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Abstract

This paper proposes a kernel based informa-
tion theoretic framework that provides a sensi-
tive multi-modal quantification of time series
uncertainty by leveraging a quantum physical
description of the projected feature space of
data in a Reproducing Kernel Hilbert Space
(RKHS). We specifically modify the kernel
mean embedding, which yields an intuitive
physical interpretation of the signal structure,
to produce a data based “dynamic potential
field”. This results in a new energy based
formulation that exploits the mathematics of
quantum theory and facilitates a multi-modal
physics based uncertainty representation of the
signal at each data sample. We demonstrate in
this paper that such uncertainty features pro-
vide a better ability for online detection of sta-
tistical change points in time series data when
compared to existing non-parametric and un-
supervised methods. We also demonstrate a
better ability of the framework in clustering
time series sequences when compared to dis-
crete wavelet transform features on a subset of
VidTIMIT speaker recognition corpus.

1 INTRODUCTION AND MOTIVATION

A time series is defined as a sequence of measurements
over different points of time to describe a system be-
havior (Hamilton, 1994). Such signals are abundantly
found in a variety of applications such as economics, fi-
nance, engineering (speech signals), neuroscience and
natural sciences (seismic signals, temperature measure-
ments, etc.), thus making its study an active research
arena.
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A central problem associated with the analysis of real
world time series datasets is their frequent defiance of
statistical assumptions (Manuca & Savit, 1996). Real
world time series signals are often non-stationary which
means that they are characterized by time-varying sta-
tistical properties. Current machine learning approaches
and information theoretic metrics that assume stable his-
torical trends fail to characterize the intrinsic uncertainty
and local statistical drifts in such signals. Therefore,
there is a need for information processing tools for time
series analysis that are sensitive towards local dynami-
cal changes in datasets while also being able to take into
account the global statistical properties of the signal.

We attempt to address this requirement by utilizing
a recently introduced information theoretic framework
(Singh & Principe, 2020) that leverages the kernel mean
embedding (KME) for a universal characterization of
data PDF in the RKHS and enables a physical interpre-
tation of the data space as a potential field. This is fol-
lowed by an imposition of the local dynamical structure
of the time series data onto the characterized data PDF
by using concepts of quantum physics (specifically the
Schrödinger’s equation). This modifies the KME into a
dynamic potential field leading to an energy based re-
formulation of the time series dynamics, which in turn
enables us to compute the various uncertainty modes as-
sociated with the data by using a moment decomposi-
tion procedure similar to that used in physics (to quantify
particle-field interactions). Intrinsically, this approach
decomposes local time realizations of the stochastic joint
process PDF in terms of quantum uncertainty moments.

The rest of the paper is organized as follows. We be-
gin with a survey of relevant literature associated with
time series analysis in section 2 followed by a brief de-
scription of the proposed framework and contributions in
section 3. We describe the framework details and asso-
ciated background concepts in section 4. In section 5,
we describe our experiments and discuss the results. We
conclude the paper in section 6.



2 LITERATURE REVIEW

Time series clustering has been the principle approach
towards extraction of relevant information from tempo-
ral data. The primary objective of clustering here is to
discover interesting patterns in the associated data dy-
namics. A vast number of different subject areas utilize
time series clustering for their respective applications.
Examples include energy consumption pattern discovery
(Košmelj & Batagelj, 1990) and discovery of seasonal-
ity patterns in finance (Kumar et al., 2002). Time se-
ries clustering can be broadly classified into three cat-
egories which are whole time series clustering, subse-
quence time series clustering and time point clustering
(Aghabozorgi et al., 2015). From an approach based per-
spective, one can classify the methods based on whether
they are dependent on raw data analysis, feature ex-
traction or model parameters (Liao, 2005). Raw data
based clustering refers to methods where clustering is di-
rectly performed on data. Examples include Agglomer-
ative hierarchical clustering (Kakizawa et al., 1998) and
κ-Means method. These methods often employ differ-
ent distance measures such as Euclidean distance, Cher-
noff information divergence (Nielsen, 2013), Kullback
Leibler divergence (Van Erven & Harremos, 2014) and
dynamic time warping (Berndt & Clifford, 1994). Dy-
namic time warping has been well know in dealing with
temporal drifts and datasets with unequal lengths. Fea-
ture based approaches include discrete Fourier transform
(Bracewell & Bracewell, 1986), discrete wavelet trans-
form (Heil & Walnut, 1989a) and LPC coefficients (Tier-
ney, 1980). We specifically focus on whole time series
clustering amongst these categories where clustering is
performed on discrete objects, each of which represents
an entire time series. An important example of represen-
tation based approach to whole time series clustering is
discrete wavelet transform (Heil & Walnut, 1989a) which
is known for capturing both frequency and location infor-
mation and provides an advantage over discrete Fourier
transform due to its multi-scale temporal resolution.

