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Abstract

Regret analysis is challenging in Multi-Agent
Reinforcement Learning (MARL) primarily
due to the dynamical environments and the de-
centralized information among agents. We at-
tempt to solve this challenge in the context
of decentralized learning in multi-agent linear-
quadratic (LQ) dynamical systems. We begin
with a simple setup consisting of two agents
and two dynamically decoupled stochastic lin-
ear systems, each system controlled by an
agent. The systems are coupled through a
quadratic cost function. When both systems’
dynamics are unknown and there is no com-
munication among the agents, we show that
no learning policy can generate sub-linear in
T regret, where T is the time horizon. When
only one system’s dynamics are unknown and
there is one-directional communication from
the agent controlling the unknown system to
the other agent, we propose a MARL algo-
rithm based on the construction of an aux-
iliary single-agent LQ problem. The aux-
iliary single-agent problem in the proposed
MARL algorithm serves as an implicit coor-
dination mechanism among the two learning
agents. This allows the agents to achieve a re-
gret within O(

√
T ) of the regret of the auxil-

iary single-agent problem. Consequently, us-
ing existing results for single-agent LQ re-
gret, our algorithm provides a Õ(

√
T ) regret

bound. (Here Õ(·) hides constants and log-
arithmic factors). Our numerical experiments
indicate that this bound is matched in practice.
From the two-agent problem, we extend our re-
sults to multi-agent LQ systems with certain
communication patterns which appear in vehi-
cle platoon control.
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1 INTRODUCTION

Multi-agent systems arise in many different domains,
including multi-player card games (Bard et al., 2019),
robot teams (Stone and Veloso, 1998), vehicle forma-
tions (Fax and Murray, 2004), urban traffic control
(De Oliveira and Camponogara, 2010), and power grid
operations (Schneider et al., 1999). A multi-agent sys-
tem consists of multiple autonomous agents operating
in a common environment. Each agent gets observa-
tions from the environment (and possibly from some
other agents) and, based on these observations, each
agent chooses actions to collect rewards from the envi-
ronment. The agents’ actions may influence the envi-
ronment dynamics and the reward of each agent. Multi-
agent systems where the environment model is known
to all agents have been considered under the frameworks
of multi-agent planning (Oliehoek et al., 2016), decen-
tralized optimal control (Yüksel and Başar, 2013), and
non-cooperative game theory (Basar and Olsder, 1999).
In realistic situations, however, the environment model
is usually only partially known or even totally unknown.
Multi-Agent Reinforcement Learning (MARL) aims to
tackle the general situation of multi-agent sequential
decision-making where the environment model is not
completely known to the agents. In the absence of the
environmental model, each agent needs to learn the en-
vironment while interacting with it to collect rewards. In
this work, we focus on decentralized learning in a co-
operative multi-agent setting where all agents share the
same reward (or cost) function.

A number of successful learning algorithms have been
developed for Single-Agent Reinforcement Learning
(SARL) in single-agent environment models such as
finite Markov decision processes (MDPs) and linear
quadratic (LQ) dynamical systems. To extend SARL al-
gorithms to cooperative MARL problems, one key chal-
lenge is the coordination among agents (Panait and Luke,
2005; Hernandez-Leal et al., 2017). In general, agents



have access to different information and hence agents
may have different views about the environment from
their different learning processes. This difference in per-
spectives makes it difficult for agents to coordinate their
actions for maximizing rewards.

One popular method to resolve the coordination issue
is to have a central entity collect information from all
agents and determine the policies for each agent. Several
works generalize SARL methods to multi-agent settings
with such an approach by either assuming the existence
of a central controller or by training a centralized agent
with information from all agents in the learning process,
which is the idea of centralized training with decentral-
ized execution (Foerster et al., 2016; Dibangoye and Buf-
fet, 2018; Hernandez-Leal et al., 2018). With centralized
information, the learning problem reduces to a single-
agent problem which can be readily solved by SARL al-
gorithms. In many real-world scenarios, however, there
does not exist a central controller or a centralized agent
receiving all the information. Agents have to learn in
a decentralized manner based on the observations they
get from the environment and possibly from some other
agents. In the absence of a centralized entity, an efficient
MARL algorithm should guide each agent to learn the
environment while maintaining certain level of coordi-
nation among agents.

Moreover, in online learning scenarios, the trade-off be-
tween exploration and exploitation is critical for the
performance of a MARL algorithm during learning
(Hernandez-Leal et al., 2017). Most existing SARL algo-
rithms balance the exploration-exploitation trade off by
controlling the posterior estimates/beliefs of the agent.
Since multiple agents have decentralized information in
MARL, it is not possible to directly extend SARL meth-
ods given the agents’ distinct posterior estimates/beliefs.
Furthermore, the fact that each agent’s estimates/beliefs
may be private to itself prevents any direct imitation of
SARL. These issues make it extremely challenging to
design coordinated policies for multiple agents to learn
the environment and maintain good performance during
learning. In this work, we attempt to solve this chal-
lenge in online decentralized MARL in the context of
multi-agent learning in linear-quadratic (LQ) dynamical
systems. Learning in LQ systems is an ideal benchmark
for studying MARL due to a combination of its theoreti-
cal tractability and its practical application in various en-
gineering domains (Aström and Murray, 2010; Abbeel
et al., 2007; Levine et al., 2016; Abeille et al., 2016;
Lazic et al., 2018).

