 1.

By using the property μ− ∈ [0, 1], we get the upper

bound of μ+:

μ+ + εμ− ≤ 1 ⇒ μ+ ≤ 1− ε.

The intuitive interpretation of μ+ and μ− is that they are

the maximum probabilities of obtaining positive and neg-

ative feedback respectively. That is, μ+ is the probability

of getting positive feedback when the current action is

the trainer’s most preferred one and μ− is the probability

of getting negative feedback at the trainer’s most disliked

action. When the action a is different from λ(s), the

probability of obtaining positive feedback declines while

more negative feedback will be received.

4 APPROXIMATE EXPECTATION
MAXIMIZATION

Since Bayesian approaches have shown the efficiency in

inferring from a small quantity of data, we adopt the

Maximum Likelihood Estimation (MLE) to estimate the

policy function λ with two unknown parameters μ and

σ in the probabilistic human feedback model, where the

objective function is represented as:

argmaxλ P (h|λ;μ, σ), (1)

where h = {[st, at, ft]|t = 1, . . . , T} is the history of

state, action and feedback. Note that this MLE cannot be

calculated directly since there are two sets of unknown

variables, policy λ and parameters (μ,σ), in this equation

and there is no explicit bound for σ. One classical way of

handling this kind of problems is to use the EM algorithm

where the i-th EM update step is represented as:

λi+1 = argmaxλ

∫∫∫
P (μ+, μ−|h, λi)

· ln[P (h, μ+, μ−|λ)]dμ+dμ−dσ.

However, it is easy to see that this integral is intractable,

as 1) there is no explicit upper bound for σ and 2) the

large dimension of the hidden variables significantly in-

creases the computational complexity of calculating the

integral (which is usually calculated using numerical

methods as there are no analytical solutions). As a result,

we propose a novel approximate EM algorithm, in which

an alternating optimization method is used to solve this

MLE by two steps: 1) Update λ with σ fixed and treat μ
as a hidden variable by EM algorithm. 2) Update σ with

λ fixed by GD algorithm and use a trick to ignore μ. 1

4.1 UPDATING λ WITH σ FIXED

Since μ+ and μ− mean the maximum probabilities of
obtaining positive and negative feedback, we know that
the range of μ− is [0, 1] and 0 ≤ μ+ ≤ 1− ε. By treating
μ+ and μ− as bounded latent variables, λ can be updated
by the Expectation-Maximization (EM) algorithm when
σ is fixed, which is inspired by [14]. In the expectation
step, we compute the expectation of a log-likelihood es-
timate with respect to a bounded latent variable. In the
maximization step, the expectation is maximized with re-
spect to another unknown variable. Treating μ+, μ− as
latent variables, the i-th EM update step is:

λi+1 = argmaxλ

∫ 1

0

∫ 1−ε

0

P (μ+, μ−|h, λi)

· ln[P (h, μ+, μ−|λ)]dμ+dμ−
, (2)

where λi is the inferred preference in i-th step. To en-

sure that the probability of receiving positive and nega-

tive feedback is not larger than 1, the upper bound of μ+

is defined by 1− μ−.

Using the Bayes’ theorem and the property of logarithm,

we obtain

P (μ+, μ−|h, λi) =
P (h|μ+, μ−, λi)P (μ+, μ−|λi)

P (h|λi)
,

(3)

and

ln[P (h, μ+, μ−|λ)] = ln[P (h|μ+, μ−, λ)]

+ ln[P (μ+, μ−|λ)]. (4)

Notice that P (h|λi) is the marginal probability and does

not involve any variable. Thus we can treat it as con-

stant and remove it from Eq.(3). Since μ+ and μ− de-

fine the way that a trainer provides feedback and λ is

the set including the optimal actions in various states,

{μ+, μ−} is independent of λ and thus P (μ+, μ−|λ) =
P (μ+, μ−|λi) = P (μ+, μ−). We assume that μ+ and

μ− are uniformly distributed due to the lack of the

prior knowledge about μ+ and μ−. Therefore, we get

p(μ+, μ−) = 2 by solving the equation

∫ 1

0

∫ 1−ε

0

p(μ+, μ−)dμ+dμ− = 1.

