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Abstract

We propose a novel iterative channel estima-
tion (ICE) algorithm that essentially removes
the critical known noisy channel assumption for
universal discrete denoising problem. Our al-
gorithm is based on Neural DUDE (N-DUDE),
a recently proposed neural network-based dis-
crete denoiser, and it estimates the channel tran-
sition matrix as well as the neural network pa-
rameters in an alternating manner until conver-
gence. While we do not make any probabilis-
tic assumption on the underlying clean data,
our ICE resembles Expectation-Maximization
(EM) with variational approximation, and it
takes advantage of the property that N-DUDE
can always induce a marginal posterior distri-
bution of the clean data. We carefully validate
the channel estimation quality of ICE, and with
extensive experiments on several radically dif-
ferent types of data, we show the ICE equipped
neural network-based denoisers can perform
universally well regardless of the uncertainties
in both the channel and the clean source. More-
over, we show ICE becomes extremely robust
to its hyperparameters, and show the denoisers
with ICE significantly outperform the strong
baseline that can handle the channel uncertain-
ties for denoising, the widely used Baum-Welch
algorithm for hidden Markov models (HMM).

1 Introduction

Denoising, which focuses on estimating the clean source
data based on its noisy observation, is one of the most
studied topics in machine learning and signal processing.
In particular, discrete denoising focuses on denoising the
data that take finite-alphabet values. Such setting cov-
ers several applications in various domains, e.g., image
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denoising [16, 15], DNA sequence denoising [11, 12],
and channel decoding [17], etc. Recently, utilizing quan-
tized measurements from low-power sensors [18], DNA
sequencing devices [7] and biometric recognition systems
based on quantized images [13] are getting more preva-
lent, thus, denoising such data is gaining more attention.

The Bayesian and supervised learning frameworks are the
two typical approaches for denoising. They both infuse
some side information about the clean source one way or
the other; namely, the Bayesian approach imposes some
reasonable stochastic models, e.g., Markov models, on
the clean data, whereas the supervised learning approach
collects representative clean and noisy data from which a
denoiser can learn a mapping from noisy to clean. While
the two approaches are effective in practice to some extent,
they also possess limitations as well; namely, when the
assumed model or the collected data mismatches with
the characteristics of the actual data subject to denoising,
serious performance degradation may follow.

To that end, [20] first considered a universal approach
for discrete denoising; i.e., nothing about the underly-
ing clean source data was assumed nor collected, and a
denoising rule was adaptively obtained solely from the
observed noisy data. They devised a sliding-window algo-
rithm called DUDE (Discrete Universal DEnoiser), which
is rooted in information-theoretic universal data compres-
sion/prediction schemes, and demonstrated powerful the-
oretical guarantees as well as empirical performance. De-
spite the strong results, however, DUDE suffered from a
couple of shortcomings as well; the performance of the
algorithm deteriorates as the alphabet size grows and is
quite sensitive to the choice of a hyperparameter, the win-
dow size k. To overcome such limitations, [14] recently
proposed Neural DUDE (N-DUDE), a neural network-
based sliding window denoiser that implicitly aggregates
similar contexts via shared network parameters. Their al-
gorithm maintained the robustness with respect to both k
and the alphabet size, and as a result, N-DUDE achieved
significantly better performance than DUDE. The main



gist of N-DUDE was to devise “pseudo-labels” solely
based on the noisy data, hence, the unsupervised training
(without any clean data) of the neural network denoiser
was still possible.

Although both DUDE and N-DUDE did not utilize any
assumptions on the underlying clean data, one critical
assumption they both made is that the statistical character-
istics of the noise mechanism (i.e., channel) is known to
the denoiser. That is, the noise is modeled to be a Discrete
Memoryless Channel (DMC), and the channel transition
matrix was assumed to be completely known to the de-
noiser. While such an assumption makes sense in some
applications, e.g., when the noisy channel can be reliably
estimated with known reference sequences, it can become
a major weakness in competing with other fully unsuper-
vised methods that do not require such assumption. For
example, the Baum-Welch (BW) algorithm [1] combined
with forward-backward (FB) recursion for hidden Markov
models (HMM) [3] can both estimate the channel (i.e.,
the emission probability) and the underlying clean data
(i.e., the latent states) as long as the noisy observation can
be modeled as an HMM.