We begin with a simple setup consisting of two agents
and two stochastic linear systems as shown in Figure
1. The systems are dynamically decoupled but coupled

through a quadratic cost function. In spite of its sim-
plicity, this setting illustrates some of the inherent chal-
lenges and potential results in MARL. When the param-
eters of both systems 1 and 2 are known to both agents,
the optimal solution to this multi-agent control problem
can be computed in closed form (Ouyang et al., 2018).
We consider the settings where the system parameters are
completely or partially unknown and formulate an online
MARL problem to minimize the agents’ regret during
learning. The regret is defined to be the difference be-
tween the cost incurred by the learning agents and the
steady-state cost of the optimal policy computed using
complete knowledge of the system parameters.

We provide a finite-time regret analysis for a decentral-
ized MARL problem with controlled dynamical systems.
In particular, we show that

1. First, if all parameters of a system are unknown,
then both agents should receive information about
the state of this system; otherwise, there is no learn-
ing policy that can guarantee sub-linear regret for
all instances of the decentralized MARL problem
(Theorem 1 and Lemma 2).

2. Further, when only one system’s dynamics are un-
known and there is one-directional communication
from the agent controlling the unknown system to
the other agent, we propose a MARL algorithm with
regret bounded by Õ(

√
T ) (Theorem 2 and Corol-

lary 1).

The proposed MARL algorithm builds on an auxiliary
SARL problem constructed from the MARL problem.
Each agent constructs the auxiliary SARL problem by
itself and applies a SARL algorithm A to it. Each agent
chooses its action by modifying the output of the SARL
algorithmA based on its information at each time. In our
proposed algorithm, the auxiliary SARL problem serves
as the critical coordination tool for the two agents to learn
individually while jointly maintaining an exploration-
exploitation balance. In fact, we will later show that the
SARL dynamics can be seen as the filtering equation for
the common state estimate of the agents.

We show that the regret achieved by our MARL algo-
rithm is upper bounded by the regret of the SARL algo-
rithmA in the auxiliary SARL problem plus an overhead
bounded by O(

√
T ). This implies that the MARL regret

can be bounded by Õ(
√
T ) by letting A be one of the

state-of-the-art SARL algorithms for LQ systems which
achieve Õ(

√
T ) regret (Abbasi-Yadkori and Szepesvári,

2011; Faradonbeh et al., 2017, 2019). Our numerical ex-
periments indicate that this bound is matched in simula-
tions. From the two-agent problem, we extend our results



to multi-agent LQ systems with certain communication
patterns which appear in vehicle platoon control.

Related work. There exists a rich and expanding body
of work in the field of MARL (Littman, 1994; Nowé
et al., 2012). Despite recent successes in empirical works
including the adaptation of deep learning (Hernandez-
Leal et al., 2018), many theoretical aspects of MARL are
still under-explored. As multiple agents learn and adapt
their policies, the environment is non-stationary from a
single agent’s perspective (Hernandez-Leal et al., 2017).
Therefore, convergence guarantees of SARL algorithms
are mostly invalid for MARL problems. Several works
have extended SARL algorithms to independent or coop-
erative agents and analyzed their convergence properties
(Tan, 1993; Greenwald et al., 2003; Kar et al., 2013; Am-
ato and Oliehoek, 2015; Zhang et al., 2018; Gagrani and
Nayyar, 2018; Wai et al., 2018). However, most of these
works do not take into account the performance during
learning except Bowling (2005). The algorithm of Bowl-
ing (2005) has a regret bound ofO(

√
T ), but the analysis

is limited to repeated games. In contrast, we are inter-
ested in MARL in dynamical systems.

Regret analysis in online learning has been mostly fo-
cusing on multi-armed bandit (MAB) problems (Lai and
Robbins, 1985). Upper-Confidence-Bound (UCB) (Auer
and Fischer, 2002; Bubeck and Cesa-Bianchi, 2012; Dani
et al., 2008) and Thompson Sampling (Thompson, 1933;
Kaufmann et al., 2012; Agrawal and Goyal, 2013; Russo
and Van Roy, 2014) are the two popular classes of al-
gorithms that provide near-optimal regret guarantees in
single-agent MAB. These ideas have been extended to
certain multi-agent MAB settings (Liu and Zhao, 2010;
Korda and Shuai, 2016; Nayyar and Jain, 2016). Multi-
agent MAB can be viewed as a special class of MARL
problems, but the lack of dynamics in MAB environ-
ments makes a drastic difference from the dynamical set-
ting in this paper.