1An alternative is to use gradient-based methods at both
steps [2]. However, this is infeasible due to the complex prob-
lem structure and the difficulty in deriving gradients at both
steps.

Thus, the term P (μ+, μ−|λi) can be removed from

Eq.(3). For the second logarithmic term of Eq.(4), since∫ 1

0

∫ 1−ε

0

P (μ+, μ−|h, λi) ln[2]dμ
+dμ− (5)

is not related to λ, we can ignore it. Finally, the objective

could be simplified to

λi+1(s) = argmax
λ

∫ 1

0

∫ 1−ε

0

P (h|μ+, μ−, λi)

· ln[P (hs|μ+, μ−, λ(s))]dμ+dμ−
, (6)

where hs is the history containing the state s. Utilizing
h = {[st, at, ft]|t = 1, . . . , T}, we can calculate the
integral, since the probability of obtaining h given μ and
λ is:

P (h|μ+, μ−, λ) =
∏
T

P (ft|at, st, λ(st), μ
+, μ−)

=
∏
T

p(at, λ(st);σ, μ, ft)

=
∏

sh∈S

p+(ah, λ(sh);σ
+, μ+)

|n+
sh

|

· p−(ah, λ(sh);σ
+, μ+)

|n−
sh

|

· p0(ah, λ(sh);σ
+, μ+)

|n0
sh

|
,

where |n+
sh
|, |n−

sh
|, |n0

sh
| are the numbers of three types

of feedback in the sate sh ∈ h. For p+ and p−, notice

that ln[μêσ] = ln[μ] + ln[êσ]. Since ln[μ] is not related

to λ, we ignore it during the calculation to prevent diver-

gence. In practice, we compute expectations for all the

actions that are available in a sate s and select the action

with the maximal expectation as the policy λ(s) for the

state s.

Eq.(6) shows the natural way to utilize feedback from

other states. When we compute the optimal action in

state s, the first term P (h|μ+, μ−, λi) considers all the

historical feedback and effects the result of the Eq.(6).

In this way, both feedback model and historical feedback

are taken into consideration to infer the best action.

4.2 UPDATING σ WITH λ FIXED

Since our objective function is calculated based on prob-

abilities provided by the feedback model, the accuracy

of the feedback model affects the result significantly. To

obtain an accurate human feedback model, we use GD

method to minimize the square loss function between the

inferred feedback model p(a, λ(s);σ, μ, f) and the real

one, i.e.,

[p(a, λ(s);σ, μ, f)− p(f |a, s)]2. (7)

However, since we calculate the integral under μ, the

value of μ is unknown. We cannot compute the gra-

dient of the loss function. Note the form of function

Algorithm 1: Adaptive Bayesian Learning with

Uncertain Feedback (ABLUF)

Initialize: λ = randomPolicy(), ε = 0.01,
h = [], t = 0, done = 0;

1 while done �= 1 do
2 st = getState();
3 at = λ(s);
4 takeAction(at);
5 ft = getFeedback();
6 h = [h; [st, at, ft]];
7 repeat
8 λ′ = λ;

9 λ = argmaxλ
∫ 1

0

∫ 1−ε

0
P (h|μ+, μ−, λ′) ·

ln[P (hs|μ+, μ−, λ(s))]dμ+dμ−;

10 until λ′ = λ;

11 σ = σ − α 1
n

∑
s

∑
a ∇σL(σ; f, λ);

12 done = getDone();
13 t = t+ 1;

p(a, λ(s);σ, μ, f), the exponential term actually is the

estimation of the ratio between the probability at action

a and the maximum probability of receiving positive or

negative feedback. That is,

ratio+p =êσ

≈ p(f+|a, s)
p(f+|λ(s), s) = ratioa(f

+)

ratio−p =[1− (1− ε)êσ]

≈ p(f−|a, s)
p(f−|a−s , s)

= ratioa(f
−),

(8)

where a−s = argmaxa d(a, λ(s)) is the action that a

trainer dislikes the most, since this action has the max-

imum probability of receiving negative feedback. We

transform the loss function to

L(σ; f, λ) = [ratiop − ratioa(f)]
2. (9)

We omit μ in L, since it does not appear in the new for-

mulation of the loss function.