In this paper, we aim to remove the known noise assump-
tion of N-DUDE. Namely, the only assumption we make
is that the noise mechanism is a DMC (like in HMM),
but neither the channel transition matrix nor characteris-
tics of the clean data (such as Markovity) are assumed to
be known. Thus, our setting is a much more challenging
one than that of [20, 14] as we impose uncertainty on the
noise model in addition to on the clean data1. We propose
a novel unsupervised, iterative channel estimation (ICE)
algorithm such that learning the channel transition matrix
and the neural network parameters can be done in an al-
ternating manner. The key component of our algorithm is
to approximate the marginal posterior distribution of the
clean data with a posterior induced from the N-DUDE’s
output and carry out the Expectation-Maximization (EM)-
like variational inference.

In our experimental results with various types of data (e.g.,
images or DNA sequences), we show the effectiveness
of our ICE by showing that denoising with the estimated
channel achieves almost identical denoising performance
as with the true channel. We employ two neural network-
based denoisers to evaluate the denoising performance
with ICE; N-DUDE and CUDE (Context-aggregated Uni-
versal DEnoiser)[19], in which the former is what ICE
is based on, and the latter is another recently developed
universal denoiser that is shown to outperform N-DUDE.
Both algorithms that plug-in the estimated channel by
ICE are shown to outperform the widely used BW with

1Such setting was initially considered in [5, 6], but mainly
with a theoretical motivation.

FB recursion, which models the noisy data as an HMM
regardless of it being true. In addition, we show ICE is
much more robust with respect to its hyperparameters
and initializations compared to BW, which is sensitive to
the initial transition and channel models. Finally, we give
thorough experimental analyses on the channel estimation
errors as well as the convergence property of ICE.

2 Notations and Related Work

To be self-contained, we introduce notations that mainly
follow [14]. Throughout the paper, an n-tuple sequence
is denoted as, e.g., an = (a1, . . . , an), and aji refers to
the subsequence (ai, . . . , aj). We denote the uppercase
letters as random variables and the lowercase letters as
either the realizations of the random variables or the indi-
vidual symbols. We denote ∆d as the probability simplex
in Rd. We will denote the clean, underlying source data
by xn as we make no stochastic assumption on its distri-
bution pX (xn) in our universal setting. We assume each
component xi takes a value in some finite set X . For ex-
ample, for binary data, X = {0, 1}, and for DNA data,
X = {A,C,G,T}.

We assume xn is corrupted by a DMC, namely, the index-
independent noise, and results in the noisy data, Zn, of
which each Zi takes a value in, again, a finite set Z . The
DMC is characterized by the channel transition matrix
Π ∈ R|X |×|Z|, and the (x, z)-th element of Π stands for
Pr(Z = z|x). A natural assumption we make is that Π
is of the full row rank, which holds for most practical
settings. We also denote Π† = Π>(ΠΠ>)−1 as the
Moore-Penrose pseudoinverse of Π. Now, upon observing
the entire noisy data Zn, a discrete denoiser reconstructs
the original data with X̂n = (X̂1(Zn), . . . , X̂n(Zn)),
where each reconstructed symbol X̂i(Z

n) takes its value
in a finite set X̂ . The goodness of the reconstruction is
measured by the average denoising loss,

1

n

n∑
i=1

Λ(xi, X̂i(Z
n)),

where the per-symbol loss Λ(xi, x̂i) measures the loss
incurred by estimating xi with x̂i. The loss is fully repre-
sented with a loss matrix Λ ∈ R|X |×|X̂ |.

The k-th order sliding window denoisers are the de-
noisers that are defined by a time-invariant mapping
sk : Z2k+1 → X̂ . That is, X̂i(Z

n) = sk(Zi+k
i−k ). We

also denote the tuple (Zi−1
i−k , Z

i+k
i+1 ) , Ci as the k-th or-

der double-sided context around the noisy symbol Zi, and
we let C[k] as the set of all such contexts. We also denote
S , {s : Z → X̂} as the set of single-symbol denois-
ers that are sliding window denoisers with k = 0. Note
|S| = |X̂ ||Z|. Then, an alternative view of of sk(·) is that



sk(Ci, ·) ∈ S is a single symbol denoiser defined by Ci

and applied to Zi.