In the learning of dynamical systems, recent works have
adopted concepts from MAB to analyze the regret of
SARL algorithms in MDP (Jaksch et al., 2010; Os-
band et al., 2013; Gopalan and Mannor, 2015; Ouyang
et al., 2017b) and LQ systems (Abbasi-Yadkori and
Szepesvári, 2011; Faradonbeh et al., 2017, 2019; Ouyang
et al., 2017a; Abbasi-Yadkori and Szepesvári, 2015;
Abeille and Lazaric, 2018). Our MARL algorithm builds
on these SARL algorithms by using the novel idea of
constructing an auxiliary SARL problem for multi-agent
coordination.

Notation. The collection of matrices A1 and A2 (resp.
vectors x1 and x2) is denoted as A1,2 (resp. x1,2). Given
column vectors x1 and x2, the notation vec(x1, x2) is
used to denote the column vector formed by stacking

Agent 1 Agent 2

System 1
x1t

System 2
x2t

u1tx1t u2tx2t
γ1

γ2

Figure 1: Two-agent system model. Solid lines indicate com-
munication links, dashed lines indicate control links, and dotted
lines indicate the possibility of information sharing.

x1 on top of x2. We use [P ·,·]1,2 and diag(P 1, P 2)
to denote the following block matrices, [P ·,·]1,2 :=[
P 11 P 12

P 21 P 22

]
, diag(P 1, P 2) =

[
P 1 0
0 P 2

]
.

2 PROBLEM FORMULATION

Consider a multi-agent Linear-Quadratic (LQ) system
consisting of two systems and two associated agents as
shown in Figure 1. The linear dynamics of systems 1
and 2 are given by

x1t+1 = A1
∗x

1
t +B1

∗u
1
t + w1

t ,

x2t+1 = A2
∗x

2
t +B2

∗u
2
t + w2

t , (1)

where for n ∈ {1, 2}, xnt ∈ Rdnx is the state of system
n and unt ∈ Rdnu is the action of agent n. A1,2

∗ and B1,2
∗

are system matrices with appropriate dimensions. We
assume that for n ∈ {1, 2}, wnt , t ≥ 0, are i.i.d with
standard Gaussian distributionN (0, I). The initial states
x1,20 are assumed to be fixed and known.

The overall system dynamics can be written as,

xt+1 = A∗xt +B∗ut + wt, (2)

where we have defined xt = vec(x1t , x
2
t ), ut =

vec(u1t , u
2
t ), wt = vec(w1

t , w
2
t ), A∗ = diag(A1

∗, A
2
∗),

and B∗ = diag(B1
∗ , B

2
∗).

At each time t, agent n, n ∈ {1, 2}, perfectly observes
the state xnt of its respective system. The pattern of in-
formation sharing plays an important role in the analy-
sis of multi-agent systems. In order to capture differ-
ent information sharing patterns between the agents, let
γn ∈ {0, 1} be a fixed binary variable indicating the
availability of a communication link from agent n to the
other agent. Then, int which is the information sent by
agent n to the other agent can be written as,

int =

{
xnt if γn = 1

∅ otherwise
. (3)



At each time t, agent n’s action is a function πnt of
its information hnt , that is, unt = πnt (hnt ) where h1t =
{x10:t, u10:t−1, i20:t} and h2t = {x20:t, u20:t−1, i10:t}. Let
π = (π1, π2) where πn = (πn0 , π

n
1 , . . .). We will look at

two following information sharing patterns:1

1. No information sharing (γ1 = γ2 = 0),

2. One-way information sharing from agent 1 to agent
2 (γ1 = 1, γ2 = 0).

At time t, the system incurs an instantaneous cost
c(xt, ut), which is a quadratic function given by

c(xt, ut) = xᵀtQxt + uᵀtRut, (4)

whereQ = [Q·,·]1,2 is a known symmetric positive semi-
definite (PSD) matrix and R = [R·,·]1,2 is a known sym-
metric positive definite (PD) matrix.

2.1 THE OPTIMAL MULTI-AGENT
LINEAR-QUADRATIC PROBLEM

Let θn∗ = [An∗ , B
n
∗ ] be the dynamics parameter of system

n, n ∈ {1, 2}. When θ1∗ and θ2∗ are perfectly known to
the agents, minimizing the infinite horizon average cost
is a multi-agent stochastic Linear Quadratic (LQ) con-
trol problem. Let J(θ1,2∗ ) be the optimal infinite horizon
average cost under θ1,2∗ , that is,

J(θ1,2∗ ) = inf
π

lim sup
T→∞

1

T

T−1∑
t=0

Eπ[c(xt, ut)|θ1,2∗ ]. (5)

We make the following standard assumption about the
multi-agent stochastic LQ problem.
Assumption 1. (A∗, B∗) is stabilizable2 and (A∗, Q

1/2)
is detectable3.