The gradient ∇σL(σ; f, λ) of the new loss function

could be computed as follows. For f+, we have

[ratio+p − ratioa(f
+)]∇σratio

+
p . (10)

For f−, we have

[ratio−p − ratioa(f
−)]∇σratio

−
p . (11)

Thus,

∇σL(σ; f, λ) =[ratio+p − ratioa(f
+)]∇σratio

+
p

+ [ratio−p − ratioa(f
−)]∇σratio

−
p

,

where ratioa(f
+) and ratioa(f

−) could be obtained

from the historical feedback. For example, if the prob-

abilities of offering positive feedback are 0.5 and 0.9

in action a and the optimal action λi(s) respectively,

ratioa(f
+) = 0.5

0.9 . We implement the Gradient Descent

method to update the parameters and all the historical

feedback of all actions is used to compute the gradient

and then update σ:

σ = σ − α
1

n

∑
s

∑
a
∇σL(σ; f, λ), (12)

where n = |S| × |A| is the total number of states-action

pairs.

The Adaptive Bayesian Learning with Uncertain Feed-

back (ABLUF) algorithm is shown in Algorithm 1. The

value of step size α is given in the experiment section

based on the property of the gradient. The variable done
is obtained from the environment and the trainer, which

is also introduced in the next section. After selecting and

taking the action in Lines 3-4, the system will obtain the

trainer’s feedback and record it in h. In Lines 7-10, the

EM algorithm calculates the preferences of the trainer by

Eq.(6) based on the records stored in h. After updating

λ, the parameter σ is updated at Line 11 by Eq.(12).

5 EXPERIMENT EVALUATIONS

We implement two sets of experiments for two en-

vironments with human subjects: training a vir-

tual dog to catch rats and learning users’ prefer-

ences of lighting. We also evaluate the perfor-

mance, convergence, and robustness of our proposed

algorithm in simulated experiments. Code can be

found at https://github.com/hlhllh/Learning-

Behaviors-with-Uncertain-Human-Feedback.

5.1 CHOICE OF HUMAN FEEDBACK MODEL

In general, a good human feedback model is expected

to have the following good properties: 1) It captures the

uncertainty of a trainer to give feedback. 2) The opti-

mal action is unique in each state. 3) When the action

becomes far away from the optimal by a same amount,

trainer’s satisfaction will decrease by a similar amount.

For these concerns, we use Gaussian functions as the hu-

man feedback model due to its simplicity. 2 Thus, we

2Our robustness analysis shows that the Gaussian functions
model well adapts to situations where the way trainers give
feedback is different from the Gaussian functions. Other forms
of human feedback model could also be considered, such as the
probability density functions of Cauchy distribution, Logistic
distribution, etc. We leave the exploration of various forms of
human feedback model as future work.

define

p+(a, λ(s);σ, μ+) = μ+e−
(a−λ(s))2

2σ2 (13)

p−(a, λ(s);σ, μ−) = μ−[1− (1− ε)e−
(a−λ(s))2

2σ2] (14)

and the gradients of L(σ; f, λ) are

2
(a− λi(s))

2

σ3
[ratio+p − ratioa(f

+)]ratio+p

and

−2(1− ε)
(a− λi(s))

2

σ3
[ratio−p − ratioa(f

−)]ratio−p

for f+ and f− respectively. The learning rate α is set to

be 0.4σ3. The σ3 term aims at eliminating the denomina-

tor to avoid a very small update of the parameter σ when

the value of σ is large.

5.2 BASELINES

We compare with two state-of-the-art algorithms ISABL

[13] is a Bayesian learning algorithm aiming at utiliz-

ing human feedback to train an agent. Expectation-

Maximization method is used to calculate the best action.

They assume that the human trainer only provides posi-

tive feedback when the agent selects an optimal action.

If the agent chooses other actions, the trainer will give

negative feedback. No feedback is also considered to de-

termine the training policy. The error rate of the ISABL

algorithm in our experiment is 0.1 following the original

setting.