When Π is known, as in [14, Section 3.1], we can devise
an unbiased esimate of the true loss Λ as

L = Π†ρ ∈ R|Z|×|S|, (1)

in which ρ ∈ R|X |×|S| with the (x, s)-th element is
EZ|xΛ(x, s(Z)), and EZ|x(·) stands for the expectation
with respect to the distribution defined by the x-th row
of Π. Then, as shown in [14, 21], L has the unbiased
property, EZ|xL(Z, s) = EZ|xΛ(x, s(Z)).

2.1 Related work

DUDE [20] is a two-pass, sliding-window denoiser. For
reconstruction at location i, DUDE takes Ci ∈ C[k] and
Zi ∈ Z as input, and applies the rule

X̂i,DUDE(Ci, Zi)

= arg min
x̂∈X̂

p̂emp,Z(·|Ci)
>Π†[Λx̂ � πZi

], (2)

in which p̂emp(·|Ci) ∈ R|Z| is an empirical probability
vector on Zi given the context vector Ci, obtained from
the entire noisy sequence Zn. That is, for a context C ∈
C[k], the z-th element becomes

p̂emp(z|C) =
|{j : Cj = C, Zj = z}|
|{j : Cj = C}|

. (3)

Moreover, the Λx̂ and πZi
in (2) stand for the x̂-th and

Zi-th column of Λ and Π, respectively. Note the rule (2)
solely depends on Zn and the knowledge of Π is required.
The main intuition for obtaining (2) is to show that the
following approximation to the true posterior distribution

p(x|Ci, Zi) ≈
(
πZi
� [Π†>p̂emp,Z(·|Ci)]

)
x

(4)

holds with high probability with large n [20, Section
IV.B] and compute the Bayes response with respect to
πZi
� [Π†>p̂emp,Z(·|Ci)]. [20] showed (2) can univer-

sally attain the optimum denoising performance for any
underlying stationary pX (xn).

Neural DUDE [14] identifies that the limitation of DUDE
follows from the empirical count (3), which happens
totally separately for each context C. To that end, N-
DUDE implements a single neural network-based sliding-
window denoiser such that the information among similar
contexts can be shared through the network parameters.
Namely, N-DUDE defines pk

N-DUDE(w, ·) : Z2k → ∆|S|,
in which w stands for the parameters in the network;
from the alternative view on the sliding-window denoiser
mentioned above, pk

N-DUDE(w, ·) takes the context Ci and

outputs a probability distribution on the single-symbol
denoisers to apply to Zi, for each i.

To train w, the non-negative matrix Lnew ∈ R|Z|×|S|,
based on L, is defined as

Lnew , −L + Lmax1|Z|1
>
|S|, (5)

in which Lmax , maxz,s L(z, s), and 1|Z| and 1|S| stand
for the all-1 vectors with |Z| and |S| dimensions, respec-
tively. By design, Lnew can be computed solely with Π
and Λ, and N-DUDE treats L>new1Zi ∈ R|S| as the target
“pseudo-label” vector for the mapping to apply at location
i. Note L>new1Zi

is not necessarily a one-hot vector, but
from (1) and (5), we can observe that the mapping s with
larger pseudo-label value should have smaller “true” loss
in expectation. Then, the objective function of N-DUDE
to train w becomes

L(w, Zn; Π) ,
1

n

n∑
i=1

C
(
L>new1Zi

,pk
N-DUDE(w,Ci)

)
,

(6)

in which C(g,p) stands for the (unnormalized) cross-
entropy. Note we highlighted the dependency of the ob-
jective function on Zn and Π, and the training of w is
done via usual stochastic gradient descent.

Once (6) is minimized after sufficient number of itera-
tions, the converged parameter is denoted as w?. Then,
the single-letter mapping defined by N-DUDE for the
context C ∈ C[k] is expressed as sk,N-DUDE(C, ·) =
arg maxs∈S pk

N-DUDE(w?,C)s, and the reconstruction at
location i becomes

X̂i,N-DUDE(Ci, Zi) = sk,N-DUDE(Ci, Zi). (7)

In summary, N-DUDE is trained in an unsupervised man-
ner, and [14] shows it significantly outperforms DUDE,
has more robustness with respect to k, and achieves the
optimum denoising performance for stationary sources.