The above decentralized stochastic LQ problem has been
studied by Ouyang et al. (2018). The following lemma
summarizes this result.
Lemma 1 (Ouyang et al. (2018)). Under Assumption 1,
the optimal control strategies are given by

u1t = K1(θ1,2∗ )

[
x̂1t
x̂2t

]
+ K̃1(θ1∗)(x

1
t − x̂1t ),

u2t = K2(θ1,2∗ )

[
x̂1t
x̂2t

]
+ K̃2(θ2∗)(x

2
t − x̂2t ), (6)

1The other possible pattern is two-way information sharing
(γ1 = γ2 = 1). In this case, both agents observe the states of
both systems. Due to the lack of space, we delegate this case to
Appendix M.

2(A∗, B∗) is stabilizable if there exists a gain matrix K
such that A∗ +B∗K is stable.

3(A∗, Q
1/2) is detectable if there exists a gain matrix H

such that A∗ +HQ1/2 is stable.

where the gain matrices K1(θ1,2∗ ),K2(θ1,2∗ ), K̃1(θ1∗),
and K̃2(θ2∗) can be computed offline4 and x̂nt , n ∈
{1, 2}, can be computed recursively according to

x̂n0 = xn0 , x̂nt+1 ={
xnt+1 if γn = 1

An∗ x̂
n
t +Bn∗K

n(θ1,2∗ )vec(x̂1t , x̂
2
t ) otherwise

. (7)

2.2 THE MULTI-AGENT REINFORCEMENT
LEARNING PROBLEM

The problem we are interested in is to minimize the in-
finite horizon average cost when the matrices A∗ and
B∗ of the system are unknown. In this case, the con-
trol problem described by (1)-(4) can be seen as a Multi-
Agent Reinforcement Learning (MARL) problem where
both agents need to learn the system parameters θ1∗ =
[A1
∗, B

1
∗ ] and θ2∗ = [A2

∗, B
2
∗ ] in order to minimize the

infinite horizon average cost. The learning performance
of policy π is measured by the cumulative regret over T
steps defined as,

R(T, π) =

T−1∑
t=0

[
c(xt, ut)− J(θ1,2∗ )

]
, (8)

which is the difference between the performance of the
agents under policy π and the optimal infinite horizon
cost under full information about the system dynamics.
Thus, the regret can be interpreted as a measure of the
cost of not knowing the system dynamics.

3 AN AUXILIARY SINGLE-AGENT LQ
PROBLEM

In this section, we construct an auxiliary single-agent
LQ control problem based on the MARL problem of Sec-
tion 2. This auxiliary single-agent LQ control problem
is inspired by the common information based coordina-
tor (which has been developed in non-learning settings in
Nayyar et al. (2013) and Asghari et al. (2018) and the ref-
erences therein). We will later use the auxiliary problem
as a coordination mechanism for our MARL algorithm.

Consider a single-agent system with dynamics

x�t+1 = A∗x
�
t +B∗u

�
t +

[
w1
t

0

]
, (9)

where x�t ∈ Rd1x+d2x is the state of the system, u�t ∈
Rd1u+d2u is the action of the auxiliary agent, w1

t is the
noise vector of system 1 defined in (1), and matrices
A∗ and B∗ are as defined in (2). The initial state x�0 is

4See Appendix J for the complete description of this result.



assumed to be equal to x0. The action u�t = π�t (h�t )
at time t is a function of the history of observations
h�t = {x�0:t, u�0:t−1}. The auxiliary agent’s strategy is
denoted by π� = (π�1 , π

�
2 , . . .). The instantaneous cost

c(x�t , u
�
t ) of the system is a quadratic function given by

c(x�t , u
�
t ) = (x�t )

ᵀQx�t + (u�t )
ᵀRu�t , (10)

where matrices Q and R are as defined in (4).

When the parameters θ1∗ and θ2∗ are unknown, we will
have a Single-Agent Reinforcement Learning (SARL)
problem. In this problem, the regret of a policy π� over
T steps is given by

R�(T, π�) =

T−1∑
t=0

[
c(x�t , u

�
t )− J�(θ1,2∗ )

]
, (11)

where J�(θ1,2∗ ) is the optimal infinite horizon average
cost under θ1,2∗ .

Existing algorithms for the SARL problem are gener-
ally based on the two following approaches: Optimism
in the Face of Uncertainty (OFU) (Abbasi-Yadkori and
Szepesvári, 2011; Faradonbeh et al., 2017, 2019) and
Thompson Sampling (TS) (also known as posterior sam-
pling) (Faradonbeh et al., 2017; Abbasi-Yadkori and
Szepesvári, 2015; Abeille and Lazaric, 2018). In spite
of the differences among these algorithms, all can be
generally described as the AL-SARL algorithm (algo-
rithm for the SARL problem). In this algorithm, at each
time t, the agent interacts with a SARL learner (see Ap-
pendix I for a detailed description the SARL learner) by
feeding time t and the state x�t to it and receiving es-
timates θ1t = [A1

t , B
1
t ] and θ2t = [A2

t , B
2
t ] of the un-

known parameters θ1,2∗ . Then, the agent uses θ1,2t to cal-
culate the gain matrix K(θ1,2t ) (see Appendix J for a de-
tailed description of this matrix) and executes the action
u�t = K(θ1,2t )x�t . As a result, a new state x�t+1 is ob-
served.