There has also been an increased research interest in
change point detection (CPD) algorithms owing to their
increased importance in various different fields such
as speech recognition, image analysis, medical proce-
dures and climate change monitoring (Aminikhanghahi
& Cook, 2016). Change point detection refers to abrupt
changes in data characteristics and it can be considered to
be a subset of time series clustering. A detailed overview
and survey of methods can be found in (Aminikhanghahi
& Cook, 2016). CPD algorithms can be broadly classi-
fied as supervised or unsupervised methods. Supervised
methods include naive Bayes (Rish et al., 2001), support
vector machines (Scholkopf & Smola, 2001) and hidden

Markov models (Fine et al., 1998). Unsupervised meth-
ods include Bayesian change point detector (Adams &
MacKay, 2007) and divergence measures such as Kull-
back Leibler divergence (Van Erven & Harremos, 2014).
Another import basis for classifying CPD algorithms is
based on whether they are implemented online or offline.
Offline methods consider the entire time series to deter-
mine points of change. In online methods, changes in the
signals are tracked in real time. Hence, before the arrival
of the new data point, existing data point must be evalu-
ated to determine if a change has occurred at that point
with respect to the older points. The main challenges
faced in online CPD arises from the requirement of algo-
rithms have have low reaction times towards changes and
the requirement to use as few data samples as possible
to effectively quantify data statistics and detect changes.
Current ITL based divergence measures fail to simulta-
neously meet the requirements of quantifying global sig-
nal statistics and detecting changes in dynamics.

3 CONTRIBUTIONS

The goal of this paper is to introduce a new framework
for representation of time series signals that is able to
quantify local data dynamics relative to its overall gen-
eral PDF in an unsupervised manner with high sensitiv-
ity and specificity. This is valuable for applications in
time series analysis related to change point detection and
whole series clustering. The proposed framework oper-
ates by first implementing an RKHS based representation
of the data PDF in the form of kernel mean embedding
(KME) (Muandet et al., 2017). Unfortunately, KME is
only applicable to static multivariate data or stationary
time series, which is too limiting for the current applica-
tions of time series analysis. The fundamental difficulty
is that a stochastic process is a family of random vari-
ables over time, which requires for the non-stationary
case, the analysis of the joint distribution over samples.
Instead of using the traditional Markov assumption to
simplify the problem, here we seek to employ the local
dynamics of the time series data using the Schrödingers
equation to improve the KME concept, which leads to an
energy-based description of the signal structure as a dy-
namic potential field. This enables the extraction of the
various modes of uncertainty related to the interaction of
an upcoming data sample with the signals history by im-
plementing a moment decomposition procedure based on
orthogonal polynomial projections, similar to those used
in quantum physics to extract the eigenmodes of a par-
ticle with respect to its neighboring force field. We also
refer to extracted data uncertainty modes as information
eigenmodes since they are essentially energy-based in-
formation data features. The advantages offered by such
a framework for time series analysis are as follows:



Figure 1: Abstract depiction of framework.

• Since the framework is based in the RKHS, it takes
into account all even order data associations in an
unsupervised manner.

• The extracted uncertainty modes provide an en-
hanced quantification of the tail regions of the data
PDF, where uncertainty is maximum and statistical
change points are most likely to occur.

• The framework can be implemented on a sample-
by-sample basis so that each new sample can be
characterized by uncertainty mode values online
and determined the degree to which it belongs to
the overall distribution of past samples.