CUDE [19] takes an alternative and simpler approach for
using neural network to extend DUDE. Namely, instead
of (3), CUDE learns a network pCUDE(w, ·) : Z2k →
∆|Z|, which takes the context Ci as input and outputs a
prediction for Zi, by minimizing

1

n

n∑
i=1

C(1Zi ,pCUDE(w,Ci)).

Note the difference between (6). Once the minimizer w∗

is obtained, CUDE simply plugs in pCUDE(w∗,Ci) in
place of p̂emp(·|Ci) in (2). [19] shows CUDE outperforms
N-DUDE primarily due to the reduced output size, i.e.,
|Z| vs. |S| = |X̂ ||Z|.



Baum-Welch (BW) algorithm [1] for HMM From
the equations (2) and (6), we confirm that all of above
three schemes require the exact knowledge on the channel
Π. In contrast, as mentioned in Introduction, the Baum-
Welch (BW) algorithm combined with forward-backward
(FB) recursion for HMM is a powerful method that can
denoise Zn without requiring such knowledge on the
channel. Despite the strength and being widely used in
practice [10, 8], we note the BW based on HMM has
some drawbacks, too. Firstly, the Markov assumption on
the clean xn may not be accurate; i.e., xn may not have
generated from a Markov source or the assumed order
could have a mismatch from the true model. In such cases,
the resulting BW and FB recursion based denoising will
have poor performance. Secondly, the BW-based channel
estimation may suffer from instability with respect to
the initialization of the algorithm. In the later sections,
we convincingly show that our proposed ICE can reliably
estimate the channel, and N-DUDE or CUDE that plugs in
the estimated channel can overcome the drawbacks of BW
and achieve significantly better denoising performance in
realistic discrete data.

3 Iterative Channel Estimation (ICE)

We first give a succinct description of our ICE algorithm,
then elaborate its theoretical motivation and intuition.

3.1 Description of ICE

The ICE alternates between the following two steps to
estimate Π and learn w jointly until the objective (6)
converges. The algorithm starts with randomly initialized
Π(0) and w(0).

(1) Approximate E-step (update w): Assuming the t-th
estimate of Π, Π(t), is given, the network parameter of
N-DUDE is then updated by obtaining

w(t+1) =arg min
w

L(w, Zn; Π(t)). (8)

When carrying out the minimization in (8), we always
do a warm-start from the weight of the previous iteration,
w(t), except for the first iteration. Now, using w(t+1), we
obtain an induced posterior

q(xi|Zi+k
i−k ; w(t+1)) ,

∑
s:s(Zi)=xi

pk
N-DUDE(w(t+1),Ci)s (9)

for each index i. Note (9) is a partial sum of the N-DUDE
output probabilities and is a valid posterior distribution of
xi since it is nonnegative and sums up to 1.

(2) M-step (update Π): Using w(t+1) and (9), the (j, `)-

th element of Π(t+1) is obtained by computing

Π(t+1)(j, `) =

∑n
i=1 1{Zi=`}q(xi = j|Zi+k

i−k ; w(t+1))∑n
i=1 q(xi = j|Zi+k

i−k ; w(t+1))
. (10)

Note this step looks similar to the M-step of BW for
HMM, and we elaborate more about the update steps in
the intuition section below.

Once the iteration converges, we can do a final weight up-
date (8) with the estimated channel Π̂ and obtain the final
parameters of N-DUDE, ŵ. In our experimental results,
we show the objective (6) with true Π nicely converges
as the iterative updates for Π(t) and w(t) continues.

3.2 Theoretical motivation of ICE

The derivation of the ICE algorithm is based on extending
the usual maximum likelihood estimation and variational
inference arguments. First, denote p(xn, Zn; Π(t)) as the
joint distribution of (xn, Zn) induced from an unknown
source distribution pX (xn) and the t-th channel estimate
Π(t), i.e.,

p(xn, Zn; Π(t)) = pX (xn)p(Zn|xn; Π(t)) (11)

= pX (xn)

n∏
i=1

Π(t)(xi, Zi).