Algorithm 1 AL-SARL
Initialize L and x�0
for t = 0, 1, . . . do

Feed time t and state x�t to L and get θ1t and θ2t
Compute K(θ1,2t )
Execute u�t = K(θ1,2t )x�t
Observe new state x�t+1

end for

L

Initialize parameters

state x�t
time t

θ1t = [A1
t , B

1
t ]

θ2t = [A2
t , B

2
t ]

Among the existing algorithms, OFU-based algorithms
of Abbasi-Yadkori and Szepesvári (2011); Faradonbeh
et al. (2017, 2019) and the TS-based algorithm of
Faradonbeh et al. (2017) achieve a Õ(

√
T ) regret for the

SARL problem (Here Õ(·) hides constants and logarith-
mic factors).

4 MAIN RESULTS

In this section, we start with the regret analysis for the
case where the parameters of both systems are unknown
(that is, θ1∗ and θ2∗ are unknown) and there is no informa-
tion sharing between the agents (that is, γ1 = γ2 = 0).
The detailed proofs for all results are in the appendix.

4.1 UNKNOWN θ1∗ AND θ2∗, NO INFORMATION
SHARING (γ1 = γ2 = 0)

For the MARL problem of this section (it is called MARL1
for future reference), we show that there is no learning
algorithm with a sub-linear in T regret for all instances
of the MARL1 problem. The following theorem states
this result.

Theorem 1. There is no algorithm that can achieve a
lower-bound better than Ω(T ) on the regret of all in-
stances of the MARL1 problem.

A Ω(T ) regret implies that the average performance of
the learning algorithm has at least a constant gap from
the ideal performance of informed agents. This prevent
efficient learning performance even in the limit. Theo-
rem 1 implies that in a MARL1 problem where the system
dynamics are unknown, learning is not possible without
communication between the agents. The proof of Theo-
rem 1 also provides the following result.

Lemma 2. Consider a MARL problem where the param-
eter of system 2 (that is, θ2∗) is known to both agents and
only the parameter of system 1 (that is, θ1∗) is unknown.
Further, there is no communication between the agents.
Then, there is no algorithm that can achieve a lower-
bound better than Ω(T ) on the regret of all instances of
this MARL problem.

The above results imply that if the parameter of a sys-
tem is unknown, both agents should receive information
about this unknown system; otherwise, there is no learn-
ing policy π that can guarantee a sub-linear in T regret
for all instances of this MARL problem.

In the next section, we assume that θ2∗ is known to both
agents and only θ1∗ is unknown. Further, we assume the
presence of a communication link from agent 1 to agent
2, that is, γ1 = 1. This communication link allows agent
2 to receive feedback about the state x1t of system 1 and



hence, remedies the impossibility of learning for agent 2.

4.2 UNKNOWN θ1∗, ONE-WAY INFORMATION
SHARING FROM AGENT 1 to AGENT 2
(γ1 = 1, γ2 = 0)

In this section, we consider the case where only sys-
tem 1 is unknown and there is one-way communication
from agent 1 to agent 2. Despite this one-way infor-
mation sharing, the two agents still have different in-
formation. In particular, at each time agent 2 observes
the state x2t of system 2 which is not available to agent
1. For the MARL of this section (it is called MARL2
for future reference), we propose the AL-MARL algo-
rithm which builds on the auxiliary SARL problem of
Section 3. AL-MARL algorithm is a decentralized multi-
agent algorithm which is performed independently by the
agents. Every agent independently constructs an auxil-
iary SARL problem where x�t = vec(x1t , x̌

2
t ) and applies

an AL-SARL algorithm with its own learner L to it in
order to learn the unknown parameter θ1∗ of system 1.
In this algorithm, x̌2t (described in the AL-MARL algo-
rithm) is a proxy for x̂2t of (7) updated using the estimate
θ1t instead of the unknown parameter θ1∗.

At time t, each agent feeds vec(x1t , x̌
2
t ) to its own SARL

learner L and gets θ1t and θ2t . Note that both agents al-
ready know the true parameter θ2∗, hence they only use
θ1t to compute their gain matrix Kagent_ID(θ1t , θ

2
∗) and

use this gain matrix to compute their actions u1t and u2t
according to the AL-MARL algorithm. Note that agent
2 needs K̃2(θ2∗) to calculate its actions u2t . However, we
know that K̃2(θ2∗) is independent of the unknown param-
eter θ1∗ and hence, K̃2(θ2∗) can be calculated prior to the
beginning of the algorithm. After the execution of the
actions u1t and u2t by the agents, both agents observe the
new state x1t+1 and agent 2 further observes the new state
x2t+1. Finally, each agent independently computes x̌2t+1.