The upper confidence bound (UCB) algorithm [1] cal-

culates the upper confidence bound of the expected re-

ward for each action and chooses an action with maxi-

mum UCB value. In our experiment, we assign values

for different kinds of feedback, that is, [f+, f−, f0] →
[1,−1, 0]. After receiving the feedback, the upper

confidence bound for an action will be computed by

UCB(s, a) = E[rs,a] +
√

2 log ts,a
ts

, where the E[rs,a]

is the expected feedback value conditioning on the feed-

back for action a in state s, ts,a means the number of

times that the algorithm chooses a in state s, and ts is the

total number of times that state s appears.

5.3 TRAINING A VIRTUAL DOG

In our first experiment, trainers are required to train a vir-

tual dog to catches rats. At the beginning of each step,

the dog is at the center of the figure and a rat appears at

one of four edges of the figure. Each edge can be con-

sidered as a state in this experiment. Then, the rat moves

to one of 6 points on the same edge following a distribu-

tion that is fixed for each edge and not influenced by the

(a) State (b) Action

Figure 1: The state and action of training a dog.

(a) Step (b) Rats caught per
step

(c) The gap be-
tween the learned
policy and the opti-
mal policy

Figure 2: The performance of different algorithms to

train a dog.

dog. The dog chooses one point from 6 candidate points

to go as the action in this state. The probability that the

dog catches the rat is inverse to the distance between the

dog and the rat. After observing the locations of the dog

and the rat, trainers provide feedback to current action of

the dog. Then, the next step begins. For example, Fig-

ure 1(a) is a state and Figure 1(b) shows the action of

dog and the location the rat appears. The optimal actions

for all states are generated randomly before the exper-

iment begins. For each state, we use a standard Gaus-

sian function per state to decide the probability that the

rat appears at different points, which is e−
(a−λ(s))2

2 , ∀a.

Normalization is executed to ensure the sum of probabil-

ities is 1. Similarly, the probability that the rat is caught

is e−
(arat−adog)2

2 . We invited 40 trainers to participate in

this experiment. Four states are randomly ordered and

appears one by one.

When to stop? We limit the number of steps that trainers

can interact with the agent is 15 in each state in order to

constrain the time of the experiment. We will show that

this limitation is reasonable since the probability that our

algorithm learns the optimal actions under this constraint

is high. The state changes when 1) the trainer thinks that

the dog’s performance is good enough or 2) the number

of steps exceeds 15. The experiment ends if all the states

are satisfied the above mentioned conditions. Our algo-

rithm and two baselines introduced in the last section are

executed one by one with random order for each trainer.

Trainers are not informed of the order.

Metrics. Three metrics are applied to judge the perfor-

mance of various algorithms: 1) The number of steps

(a) QUERY method. (b) Other methods.

Figure 3: GUI designed for human experiment. (a) Users

can change the light level directly by clicking the buttons.

(b) Users can transfer their satisfaction by clicking the

first three buttons.

used to finish the experiment. 2) The average number

of caught rats over steps. 3) The 2-norm between the

learned policy and the optimal policy. A good algorithm

can catch more rats during training and finally learn the

optimal policy with less steps.

Results. Results under these metrics are shown in Fig-

ure 2. Figure 2(a) shows that most of trainers finish the

training before 15 steps per state. However, for other

baselines, more steps are required to satisfy trainers’ cri-

teria of ending, which indicates that other algorithms per-

form relatively badly after training. Figure 2(b) shows

the number of rats caught per step. The larger the value

is, the faster an algorithm converges to the optimal policy

during the training. The gap between the optimal policy

and the learned policy is illustrated in Figure 2(c). The

gap is calculated by the 2-norm between these two poli-

cies. These three figures indicate that our algorithm per-

forms the best considering the speed of convergence and

the quality of the learned policy. For all the three metrics,

the ABLUF method is statistically superior to others us-

ing Wilcoxon two-sided signed-rank test (p < 0.01).