The main idea in this paper is to introduce a new informa-
tion theoretic framework to accomplish pattern recogni-
tion tasks associated with time series data that is usually
not achievable by classical information theoretic meth-
ods due to their inability to quantify sample-by-sample
dynamics of the signal (important in online time series
analysis). It is for this reason that we look towards quan-
tum physics, which provides a principled quantification
of particle-particle dynamics in a physical system, to in-
terpret data. Hence the Schrödinger’s equation is intro-
duced with similar Hamiltonian operators as is used in
physics, to quantify the sample-to-sample dynamics in
the data field described in a RKHS using the kernel mean
embedding (also termed as information potential). The
idea of extracting the spectrum of the Hamiltonian eigen-
functions thereafter (using orthogonal Hermite polyno-
mial projections) is to try and quantify the interaction of
a data sample with the past data along the various mo-
ments of the data PDF akin of the spectral modes in the
power spectrum, which have practical value for analysis.

4 UNCERTAINTY DECOMPOSITION
FRAMEWORK

The framework (fig. 1) implementation consists of three
major steps - i) Representation of sample-by-sample
data PDF characteristics using empirical estimate of the
KME, that leads to a potential field based interpretation
of the data space. ii) Physics based reformulation of the
KME in terms of the Schrödinger’s equation to create

a dynamic potential field. iii) Extraction of uncertainty
modes based on moment decomposition of the interac-
tion of a new data sample with the dynamic potential
field created by previous samples. We delve into the de-
tails of each step, first starting with a brief review of the
kernel mean embedding metric.

4.1 KERNEL MEAN EMBEDDING

The reproducing kernel Hilbert space associated with
positive definite kernels allows one to universally pose
any non-linear relationship in the input (data) space as
a linear relationship in a higher dimensional functional
space, thanks to the acclaimed ”kernel trick” (Aronszajn,
1950). Following similar intuition, another elegant prop-
erty of the RKHS is their ability to embed statistical
measures in the inner product structure of the reproduc-
ing kernel (the KME theory) which allows one to non-
parametrically quantify a data distribution from the input
space as an element of its associated RKHS (Muandet et
al., 2017).

Definition 1 (Kernel Mean Embedding) Consider the
space Z(X ) to consist of all probability measures P on
a measurable space (X ,Σ). The kernel mean embed-
ding of probability measures in Z(X ) into an RKHS de-
noted by H and characterized with a reproducing kernel
k : X ×X → R is defined by a mapping

µ : Z(X ) → H, P #→
!

k(x, .)dP(x).

The kernel mean embedding (KME), therefore, repre-
sents the probability distribution in terms of a mean func-
tion associated with the kernel feature map in the space
of the distribution. In other words,

φ(P) = µP =

!
k(x, .)dP(x). (1)

There are several useful properties associated with the
KME (Muandet et al., 2017). For characteristic kernels,
the KME is injective, meaning that µP = µQ only when
P = Q, thus allowing for unique characterizations of
data distributions. In most applications, the nature of P
is not known or pre-defined. One therefore depends on
the empirical estimation of the KME. This can be ap-
proximated using its unbiased estimate given by

µ̂ =
1

n

n"

t=1

k(xt, .). (2)

Here µ̂ converges to µ for n → ∞, according to the law
of large numbers.



4.2 INFORMATION POTENTIAL FIELD

One can also derive the empirical estimate of the KME
from Rényi entropy, where it takes the form of informa-
tion potential field. To elaborate further, let us consider
the Rényi quadratic entropy (Rényi et al., 1961) given by

H2(X) = −log

!
p(x)2dx = −logV (X). (3)

One notices here that the argument of the logarithm in
Rényi entropy, V (X), is an important quantity called
the information potential (IP) of the data set (Principe
et al., 2000), which is simply the mean value of the PDF.
One can estimate this quantity by using the Parzen den-
sity estimator (Parzen, 1962) for estimating p(x). Hence,
assuming a Gaussian kernel window of kernel width σ,
one can readily estimate directly from experimental data
xi, i = 1, ..., N the information potential as