Now, the standard evidence lower bound (ELBO) on the
log-likelihood of Zn with Π(t) becomes

log p(Zn; Π(t)) ≥
∑
xn

Q(xn) log
p(xn, Zn; Π(t))

Q(xn)

= log p(Zn; Π(t))−D
(
Q(xn)‖p(xn|Zn; Π(t))

)
,
(12)

in which Q(xn) stands for an arbitrary probability distri-
bution on xn, and D(·‖·) is the Kullback-Leibler diver-
gence. In the standard Expectation-Maximization (EM),
for a fixed Π(t), Q(xn) that maximizes (12) obtained by
the E-step is

Q(xn; Π(t)) = p(xn|Zn; Π(t)), (13)

the posterior of xn given Zn derived from the joint dis-
tribution p(xn, Zn; Π(t)). Then, the standard M-step ob-
tains

Π(t+1) = arg max
Π

ELBO(Π(t),Π), (14)

in which

ELBO(Π1,Π2) ,
∑
xn

Q(xn; Π1) log
p(xn, Zn; Π2)

Q(xn; Π1)
. (15)

Such iteration results in monotonically increasing ELBO
for the log-likelihood and is shown to converge. Now,



for certain source distribution pX (xn) that has particu-
lar structures, e.g., Markovity, then, computing (13) and
Π(t+1) become computationally efficient, as in the BW
algorithm for HMM.

Unlike the case of HMM, in our universal setting in which
no distributional assumption on pX (xn) is made, exactly
carrying out the E- and M-steps become intractable. To
that end, ICE carries out an approximate ELBO maxi-
mization by the above described iterative scheme. Before
elaborating on our intuition used for the approximation,
which is built from the result of N-DUDE, we first give
the following Lemma.

Lemma 1 Suppose Q(xn; Π(t)) has the following form,

Q(xn; Π(t)) ,
n∏

i=1

Q(xi|Zn; Π(t)), (16)

namely, it can be factored into the product of the marginal
posteriors. Then, the M-step results in Π(t+1) with

Π(t+1)(j, `) =

∑n
i=1 1{Zi=`}Q(xi = j|Zn; Π(t))∑n

i=1Q(xi = j|Zn; Π(t))
. (17)

Proof sketch: The full proof is given in the Supplementary
Material, and we only give the sketch of the proof here.
Namely, we simplify the maximization problem of (14)
by exploiting the memoryless property of the channel, Π.
Then, we consider the Lagrangian dual for the maximiza-
tion problem, obtain the expression of the dual variable in
terms of Q(xn,Π(t)), and exploit the factorizing assump-
tion (16) to obtain the expression (17).

Motivated by the lemma, we set Q(xn; Π(t)) for the ap-
proximate E-step in ICE as following:

Q(xn; Π(t)) ,
n∏

i=1

q(xi|Zi+k
i−k ; w(t+1)), (18)

in which q(xi|Zi+k
i−k ; w(t+1)) is defined in (8),(9) and is

in the form (16). Then, our M-step result (10) follows
from Lemma 1. Now, using (15), we make the following
assumption, of which intuition is given below.

Assumption 1 For Π(t+1) in (10), we assume

ELBO(Π(t+1),Π(t+1)) ≥ ELBO(Π(t),Π(t+1)). (19)

We believe (19) intuitively makes sense since it implies

D(Q(xn; Π(t))||p(xn|Zn; Π(t+1)))

≥D(Q(xn; Π(t+1))||p(xn|Zn; Π(t+1))). (20)

Namely, note Q(xn; Π(t+1)) is defined by the induced
marginal posteriors from the N-DUDE that is trained

with the pseudo-labels computed with Π(t+1). The in-
equality (20) asserts that Q(xn; Π(t+1)) is closer to the
posterior distribution p(xn|Zn; Π(t+1)) in the KL-sense
thanQ(xn; Π(t)), which is obtained by training N-DUDE
with the mismtched pseudo-labels computed with Π(t).
We believe this makes sense because N-DUDE trained
with true Π is empirically shown (in [14]) to attain the
optimum denoising performance for stationary sources;
namley, since achieving the optimum performance re-
quires the knowledge of p(xi|Zn; Π), we can expect the
induced posterior q(xi|Zi+k

i−k ; w?) of N-DUDE, which is
learned with pseudo-labels computed with Π, approxi-
mates p(xi|Zn; Π) well for sufficiently large k.

Combining Assumption 1 with the M-step, we then derive

ELBO(Π(t+1),Π(t+1)) ≥ ELBO(Π(t),Π(t)), (21)

which shows that our ICE iteration also results in the
monotonically increasing ELBO, guaranteeing the con-
vergence of the iteration. In our experiments, we convinc-
ingly show the convergence of ICE on various source data,
which advocates the validity of our Assumption 1.