5.4 LEARNING USERS’ PREFERENCE OF
LIGHTING

The second experiment aims at learning users’ prefer-

ence of lighting in different situations. Users provide

different kinds of feedback after an action corresponding

to a light level is chosen by an algorithm. Since users’

utility functions are very difficult for users to access and

human sense is inaccurate [3, 9], human feedback is un-

certain and they are likely to provide positive feedback

in some sub-optimal action especially when the differ-

ence of two nearby light levels is tiny. To verify this

assumption, we introduce the QUERY method as a base-

line, which asks users to directly choose light levels.

We invited 40 students to participate in our experiment

and built the experiment environment by a room with

Table 1: The result of human experiment (mean ±
std. deviation) under two metrics. The performance of

our algorithm is statistically superior to others.

Algorithm distance/state #steps/state

UCB 40.48± 11.09 14.72± 3.49
ISABL 23.22± 11.82 8.21± 3.37
QUERY 17.75± 4.68 7.85± 2.32
ABLUF 13.33± 4.59 5.96± 1.50

a computer and a YeeLight3 bulb that is able to be

controlled remotely. The experiment is divided into

four parts to evaluate four different algorithms (ABLUF,

UCB, ISABL, QUERY) which are arranged randomly

during the experiment. In each part, participants’ pre-

ferred light levels in three states (reading, watching

videos and talking with others) are learned and the or-

der of these states is fixed. The number of optional light

levels is 10 (0%, 11%, 22%, . . . , 99% of the bulb’s max-

imum lightness), which is a balance of two concerns. 1)

It is difficult for human beings to detect the difference

between two adjacent light levels when the number is

larger. 2) A smaller number of light levels would po-

tentially degrade the comfort of users. In the QUERY

method, we directly ask users to adjust light levels rather

than providing feedback.

Users can interact with our system by GUIs shown in

Figure 3. The current light level and state are shown on

the top of the web site and the ‘Done’ button is used to

transform the current state to the next one. For QUERY

method, users can directly click the buttons with num-

bers to change the light level in Figure 3(a). A larger

number corresponds to a brighter light level. For other

methods, we design a similar GUI shown in Figure 3(b).

The first three buttons are designed for collecting differ-

ent kinds of feedback. To collect feedback accurately,

the participants can press the ‘No Feedback’ button to

provide ‘no feedback’.

When to stop? For these methods, the algorithm

chooses a light level from 10 candidates according to the

participant’s feedback. Then, participants are asked to

provide feedback. The maximum number of steps and

the time for each algorithm are not constrained. After

participants think that the system has learned their pref-

erences, they are also asked to stay in the current state

for 1 minute and then interact with two more steps. If the

participant does not want to change the light level and

the algorithm maintains his/her favorite light level when

the participant interacts with the agent in the two addi-

tional steps, we think that the algorithm has converged

3https://www.yeelight.com

(a) Distance/state (b) #steps/state

Figure 4: The result of human experiment under accu-

mulative distance and steps.

and learned participants’ preference. Then, participants

can click the ‘Done’ button and the state will be trans-

ferred to the next one until all of the states are traversed.

For the QUERY method, participants can explore and se-

lect their favorite light levels in each state without any

constraint. In each state, they can choose other light lev-

els through the GUI if they feel uncomfortable. After

they think a light level is comfortable, we ask them to

stay in the current lighting situation for 1 minute to en-

sure that their feeling is stable. If their feeling does not

change, they can click ‘done’ button to transfer to the

next state. Otherwise, they could continue to choose an-

other light level.

Metrics. For this experiment, the step required to fin-

ish the training as the metric could be used as the met-

ric. The other two metrics introduced in the last sec-

tion is not applicable since the setting of this experiment

is different. Since users only end the experiment when

they feel comfortable, the learned policy is the optimal

one. And it is difficult to know the probability that a

user feels comfortable when the light level is not his pre-

ferred one. Alternatively, we use accumulative distance

d =
∑T

t=0[at − λ(s)]2 between the current action and

the optimal action as a metric to evaluate the degree of

discomfort. Intuitively, if the distance is large, the user

are not likely to feel comfortable. In practice, if one light

level is selected in the last few steps repeatedly, we will

ignore these steps since what we are concerned about is

the total number of steps required for learning rather than

verifying.