V (X) =

!
p(x)2dx =

! #
1

N

N"

i=1

Gσ(x− xi)

$2

dx

=
1

N2

! # N"

i=1

N"

j=1

Gσ(x− xj).Gσ(x− xi)

$
dx

=
1

N2

N"

i=1

N"

j=1

!
Gσ(x− xj).Gσ(x− xi)dx

=
1

N2

N"

i=1

N"

j=1

Gσ/
√
2(xj − xi)

(4)
Hence the IP is a number obtained by the double sum
of the Gaussian functions centered at differences of sam-
ples with a larger kernel size. The same result is ob-
tained when using the empirical estimate of the KME in
a RKHS defined by the Gaussian function. There is a
physical interpretation of V (X) if we think of the sam-
ples as particles in a potential field, hence the name in-
formation potential. It can also be interpreted as the total
potential created by the data set in an RKHS, i.e.

V (X) =
1

N

N"

j=1

V (xj), (5)

where,

V (x) =
1

N

N"

i=1

G(x− xi) (6)

represents the field due to each sample, which can be in-
terpreted as an information particle. One refers to V (x)
as the information potential field (IPF). One can notice
that it is basically a continuous function over the RKHS
obtained by the sum of Gaussian bumps centered on the

samples. We now delve into the quantum physical inter-
pretation of the empirical KME which we now refer to as
the IPF henceforth.

4.3 QUANTUM FORMULATION OF THE IPF

It is well known in the field of physics that, unlike a
classical system which is characterized by deterministic
parameters, a quantum-physical system is characterized
by discrete transitions induced by Hamiltonian opera-
tors that lead to increased stochasticity and uncertainty in
the measurement of system state (Griffiths & Schroeter,
2018). In such a case, the probabilistic wave-function
determines the system behavior. As an example, one can
consider the case of single particle of mass m = 1 in a
general quantum system. Its associated time independent
Schrödinger’s equation is then given by

Ĥψ =

#
− ℏ2

2m
∇2 + Vr(x)

$
ψ(x) = Eψ (7)

Here, Ĥ denotes the Hamiltonian operator and is given
by Ĥ = − ℏ2

2m∇2 + V (x), where − ℏ
2m is the kinetic

energy operator with ℏ and m being the Planck’s con-
stant and particle mass respectively. Vr(x) represents
the potential energy of the particle at position x. ∇2 de-
notes the Laplacian operator and ψ(x) denotes the wave-
function value at position x that also implies that the
probability of finding the particle at that position given
by p(x) = |ψ(x)|2.

One can extend a similar interpretation towards data sys-
tems (Principe, 2010). It can be deduced that the IPF
is always positive and regions of space with more sam-
ples will have a larger IP, while regions of the space
with few samples will have a lower IP. Here, one no-
tices that the shape of the kernel function will deter-
mine the “gravity”, instead of the inverse square law of
physics. Following this intuition, one can readily extend
the idea of a potential field over the space of the sam-
ples with quantum theoretical concepts (Principe, 2010)
to enhance the paradigm for conditions where the time
series statistics change over time, and our goal is to quan-
tify it using the local spatial structure. One can formu-
late a Schrödinger’s time-independent equation to define
a new potential energy function Vs(x) that characterizes
the data space. Here, Vs(x) is based on a wave-function
defined by using the IPF as the probability measure p(x).
Since p(x) = |ψ(x)|2, it follows that for a set of informa-
tion particles with a Gaussian kernel, the wave-function
for one dimensional information particle becomes,

ψ(x) =

%&&' 1

N

N"

i=1

Gσ(x− xi) (8)



One can assume that all information particles have the
same mass(i.e. m = 1) and that Vs(x) can be rescaled
such that σ (bandwidth of the kernel window) is the
only free parameter that replaces all physical constants.
This reformulates (7) to yield the Schrödinger’s time-
independent equation for information particles as

Hψ(x) =

#
− σ2

2
∇2 + Vs(x)

$
ψ(x) = Eψ(x) (9)

where H denotes the Hamiltonian. Solving for Vs(x),
we obtain:

Vs(x) = E +
σ2/2∇2ψ(x)