Algorithm 1 ICE algorithm with N-DUDE
Require: Noisy data Zn

Ensure: Channel estimate Π̂, Network parameters ŵ
Initialize Π(0) and w(0) and fix window size k
Set t← 0, ε = 10−3

while |L(w, Zn; Π(t))− L(w, Zn; Π(t−1))| > ε do
Compute Lnew in (5) using Π(t).
/* Approx. E-step (Update w)*/
Using (8) and (9), obtain w(t+1) and the induced
posterior for each location i, q(xi|Zi+k

i−k ; w(t+1)), as:

w(t+1) = arg min
w

L(w, Zn; Π(t))

q(xi|Zi+k
i−k ; w(t+1)) ,

∑
s:s(Zi)=xi

pk(w(t+1),Ci)s

/* M-step (Update Π)*/
Using (10), obtain Π(t+1) as

Π(t+1)(j, k) =

∑n
i=1 1{Zi=k}q(xi = j|Zi+k

i−k ; w(t+1))∑n
i=1 q(xi = j|Zi+k

i−k ; w(t+1))
.

t← t+ 1
end while
Π̂ = Π(t)

Do a final update (8) with Π̂,w(t) and obtain ŵ

3.3 Algorithm summary and remarks on ICE

Algorithm 1 summarizes our ICE algorithm with a con-
crete stopping criterion we used for the experiments.
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Figure 1: Denosing results for HMM with respect to window size k (left), assumed δ(0) (center), and the alphabet size |X | (right).
The vertical axes for three figures correspond to the normalized error rates.

Remark 1: One important point to make is that it is not pos-
sible to devise an iterative channel estimation scheme like
ICE based on CUDE [19]. The reason is that in CUDE,
the channel Π only occurs in the final denoising rule (2),
and learning the neural network has nothing to do with Π.
In N-DUDE, however, Π is used to compute the pseudo-
labels (5) for training the network, hence, an updated
channel would lead to an updated network. Moreover,
from the updated network, N-DUDE can naturally induce
the marginal posterior (9) to carry out the M-step to update
Π. While the channel estimation cannot be done based
on CUDE, the ICE-estimated (using N-DUDE) channel
can be plugged-in to CUDE to carry out the denoising.
We denote such a scheme as ICE-CUDE and show strong
performance in the experimental results.

Remark 2: Another important detail for implementing
our algorithm is to address one limitation of the original
N-DUDE. Namely, the N-DUDE has the output size of
|S| = |X̂ ||Z|, hence, it grows quickly as the alphabet
size of data grows, which makes the induced posterior
(9) suffer from high variance. Therefore, to make ICE
scalable with respect to large alphabets, we reduced the
output dimension of the network from |S| = |X̂ ||Z| to
|S| = |X̂ | + 1 by simplifying the denoising to either
“saying-what-you-see” (i.e., s(Zi) = Zi) or “saying-one-
in-X̂ . As a result, the reduced output grows only linearly
as the alphabet size grows, and the channel estimation as
well as denoising becomes more accurate. We give a more
detailed explanation on the output dimension reduction in
Supplementary Materials.

4 Experimental Results

Data and training details We carry out extensive exper-
iments using synthetic data, real binary images, and Ox-

ford nanopore MinION DNA sequence data [2] to show
the effectiveness and robustness of our ICE algorithm. All
the experiments were done with Python 3.6 and Keras
with Tensorflow backend. For the approximate E-step in
(8), we used the Adam optimizer [9] with default setting
to minimize the objective function. The number of epochs
for each iteration was set to 10 for synthetic and real bi-
nary image data and 20 for DNA data. The initial learning
rate for the first iteration was 10−3, then from the second
iteration, we used 10−4. As shown below in Figure 3, the
objective function quickly converges after a few iterations,
hence, we stopped the estimation process after the third
iteration in all of our experiments. For the network archi-
tecture, we used 3 fully connected layers with 40 hidden
nodes for synthetic/binary image data and used 3 layers of
1-dimensional 1× 1 convolution layer with 160 channels
for DNA data2. For all our implementation, we used the
model with the reduced output dimensions as described
in above Remark 2.