Remark 1. The state x�t of the auxiliary SARL can be
interpreted as an estimate of the state xt of the overall
system (2) that each agent computes based on the com-
mon information between them. In fact, the SARL dy-
namics in (9) can be seen as the filtering equation for
this common estimate.

Remark 2. We want to emphasize that unlike the
idea of centralized training with decentralized execu-
tion (Foerster et al., 2016; Dibangoye and Buffet, 2018;
Hernandez-Leal et al., 2018), the AL-MARL algorithm is
an online decentralized learning algorithm. This means
that there is no centralized learning phase in the setup
where agents can collect information or have access to
a simulator. The agents are simultaneously learning and
controlling the system.

Remark 3. Since the SARL learner L can include tak-

Algorithm 2 AL-MARL

Input: agent_ID, learner L, x10, and x20
Initialize L and x̌20 = x20
for t = 0, 1, . . . do

Feed time t and state vec(x1t , x̌
2
t ) to L and

get θ1t = [A1
t , B

1
t ] and θ2t = [A2

t , B
2
t ]

Compute Kagent_ID(θ1t , θ
2
∗)

if agent_ID = 1 then
Execute u1t = K1(θ1t , θ

2
∗)vec(x1t , x̌

2
t )

else
Execute u2t = K2(θ1t , θ

2
∗)vec(x1t , x̌

2
t )

+K̃2(θ2∗)(x
2
t − x̌2t )

end if
Observe new state x1t+1

Compute x̌2t+1 = A2
∗x̌

2
t

+B2
∗K

2(θ1t , θ
2
∗)vec(x1t , x̌

2
t )

if agent_ID = 2 then
Observe new state x2t+1

end if
end for

ing samples and solving optimization problems, due to
the independent execution of the AL-MARL algorithm,
agents might receive different θ1,2t from their learner L.

In order to avoid the issue pointed out in Remark 3,
we make an assumption about the output of the SARL
learner L.
Assumption 2. Given the same time and same state in-
put to the SARL learner L, the outputs θ1,2t from different
learners L are the same.

Note that Assumption 2 can be easily achieved by set-
ting the same initial sampling seed (if the SARL learner
L includes taking samples) or by setting the same tie-
breaking rule among possible similar solutions of an op-
timization problem (if the SARL learner L include solv-
ing optimization problems). Now, we present the follow-
ing result which is based on Assumption 2.
Theorem 2. Under Assumption 2, let R(T,AL-MARL)
be the regret for the MARL2 problem under the policy of
the AL-MARL algorithm and R�(T,AL-SARL) be the
regret for the auxiliary SARL problem under the policy
of the AL-SARL algorithm. Then for any δ ∈ (0, 1/e),
with probability at least 1− δ,

R(T,AL-MARL) ≤ R�(T,AL-SARL) + log(
1

δ
)K̃
√
T .

This result shows that under the policy of the AL-MARL
algorithm, the regret for the MARL2 problem is upper-
bounded by the regret for the auxiliary SARL prob-
lem constructed in Section 3 under the policy of the
AL-SARL algorithm plus a term bounded by O(

√
T ).



Corollary 1. AL-MARL algorithm with the OFU-based
SARL learner L of Abbasi-Yadkori and Szepesvári
(2011); Faradonbeh et al. (2017, 2019) or the TS-based
SARL learner L of Faradonbeh et al. (2017) achieves a
Õ(
√
T ) regret for the MARL2 problem.

Remark 4. The idea of constructing a centralized prob-
lem for MARL is similar in spirit to the centralized al-
gorithm perspective adopted in Dibangoye and Buffet
(2018). However, we would like to emphasize that the
auxiliary SARL problem is different from the centralized
oMDP in Dibangoye and Buffet (2018). The oMDP is
a deterministic MDP with no observations of the belief
state. Our single agent problem is inspired by the com-
mon information based coordinator developed in non-
learning settings in Nayyar et al. (2013) and Asghari
et al. (2018). The difference from oMDP is reflected in
the fact that the state evolution in the SARL is stochastic
(see (9)).

4.3 EXTENSION TO MARL PROBLEMS WITH
MORE THAN 2 SYSTEMS AND 2 AGENTS

While the results of Sections 4.1 and 4.2 are for MARL
problems with 2 systems and 2 agents, these results can
be extended to MARL problems with an arbitrary number
N of agents and systems in the following sense.

Lemma 3. Consider a MARL problem withN agents and
systems (N ≥ 2). Suppose there is a system n and an
agent m, m 6= n, such that system n is unknown and
there is no communication from agent n to agent m.
Then, there is no algorithm that can achieve a lower-
bound better than Ω(T ) on the regret of all instances of
this MARL problem.

The above lemma follows from the proof of Theorem 1.