ψ(x)
(10)

which was called the quantum information potential field
(QIPF) denoted by Vs(x). To determine the value of
Vs(x) uniquely, it is required that min(Vs(x)) = 0,
which makes

E = −min
σ2/2∇2ψ(x)

ψ(x)
(11)

where 0 ≤ E ≤ 1/2. Here, ψ(x) is the eigenfunction
of H and E is the lowest eigenvalue of the operator,
which corresponds to the ground state. Given the data
set, one can expect Vs(x) to increase quadratically out-
side the data region and to exhibit local minima associ-
ated with the locations of highest sample density (clus-
ters). One can interpret this as clustering since the poten-
tial function attracts the data distribution function ψ(x)
to its minima, while the Laplacian drives it away, pro-
ducing a complicated potential function in the space. It
should be noted that, in this framework, E sets the scale
at which the minima are observed. One can also extend
this derivation to multidimensional data. It can be seen
that Vs(x) in (10) is also a potential function that differs
from V (x) in (6) because it is now an energy based for-
mulation associated with the quantum description of the
IPF.

4.4 EXTRACTION OF QUANTUM
UNCERTAINTY MODES

Unlike the classical interpretation, the quantum interpre-
tation provides a much more detailed decomposition of
the system dynamics since it consists of a large (poten-
tially infinite) number of stochastic features, given by the
energy modes. Likewise, the same interpretation holds
when applying this quantum field potential to data. Ow-
ing to the finite number of samples, the local structure
of the PDF in the space of samples is very difficult to
quantify. In the input space, one normally uses cluster-
ing or other techniques to achieve this goal, but thee is
still an enormous difficulty in characterizing the tails of

distributions. Here it is relevant to remember the char-
acteristic function of the PDF and the cumulants, which
has been a work horse of statistics. The issue with the
cumulants is the complexity of estimating the higher or-
der moments in high dimensional data. In this approach,
one instead follows the teachings of quantum theory and
employs a model decomposition of the wave function
to subsequently extract uncertainty modes characterizing
the PDF tails. To understand the decomposition proce-
dure of the data wave function, it is helpful to first an-
alyze the quantum harmonic oscillator which is popular
example of a quantum model that is pervasively used in
many fields to describe system behavior (econometrics,
for instance (Meng et al., 2016; Ahn et al., 2018)). In
this case, one can describe the decomposition of the sys-
tem’s wave function in the following manner (Griffiths &
Schroeter, 2018).

Definition 2 (Quantum Harmonic Oscillator) The po-
tential energy of a particle can be generalized using
Hooke’s law as V (X) = 1

2mω2x2. The Hamiltonian
of the particle characterizes its dynamic parameters (po-
sition and momentum) and is formulated as

Ĥ =
p̂2

2m
+

1

2
mω2x2 (12)

where ω =
(

k
m is the angular frequency of the oscil-

lator, x is the position and p̂ = −iℏ d
dx represents the

momentum operator. Given this Hamiltonian, the time-
independent Schrödinger’s equation can be formulated
as

Ĥψ(x) =

)
− ℏ2

2m

d2

dx2
+

1

2
mω2x2

*
ψ(x) = Eψ(x)

(13)
This differential equation can be treated as an eigenvalue
problem and solved using the spectral method to yield a
family of wave-function modes, ψn(x), that amount to
successive Hermite polynomial moments. The solutions
are given as:

E0 =
ℏw
2

, ψ0 = α0e
−y2

2

E1 =
3ℏw
2

, ψ1 = α0(2y)e
−y2

2

E2 =
5ℏw
2

, ψ2 = α0(4y
2 − 2)e

−y2

2

.

(14)

Here, y =
+

mw
ℏ x , ψ0,ψ1,ψ2... are the obtained

wave-function modes and E0, E1, E2... are their cor-
responding eigenvalues. Therefore the solution to the
Schrödinger equation for the harmonic oscillator yields
infinite eigenfunctions successively associated with each
other through Hermite polynomials.