Results. The result of our human experiment is shown in

Figure 4 and Table 1. The ABLUF method is statistically

superior to the comparing algorithms using Wilcoxon

two-sided signed-rank test (p < 0.01). In the QUERY

method, participants cannot select their favorite light lev-

els with a small number of steps, since they need to com-

pare similar light levels to find their favorite ones and

their strategies of finding preferred light levels are radi-

cal. For example, when the light level is too bright, users

are prone to select a very dark one and then use more

steps to find the optimal one. This observation is sup-

ported by [3, 6] which show that utility functions are very

(a) Rats caught per step
when |s| = 4

(b) The gap between policies
when |s| = 4

(c) Rats caught per step
when |a| = 3

(d) The gap between policies
when |a| = 3

Figure 5: The result of dog training experiment with dif-

ferent numbers of actions and states.

difficult for users to access, which indicates that they

cannot tell their preferred light levels accurately without

comparison. Our algorithm designs a more efficient way

to explore various light levels according to participants’

feedback.

5.5 PERFORMANCE IN VARIOUS SYNTHETIC
ENVIRONMENTAL SETTINGS

In this subsection, we implement experiments with simu-

lated trainers/users in the above mentioned environments

to answer three questions: 1) How does the number of

actions and states influence the performance of different

algorithms. 2) Can our algorithm learn the true value of

σ precisely? 3) Can our algorithm perform well when

trainers does not follow our feedback model? The exper-

imental results show that the ABLUF algorithm is better

than two baselines significantly (p < 0.01 by t-test) and

can learn the value of σ accurately in most of cases.

Ablation. To illustrate the importance of updating the

feedback model, we also compare with Bayesian Learn-

ing for Uncertain Feedback (BLUF) algorithm, a sim-

plified version of our ABLUF algorithm, where we treat

the parameter σ as a constant input (σ ∈ {0.1, 1, 3} in

our experiments). This means that we have prior knowl-

edge about the changed ratio of the probabilities at ac-

tion a given the distance d(a, a∗s). However, it is hard to

get plenty of data to obtain such prior knowledge in the

real world for each trainer. Thus, the BLUF algorithm is

not feasible in our human experiment. We only compare

with it to illustrate the impact of an accurate σ in this

simulated experiment. Answer for the first question.

(a) Fixed #states: 4 (b) Fixed #actions: 3

Figure 6: The values of σ after training.

For the synthetic data, the probabilities of obtaining dif-

ferent kinds of feedback follow our feedback model in

which σ = 1 and μ is randomly generated. The optimal

actions are generated randomly for various states. For

the both environments, we set the number of actions to

3, 6 and 9 when the number of states is 4. When the num-

ber of actions is 3, we vary the number of states to 2 and

6. Trainers are allowed to interact with algorithms for 15

steps per state, which is similar to our human experiment.

For the dog training environment, Figure 5 shows the

performance of all the algorithms in different settings.

The sub figures indicate that the change of the number of

actions affects performance more significantly due to two

reasons: 1) There are more sub-optimal actions when the

number of actions is large, which increases the difficulty

to figure out the optimal actions. 2) The worst case for

two metrics becomes worse. The maximum distance of

the optimal action and another action increases from
√
2

to
√
8 when the number of actions varies from 3 to 9.

Similarly, the minimal probability of catching a rat de-

clines from e−2 to e−32. Therefore, performance of all

algorithms descends. Our ABLUF method outperforms

all the baselines except the BLUF algorithm with accu-

rate σ = 1 known in advance. For other ablation meth-

ods with biased σ, our adaptive method achieves better

performance, which shows that an accurate σ is crucial.

However, the variation of states does not impact the num-

ber of the rats caught per step, since the probabilities of

catching rats are similar for both the optimal action and

a sub-optimal one. This conclusion is verified by the last

figure, where the gap increases with respect to the num-

ber of states. The figure illustrates that the learned policy

is worse when |s| = 6. However, the rat caught per step

does not decrease, which indicates that a sub-optimal

policy does not affect much in this setting. The perfor-

mances of ABLUF and BLUF are similar when |s| = 2.