Theorem 3. Consider a MARL problem with N agents
and systems (N ≥ 2) where the first N1 systems are un-
known and the rest N −N1 systems are known. Further,
for any 1 ≤ i ≤ N1, there is communication from agent i
to all other agents and for any N1 + 1 ≤ j ≤ N , there is
no communication from agent j to any other agent. Then,
there is a learning algorithm that achieves a Õ(

√
T ) re-

gret for this MARL problem.

The proof of above theorem requires constructing an
auxiliary SARL problem and following the same steps
as in the proof of Theorem 2.

Example 1. Consider a platoon of N vehicles with one
lead vehicle and N − 1 followers. The objective of the
platoon is to keep the distance between every two consec-
utive vehicles (the first vehicle is the lead vehicle) fixed.
Each vehicle can adjust its velocity to achieve this goal.
Assume that only the system dynamics of the lead vehicle

are unknown but the position of this vehicle is available
to all vehicles. If we define the position of the lead vehi-
cle as the state of system 1 and the position of followers
as the state of systems 2 to N , then this problem can be
considered as an instance of our MARL problem. Note
that since the location of a vehicle is independent of the
location and velocity of other vehicles, in this example,
the systems are decoupled.

5 KEY STEPS IN THE PROOF OF
THEOREM 2

STEP 1: SHOWING THE CONNECTION
BETWEEN AUXILIARY SARL PROBLEM AND
THE MARL2 PROBLEM

First, we present the following lemma that connects the
optimal infinite horizon average cost J�(θ1,2∗ ) of the aux-
iliary SARL problem when θ1,2∗ are known (that is, the
auxiliary single-agent LQ problem of Section 3) and
the optimal infinite horizon average cost J(θ1,2∗ ) of the
MARL2 problem when θ1,2∗ are known (that is, the multi-
agent LQ problem of Section 2.1).

Lemma 4. J(θ1,2∗ ) = J�(θ1,2∗ ) + tr(DΣ), where we
have defined D := Q22 + (K̃2(θ2∗))

ᵀR22K̃2(θ2∗) and Σ
is as defined in Lemma 10 in the appendix.

Next, we provide the following lemma that shows the
connection between the cost c(xt, ut) in the MARL2
problem under the policy of the AL-MARL algorithm and
the cost c(x�t , u

�
t ) in the auxiliary SARL problem under

the policy of the AL-SARL algorithm.

Lemma 5. At each time t, the following equality holds
between the cost c(xt, ut) in the MARL2 problem un-
der the policy of the AL-MARL algorithm and the cost
c(x�t , u

�
t ) in the auxiliary SARL problem under the pol-

icy of the AL-SARL algorithm,

c(xt, ut)|AL-MARL= c(x�t , u
�
t )|AL-SARL+eᵀtDet, (12)

where et = x2t − x̌2t and D is as defined in Lemma 4.

STEP 2: USING THE SARL PROBLEM TO
BOUND THE REGRET OF THE MARL2
PROBLEM

In this step, we use the connection between the auxiliary
SARL problem and our MARL2 problem, which was es-
tablished in Step 1, to prove Theorem 2. Note that from
the definition of the regret in the MARL problem given by
(8), we have,



Figure 2: AL-MARL algorithm with the SARL learner of
Faradonbeh et al. (2017)

R(T,AL-MARL) =
T−1∑
t=0

[
c(xt, ut)|AL-MARL−J(θ1,2∗ )

]
=

T−1∑
t=0

[
c(x�t , u

�
t )|AL-SARL−J�(θ1,2∗ )

]
+

T−1∑
t=0

[eᵀtDet − tr(DΣ)]

≤ R�(T,AL-SARL) + log(
1

δ
)K̃
√
T , (13)

where the second equality is correct because of Lemma
4 and Lemma 5. Further, the last inequality is cor-
rect because of the definition of the regret in the
the SARL problem given by (11) and the fact that∑T−1
t=0 [eᵀtDet − tr(DΣ)] is bounded by log( 1

δ )K̃
√
T

from Lemma 11 in the appendix.

6 EXPERIMENTS

In this section, we illustrate the performance of the
AL-MARL algorithm through numerical experiments.
Our proposed algorithm requires a SARL learner. As the
TS-based algorithm of Faradonbeh et al. (2017) achieves
a Õ(
√
T ) regret for a SARL problem, we use the SARL

learner of this algorithm (The details for this SARL
learner are presented in Appendix I).

We consider an instance of the MARL2 problem (See Ap-
pendix K for the details). The theoretical result of The-
orem 2 holds when Assumption 2 is true. Since we use
the TS-based learner of Faradonbeh et al. (2017), this as-
sumption can be satisfied by setting the same sampling
seed between the agents. Here, we consider both cases
of same sampling seed and arbitrary sampling seed for
the experiments. We ran 100 simulations and show the
mean of regret with the 95% confidence interval for each
scenario.