Hence it is noticeable that the quantum interpretation en-
ables one to extract the various intrinsic energy modes
associated with the system, along with the correspond-
ing eigenvalue of each mode. In the previous section, we
described the Schrödinger’s equation associated with the
quantum IPF (QIPF) given by (9) which essentially pro-
vides a quantum interpretation of data dynamics similar
to how (13) does for the harmonic oscillator. The objec-
tive is to now extract successive energy modes (analog-
ical to those obtained in (14)) associated with the QIPF
given by Vs(x) = E + σ2/2∇2ψ(x)

ψ(x) . The ground state
of the wave-function, in the case of the QIPF formu-
lation, is already probabilistically defined as an expres-
sion of the empirical KME given by ψ(t) =

+
p(t) =,

1
n

n-
i=1

k(xi, t). This information leads to the following

summary of the QIPF state extraction procedure in the
following postulate.

Postulate 1 (Extraction of QIPF Energy Modes)
Consider the QIPF of the data samples x as
Vs(x) = E + σ2/2∇2ψ(x)

ψ(x) with the associated ground

Algorithm 1 Quantum decomposition of IPF

Input:
x: Signal
σ: Kernel width
m: Number of quantum modes
Initialization:
ψ: Wave-function
ψ1,ψ2, ...,ψm: Wave-function Hermitian embed-
dings
V 1
s , V

2
s , ..., V

m
s : QIPF modes

E1, E2, ..., Em: Eigenvalue of each mode
Computations:
for i = 1 to length(x) do

ψ = 0
for j = 1 to i do

ψ ← ψ + e−
(xi−xj)

2

2σ2

end for
ψi ←

+
mean(ψ)

[ψ1
i ,ψ

2
i , ...,ψ

m
i ] ← HermiteProjections(ψi)

[∇2ψ1
i , ...,∇2ψm

i ] ← Laplacians

for each mode k do
Ek

i = −minq=1...i
σ2/2∇2ψk

q

ψk
q

V k
s(i) = Ek

i + σ2/2∇2ψk

ψk

end for
end for

state wave-function given by ψ(x) =

,
1
n

n-
i=1

k(xi, t).

The approximate higher order energy modes of ψ(x)
can be extracted by projecting the ground state
wave-function into the corresponding order Hermite
polynomial given by ψk(x) = H∗

k(ψ(x)), where H∗
k

denotes the normalized kth order Hermite polynomial,

normalized so that H∗
k =

∞.
x=−∞

e−x2

[Hk(x)]
2dx = 1.

This leads to the evaluation of the higher order QIPF
states as

V k
s (x) = Ek +

σ2/2∇2H∗
k(ψ(x))

H∗
k(ψ(x))

= Ek +
σ2/2∇2ψk(x)

ψk(x)

(15)

where k denotes the order number and Ek denotes the
corresponding eigenvalues of the various modes and is
given by

Ek = −min
σ2/2∇2ψk(x)

ψk(x)
(16)

The extracted modes of the data QIPF given by V k
s (x)

are thus stochastic functionals depicting the different mo-
ments of potential energy of the data at any point x.
This is different from the IPF formulation of (6) because
V k
s (x) is an energy based metric resembling the poten-

tial energy operator in a quantum harmonic oscillator at
various energy levels (Eigenstates).

We provide a summary of the framework in terms of a
pseudocode in algorithm 1. As a pedagogical example,
we show how the different QIPF modes get localized in
the space of a sine wave signal, which represents one of
the most fundamental dynamical systems.

We generated 3000 samples of a 50 Hz sine wave signal
using a sampling frequency of 6000 samples per second
to mimic a continuous signal. The signal was also nor-
malized to zero mean and unit standard deviation. We
used all 3000 samples as centers to construct the wave-
function given by (8) and then evaluated it at each point
in the data space range x = (−6, 6) using a step size
of 0.1. We then evaluated the Hermite projections of
the wave-function value at each point to subsequently
extract 6 QIPF modes using the formulation given by
(15). This was done for three different kernel widths
whose corresponding QIPF plots (represented by solid
color lines) are shown in fig. 2. The dashed line rep-
resents the empirical KME estimate (or simply the IP)

given by p(x) = ψ2(x) = 1
N

N-
i=1

κ(x, xi), which essen-

tially gives an estimate of the data PDF. All plots were



(a) Kernel width = 0.6 (b) Kernel width = 1 (c) Kernel width = 1.8

Figure 2: Analysis of mode locations of the sine wave in the space of data using different kernel widths. Solid colored
lines represent the different QIPF modes. Dashed line represents the empirical KME (IP).