The reason would be that a simple setting could be solved

by an inaccurate model such as ISABL.

For the lighting control environment, similar results are

displayed in the Figures 8(a) to 8(e). Since the maxi-

mum value of [a − λ(s)]2 increases dramatically when

we change the number of actions form 3 to 9. The accu-

(a) Rats caught per step (b) The gap between policies

Figure 7: The result of dog training experiment with ran-

domly generated trainers when |s| = 4 and |a| = 6.

mulative distances of all the algorithms vary rapidly form

Figure 8(a) to Figure 8(c), while the increase is relatively

small when the number of states becomes larger, which

is the same as the dog training experiment.

Answer for the second question. Figure 6 illustrates

the learning results of the parameter σ summarised from

two environments. The worst case appears when |s| =
4, |a| = 9 and |s| = 2, |a| = 3. In the simplest setting,

the accuracy of σ does not have a significant influence on

convergence and the ABLUF algorithm figures out the

optimal actions quickly without collecting enough feed-

back. Thus, σ cannot be learned precisely. When |s| = 4
and |a| = 9, since the limitation of steps is 15 per state,

it is not enough for our algorithm converges to the opti-

mal policy and thus the estimate of the ratio ratioa(f)
is biased leading to the update towards wrong directions.

This phenomenon would be eliminated with more steps

and feedback, since for other settings, our algorithm can

learn a relatively precise σ with little variance.

Answer for the third question (Robustness Analy-
sis). Additionally, we evaluate our algorithm in the worst

case, in which the trainer does not follow our feedback

model and the probabilities of providing different kinds

of feedback are generated randomly. We set |s| = 4 and

|a| = 6, which is the same as the human experiment for

training virtual dogs. We randomly generate simulated

trainers and the only constraint is that the optimal ac-

tion at each state has the highest probability of receiving

positive feedback and the lowest probability of receiving

negative feedback. The restriction is mild because of the

definition of ‘the optimal action’. Figure 7 and Figure

8(f) demonstrate that even for the worst case, our algo-

rithm outperforms the other two baselines. The ABLUF

method performs the best in this case where we do not

have any prior knowledge about human feedback mod-

els. Since we fix the value of σ for BLUF algorithm,

it performs not well when the true value of σ differs

from the prior knowledge given to BLUF. However, the

ABLUF method can learn an approximated model even

if these trainers do not follow our feedback model and

thus is robust.

(a) #states:4, #actions: 3 (b) #states:4, #actions: 6

(c) #states:4, #actions: 9 (d) #states:2, #actions: 3

(e) #states:6, #actions: 3 (f) Randomly generated User
(#states:4, #actions: 6)

Figure 8: Accumulative distance trend with the change

of the number of states and actions.

6 CONCLUSION

In this paper, we consider the uncertainty when humans

provide feedback. More specifically, trainers are likely

to provide positive feedback, negative feedback and no

feedback to any action no matter if the action is optimal

or not. To address this issue, we propose a novel feed-

back model that has two sets of parameters to control the

shape of functions in the model. An approximated Ex-

pectation Maximization (EM) algorithm combined with

Gradient Descent (GD) method is proposed to learn an

optimal policy and update the feedback model simul-

taneously. To illustrate the performance of the novel

method, we implement experiments on both synthetic

scenarios and two different real-world scenarios with hu-

man participants. Experimental results indicate that our

algorithm outperforms baselines under multiple metrics.

Moreover, robustness analysis shows that our algorithm

performs well even if trainers do not follow our feedback

model.

7 ACKNOWLEDGEMENTS

This work was supported by the Delta Electronics

Inc., National Research Foundation of Singapore and

Nanyang Technological University.

References

[1] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.

Finite-time analysis of the multiarmed bandit prob-

lem. Machine Learning, 47(2-3):235–256, 2002.

[2] A Lord Birnbaum. Some latent trait models and

their use in inferring an examinee’s ability. Statis-
tical theories of mental test scores, 1968.