As it can be seen from Figure 2, for both of theses cases,
our proposed algorithm with the TS-based learner L of
Faradonbeh et al. (2017) achieves a Õ(

√
T ) regret for our

MARL2 problem, which matches the theoretical results of
Corollary 1.

7 CONCLUSION

In this paper, we tackled the challenging problem of
regret analysis in Multi-Agent Reinforcement Learn-
ing (MARL). We attempted to solve this challenge in
the context of online decentralized learning in multi-
agent linear-quadratic (LQ) dynamical systems. First, we
showed that if a system is unknown, then all the agents
should receive information about the state of this system;
otherwise, there is no learning policy that can guaran-
tee sub-linear regret for all instances of the decentralized
MARL problem. Further, when a system is unknown but
there is one-directional communication from the agent
controlling the unknown system to the other agents, we
proposed a MARL algorithm with regret bounded by
Õ(
√
T ).

The MARL algorithm is based on the construction of an
auxiliary single-agent LQ problem. The auxiliary single-
agent problem serves as an implicit coordination mecha-
nism among the learning agents. The state of the auxil-
iary SARL can be interpreted as an estimate of the state
of the overall system that each agent computes based on
the common information among them. While there is
a strong connection between the MARL and auxiliary
SARL problems, the MARL problem is not reduced to
a SARL problem. In particular, Lemma 5 shows that
the costs of the two problems actually differ by a term
that depends on the random process et, which is dynami-
cally controlled by the MARL algorithm. Therefore, the
auxiliary SARL problem is not equivalent to the MARL
problem. Nevertheless, the proposed MARL algorithm
can bound the additional regret due to the process et and
achieve the same regret order as a SARL algorithm.

The use of the common state estimate plays a key role
in the MARL algorithm. The current theoretical anal-
ysis uses this common state estimate along with some
properties of LQ structure (e.g. certainty equivalence
which connects estimates to optimal control (Kumar and
Varaiya, 2015)) to quantify the regret bound. However,
certainty equivalence is often used in general systems
with continuous state and action spaces as a heuristic
with some good empirical performance. This suggests
that our algorithm combined with linear approximation
of dynamics could potentially be applied to non-LQ sys-
tems as a heuristic. That is, each agent constructs an
auxiliary SARL with the common estimate as the state,
solves this SARL problem heuristically using approxi-



mate linear dynamics and/or certainty equivalence, and
then modifies the SARL outputs according to the agent’s
private information.
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Nowé, A., Vrancx, P., and De Hauwere, Y.-M. (2012).
Game theory and multi-agent reinforcement learning.
In Reinforcement Learning, pages 441–470. Springer.

Oliehoek, F. A., Amato, C., et al. (2016). A concise
introduction to decentralized POMDPs, volume 1.
Springer.

Osband, I., Russo, D., and Van Roy, B. (2013). (more) ef-
ficient reinforcement learning via posterior sampling.
In Advances in Neural Information Processing Sys-
tems, pages 3003–3011.

Ouyang, Y., Asghari, S. M., and Nayyar, A. (2018).
Optimal local and remote controllers with unreliable
communication: the infinite horizon case. In 2018
Annual American Control Conference (ACC), pages
6634–6639. IEEE.

Ouyang, Y., Gagrani, M., and Jain, R. (2017a). Con-
trol of unknown linear systems with thompson sam-
pling. In 2017 55th Annual Allerton Conference on
Communication, Control, and Computing (Allerton),
pages 1198–1205. IEEE.

Ouyang, Y., Gagrani, M., Nayyar, A., and Jain, R.
(2017b). Learning unknown markov decision pro-
cesses: A thompson sampling approach. In Ad-
vances in Neural Information Processing Systems,
pages 1333–1342.

Panait, L. and Luke, S. (2005). Cooperative multi-agent
learning: The state of the art. Autonomous agents and
multi-agent systems, 11(3):387–434.

Russo, D. and Van Roy, B. (2014). Learning to opti-
mize via posterior sampling. Mathematics of Opera-
tions Research, 39(4):1221–1243.

Schneider, J., Wong, W. K., Moore, A., and Riedmiller,
M. (1999). Distributed value functions. In ICML,
pages 371–378.

Stone, P. and Veloso, M. (1998). Team-partitioned,
opaque-transition reinforcement learning. Robot Soc-
cer World Cup, pages 261–272.

Tan, M. (1993). Multi-agent reinforcement learning: In-
dependent vs. cooperative agents. In Proceedings of
the tenth international conference on machine learn-
ing, pages 330–337.

Thompson, W. R. (1933). On the likelihood that one un-
known probability exceeds another in view of the evi-
dence of two samples. Biometrika, 25(3/4):285–294.

Wai, H.-T., Yang, Z., Wang, P. Z., and Hong, M. (2018).
Multi-agent reinforcement learning via double averag-
ing primal-dual optimization. In Advances in Neural
Information Processing Systems, pages 9649–9660.
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