normalized for easier visualization. An important prop-
erty of the extracted QIPF modes that can be observed
from the plots is that, regardless of the kernel width, they
consistently emphasize the more uncertain regions of the
data space closer to the tails of the data PDF. One can
observe the significant increase in the density (or clus-
tering) of the extracted QIPF modes as one moves far-
ther away from the mean (x = 0) and towards the PDF
tails for the different kernel widths, thus demonstrating a
greater emphasis of the QIPF modes on more uncertain
regions of the signal. Furthermore, we observe here that
the modes appear sequentially based on their orders, with
the lower order modes emphasizing regions closer to the
mean and the higher order modes clustering together at
the PDF tails.

5 EXPERIMENTS

We ran simulations to evaluate the performance of the
QIPF framework in the applications of change point de-
tection and whole time series clustering. For change
point detection, we compared the performance of the
QIPF framework with the online version of Bayesian
change point detector (Adams & MacKay, 2007) and
Kullback Leibler divergence measure. The reason for
choosing these algorithms is that they fall under the same
taxonomy of methods as the QIPF framework (i.e. non-
parametric, online and unsupervised). For whole time
series clustering application, we chose to compare the
QIPF uncertainty features with those of discrete wavelet
transform (DWT) on a subset of the VidTIMIT speaker
recognition corpus. All simulations were performed us-
ing python 3.7. We first provide a brief overview of the
datasets used for each application before delving into the
results and related analysis.

5.1 DATASETS

For change point detection, artificial datasets were gen-
erated and change points were inserted manually at par-
ticular intervals to cause the statistical drifts. Two
datasets were generated using an auto-regressive model

and change points were inserted to simulate mean jumps
and variance scaling. The same datasets are also used in
(Takeuchi & Yamanishi, 2006). For time series cluster-
ing, we use the VidTIMIT dataset (Sanderson & Lovell,
2009).

5.1.1 Mean jumps

For simulating a time series with mean jumps at regular
intervals of time, we synthesized 5000 samples from the
following auto-regressive model.

y(t) = 0.6y(t− 1)− 0.5y(t− 2) + εt. (17)

Here εt represents the Gaussian noise with mean µ and
standard deviation set as 1.5. We set the initial values as
y(1) = y(2) = 0. We insert a change point at every 100
time steps by setting the noise mean µ at time t as

µN =

/
0 for N = 1

µN−1 +
N
16 for N = 2, ..., 49

(18)

Here N is a natural number set such that 100(N − 1) +
1 ≤ t ≤ 100N . The idea of synthesizing such a dataset
is to create drifts in the data without the exact change
points being visible to the human eye. This creates a
challenging detection task for algorithms.

5.1.2 Variance jumps

We use the same auto-regressive model as Dataset 1, but
here a change point is inserted at every 200 time steps by
setting the noise standard deviation µ at time t as

σ =

/
1 for N = 1

ln
0
e+ N

4

1
for N = 2, ..., 49

(19)

5.1.3 VidTIMIT

For the purpose purpose of time series clustering, we
tested the framework on the subset of the VidTIMIT



(a) Mean Jump Data (b) Variance Jump Data

(c) Std. Dev. of 10 QIPF modes (mean jump) (d) Std. Dev. of 10 QIPF modes (variance jump)

(e) Std. Dev. of 10 QIPF modes (mean jump) (f) Std. Dev. of 10 QIPF modes (variance jump)

Figure 3: Last 1000 samples of drift datasets (top row), their corresponding QIPF mode standard deviations measured
at each point (middle row) and corresponding the ROC curves (bottom row) for different methods measured in the
range of 2000-3000 samples for both datasets. Black vertical lines (in the top row) mark the actual change points.

dataset which is a speaker recognition dataset that con-
sists of voice recordings of 43 different speakers (Sander-
son & Lovell, 2009). The dataset is made more chal-
lenging by the fact that there are also head movements
involved while recording the data. For our experiments,
we randomly chose 5 different speakers, each having 5
different voice recordings. Thus we worked with 25 time
series datasets in total with the goal of clustering (unsu-
pervised) them into their corresponding speaker classes.
We downsampled each signal using a rate of 20 and
chose the only middle 2000 samples for our experiments.