4.1 Synthetic data

First, we carry out experiment on synthetic data to validate
the performance of ICE. Following [14], we generated
the clean binary data from a binary symmetric Markov
chain (BSMC) with transition probability α = 0.1. The
data was corrupted by a binary symmetric channel (BSC)
Π with cross-over probability δ = 0.3 to result in the
noisy sequence Zn, which becomes a hidden Markov
process. The length of the sequence was set to n = 106,
and the Hamming loss was used to set the Bit Error Rate
(BER) as 1

n

∑n
i=1 1{xi 6= x̂i}. We report the normalized

error, obtained by dividing BER with δ. The denoising
results on this data are given in the left and center plots

2Note the fully-connected architecture can be equivalently
implemented with 1× 1 convolutions.



Table 1: Denoising results for real binary images.
Noise level δ = 0.1 δ = 0.2 δ = 0.3

Methods \Dataset PASCAL Standard PASCAL Standard PASCAL Standard
BW_1st 0.4294 0.5469 0.3508 0.4726 0.5088 0.5716
BW_2nd 0.4770 0.6342 0.4025 0.5149 0.3829 0.5020
BW_3rd 0.5996 1.0943 0.5619 0.7523 0.5277 0.7415

ICE-N-DUDE 0.3516 0.4120 0.3223 0.3771 0.3429 0.4286
ICE-CUDE 0.3512 0.4038 0.3205 0.3712 0.3438 0.4266

N-DUDE (Π) 0.3540 0.3981 0.3300 0.3826 0.3494 0.4524
CUDE (Π) 0.3259 0.3748 0.3171 0.3684 0.3396 0.4245

of Figure 1, in which the left shows with respect to the
window size k and the center shows with respect to the
initially assumed Π(0). Note since Zn is a hidden Markov
process in this case, the FB-Recursion that knows Π and
the state transition probability α can achieve the optimum
denoising performance, shown as purple lines (i.e., lower
bounds) in the Figure 1.

In Figure 1 (left), DUDE(Π), N-DUDE(Π) and
CUDE(Π) stand for the results of the three schemes that
exactly know the true channel Π. We can confirm the
universality of those methods since they almost achieve
the optimum performance, while not knowing the source
is a Markov. Also, N-DUDE(Π) and CUDE(Π) are much
more robust with respect to k than DUDE(Π). For our
ICE, we initialized Π(0) as BSC with crossover probabil-
ity δ(0) = 0.1, and show the results of two variants, ICE-
N-DUDE and ICE-CUDE. Both plug-in the estimated
channel by ICE to N-DUDE and CUDE, respectively, and
we observe they work very well and essentially achieve
the same performances as their counterparts that know
Π. We stress that this is a nontrivial result since ICE just
observes Zn and provides an accurate enough estimation
of Π to achieve the optimum performance, only with the
independent noise assumption.

In Figure 1 (center), we show the robustness of ICE with
respect to varying initially assumed δ(0), while fixing the
window size k = 16. In the figure, N-DUDE(Π(0)) and
CUDE(Π(0)) are the schemes that run with Π(0), which
can be potentially mismatched with the true Π, and we
clearly see they become very sensitive to the mismatch
of the assumed Π(0). In contrast, ICE becomes extremely
robust to the initial Π(0) such that both ICE-N-DUDE
and ICE-CUDE almost achieve the optimum performance
regardless of the initially assumed δ(0).

In Figure 1 (right), we also investigate the performance
of ICE with respect to the alphabet size of data. We in-
creased the alphabet size of the Markov source, |X | (and
|Z|), from 2 to 30, and for each case, the transition prob-
abilities from a state to others were set to be uniform as
0.1/(|X | − 1). n was 5 × 106, and the true Π was set
such that Π(i, i) = 0.7 and Π(i, j) = 0.3/(|Z| − 1)
for i 6= j. The initial Π(0) for ICE was set such that

Π(0)(i, i) = 0.9 and Π(0)(i, j) = 0.1/(|Z| − 1) for
i 6= j. We compared CUDE(Π), ICE-CUDE and FB-
Recursion, and again, ICE-CUDE performs almost as
well as CUDE(Π), robustly over the alphabet sizes. The
gap from FB-Recursion is primarily due to fixing n, and
we believe it will close as n grows with the alphabet size.