[3] Craig Boutilier. A pomdp formulation of prefer-

ence elicitation problems. In Proceedings of AAAI
Conference on Artificial Intelligence, pages 239–

246, 2002.

[4] Thomas Cederborg, Ishaan Grover, Charles L Is-

bell, and Andrea Lockerd Thomaz. Policy shaping

with human teachers. In Proceedings of Interna-
tional Joint Conference on Artificial Intelligence,

pages 3366–3372, 2015.

[5] Maxime Chevalier-Boisvert, Dzmitry Bahdanau,

Salem Lahlou, Lucas Willems, Chitwan Saharia,

Thien Huu Nguyen, and Yoshua Bengio. Babyai: A

platform to study the sample efficiency of grounded

language learning. In International Conference on
Learning Representations, 2018.

[6] Simon French. Decision theory: An Introduction
to the Mathematics of Rationality. Halsted Press,

1986.

[7] Shane Griffith, Kaushik Subramanian, Jonathan

Scholz, Charles Isbell, and Andrea L Thomaz. Pol-

icy shaping: Integrating human feedback with re-

inforcement learning. In Advances in Neural In-
formation Processing Systems, pages 2625–2633,

2013.

[8] Mark K Ho, Michael L Littman, Fiery Cushman,

and Joseph L Austerweil. Teaching with rewards

and punishments: Reinforcement or communica-

tion? In CogSci, 2015.

[9] David C Knill and Alexandre Pouget. The bayesian

brain: the role of uncertainty in neural coding

and computation. TRENDS in Neurosciences,

27(12):712–719, 2004.

[10] W. Bradley Knox, Brian D. Glass, Bradley C. Love,

W. Todd Maddox, and Peter Stone. How humans

teach agents: A new experimental perspective. In-
ternational Journal of Social Robotics, 4(4):409–

421, 2012.

[11] W Bradley Knox and Peter Stone. Interactively

shaping agents via human reinforcement: The

tamer framework. In Proceedings of international
conference on Knowledge capture, pages 9–16,

2009.

[12] W. Bradley Knox and Peter Stone. Combining

manual feedback with subsequent MDP reward sig-

nals for reinforcement learning. Proceedings of In-
ternational Conference on Autonomous Agents and
Multiagent Systems, pages 5–12, 2010.

[13] Robert Loftin, Bei Peng, James MacGlashan,

Michael L Littman, Matthew E Taylor, Jeff

Huang, and David L Roberts. Learning behav-

iors via human-delivered discrete feedback: Mod-

eling implicit feedback strategies to speed up learn-

ing. Autonomous Agents and Multi-agent Systems,

30(1):30–59, 2016.

[14] Robert Tyler Loftin, James MacGlashan, Bei Peng,

Matthew E Taylor, Michael L Littman, Jeff Huang,

and David L Roberts. A strategy-aware technique

for learning behaviors from discrete human feed-

back. In Proceedings of AAAI Conference on Arti-
ficial Intelligence, pages 937–943, 2014.

[15] James MacGlashan, Mark K. Ho, Robert Loftin,

Bei Peng, Guan Wang, David L. Roberts,

Matthew E. Taylor, and Michael L. Littman. Inter-

active learning from policy-dependent human feed-

back. In Proceedings of International Conferences
on Machine Learning, pages 2285–2294, 2017.

[16] James MacGlashan, Michael Littman, Robert

Loftin, Bei Peng, David Roberts, and Matthew Tay-

lor. Training an agent to ground commands with re-

ward and punishment. In Workshops at the Twenty-
Eighth AAAI Conference on Artificial Intelligence,

2014.

[17] Rodrigo Pérez-Dattari, Carlos Celemin, Javier

Ruiz-del Solar, and Jens Kober. Interactive learning

with corrective feedback for policies based on deep

neural networks. arXiv preprint arXiv:1810.00466,

2018.

[18] Garrett Warnell, Nicholas Waytowich, Vernon

Lawhern, and Peter Stone. Deep tamer: Interac-

tive agent shaping in high-dimensional state spaces.

arXiv preprint arXiv:1709.10163, 2017.