5.2 RESULTS

5.2.1 Change Point Detection

We implemented the QIPF framework on the synthesized
datasets (after z-normalizing them) in an online manner
using a fixed window length of 50 samples (kept short
to make the framework more sensitive towards detecting
changes). This means that the QIPF mode values at each
point were evaluated only with respect to the previous

50 data points. We extracted the first 10 QIPF modes at
every sample using a data-based bandwidth of 20 times
Silvermans rule of thumb. To detect changes, we mea-
sured the standard deviation of the extracted QIPF modes
at each sample thereby quantifying uncertainty at those
points with respect to previous samples. Our conjecture
is that the points where the signal characteristics change
would exhibit increased uncertainty with respect to in-
formation field created by the previous samples leading
to increased variations in extracted energy modes. For
demonstration, the last 1000 samples of the both data
sets are shown in fig. 3 with the change points marked
with black vertical lines. The corresponding standard de-
viation values of the 10 extracted QIPF modes at each
sample are also shown in fig. 3. We see here that, in
both datasets, the peaks of the standard deviations of the
QIPF modes match the actual change points. Further-
more, the ROC curves by measuring the true positive
rates and false positive rates associated with the three
methods over a range of thresholds from 2000-3000 sam-
ples of the datasets show the QIPF framework to have a
significant better performance.



(a) QIPF framework (b) Discrete Wavelet Transform

Figure 4: Heat-maps and corresponding dendograms representing pair-wise feature vector distances (with each feature
vector representing one of the 25 voice files) of the QIPF framework (left) and the discrete wavelet transform (right).

5.2.2 Time Series Clustering

For time series clustering, we implemented the QIPF
framework and discrete wavelet transform on a subset
of VidTIMIT data as described earlier. Our goal here
is to represent each time series signal using features
that would maximize the distance between the different
speaker classes and minimize the intra class distances.
We chose DWT as the baseline for comparison since it
has been established as a powerful unsupervised feature
extraction method that uses both spatial and frequency
components of the signals to extract their useful proper-
ties (Heil & Walnut, 1989b). We implemented the QIPF
framework by extracting 50 modes corresponding to the
samples of each time series signal. For each sample, we
recorded which mode dominated (had the highest value)
and thereafter characterized a histogram vector associ-
ated with each signal that characterized the frequency of
domination of the different modes. All experiments were
performed using z-normalized data and a kernel width
equal to 40 times Silvermans ideal value. For DWT,
we implemented maximum level decomposition using
Debauchy-2 wavelet to extract the coefficients. Hence,
we have the domination frequency of QIPF modes that
represent the feature vector associated with each signal
on one hand and the DWT coefficients on the other. To
compare the quality of features extracted, we computed
the pair-wise euclidean distances between the features
of different signals for each method in order to ascer-
tain how close the features of each signal are to its true
class. The related heat maps representing relative eu-
clidean distances between the different signals are shown

in fig. 4. Further, hierarchical clustering was also per-
formed on the set of pair-wise distances represented by
the heatmaps to determine the quality of the clustering
induced by QIPF and DWT representations. One can no-
tice here from the euclidean distance heat-maps that the
QIPF framework produces features having significantly
better class discrimination properties. This is also evi-
dent in the hierarchical clustering characteristics.

Conclusion

In this paper, we introduced a recently proposed infor-
mation theoretic framework for the purpose of charac-
terizing time series data. We specifically applied the
framework as a sensitive uncertainty feature extraction
method for the applications of change point detection
and time series clustering. We demonstrated through
real world and synthetic datasets that out framework per-
forms significantly better than established related meth-
ods for both applications. We intend to explore the capa-
bilities of the QIPF framework in a more detailed manner
in the future.
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