Table 2: Denoising results on randomized channels.
Method \ |X | 2 4 6 12 18 24 30
CUDE (Π) 0.619 0.353 0.283 0.231 0.227 0.213 0.212
ICE-CUDE 0.635 0.402 0.319 0.251 0.226 0.220 0.230

In Table 2, we show the results for more challenging
channels beyond the symmetric channels used in Figure 1.
Namely, we again compare the denoising performance of
CUDE(Π) and ICE-CUDE, for the same Markov source
(with increasing alphabet size) as in Figure 1(right), but
with randomized channels — we selected each diagonal
element of a channel matrix from [0.7, 0.8], then random-
ized the off-diagonal elements. The initial Π(0) for ICE
was the same as we used in Figure 1(right), and the table
shows the average of 5 independent runs for each alpha-
bet size. From the table, due to the channel irregularity,
we observe slightly larger gaps between CUDE(Π) and
ICE-CUDE than in the symmetric channel case of Figure
1, but they are still sufficiently small.

4.2 Binary images

Now, we move on to the experiments using more realistic
binary images as clean data. We tested on two datasets:
PASCAL and Standard. PASCAL consists of 50 binarized
grayscale images that we obtained from PASCAL VOC
2012 dataset [4], and Standard consists of 8 binarized
standard images that are widely used in image process-
ing, {Barbara, Boat, C.man, Couple, Einstein,
fruit, Lena, Peppers}. We tested with three noise
levels and applied non-symmetric channels with average
noise levels of 0.1, 0.2, and 0.3, and the exact Π’s are
given in the Supplementary Material. As in [14], we raster
scanned the images and converted them to 1-D sequences.

In Table 1, we compare the normalized errors of ICE-
N-DUDE and ICE-CUDE with Baum-Welch (BW) that
assume the images are Markov. BW_1st, BW_2nd, and
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Figure 2: Denosing results for real DNA data with respect to window size k & initial Π(0).

BW_3rd correspond to BW with various Markov order
assumptions. N-DUDE(Π) and CUDE(Π), which are
known to achieve the state-of-the-art for binary image de-
noising with known channel, are shown as lower bounds.
We fixed the window size to k = 50 for all neural network
based schemes. For both ICE and BW, we set the initial
Π(0) as BSC with δ(0) = 0.1 for all noise levels. The ex-
act procedure of running ICE and training denoisers with
multiple images are given in the Supplementary Material.

In the table, we see that both ICE-N-DUDE and ICE-
CUDE significantly outperform all three BW methods for
all noise levels and datasets, and they get very close to N-
DUDE(Π) and CUDE(Π), respectively. We also confirm
the superiority of CUDE over N-DUDE, as claimed in
[19]. Moreover, note the BW schemes become sensitive
depending on the noise level and dataset; i.e., for δ =
0.1 and 0.2, BW_1st performs the best, while for δ =
0.3, BW_2nd is superior. Such difficulty of accurately
determining the best order of HMM for a given dataset
is one of the main drawbacks of BW method. On the
contrary, ICE-N-DUDE and ICE-CUDE work universally
well for all sources and noise levels, and neither the clean
source modeling nor the true channel Π was necessary.

4.3 DNA sequence

We now apply ICE to DNA sequence denoising and
mainly follow the experimental setting of [14, Section
5.3]; namely, we obtained 16S rDNA reference sequences
for 20 species and randomly generated noiseless tem-
plate reads xn of length n = 2, 469, 111. Then, we
used the same Π in [14], which had 20.375% average
error rate, to simulate the Oxford Nanopore sequencer
and corrupt xn to obtain Zn. The true (asymmetric) Π
is given in the Supplementary Material. For ICE, the
initial Π(0) was assumed to be Π(0)(i, i) = 0.6 and
Π(0)(i, j) = 0.4/(|Z| − 1) for i 6= j. We also abuse

the notation and define δ(0) ,
∑

j 6=i Π(0)(i, j) which be-
comes 0.4 for all i. Note as shown in [12, 14], DUDE(Π)
and N-DUDE(Π) can achieve the state-of-the-art for DNA
sequence denoising as well.

Figure 2(a) shows the denoising results with varying win-
dow size k, and Figure 2(b) shows the boxplots of nor-
malized errors with window size k = 150 and varying
initial δ(0)’s within the range 0.01 ∼ 0.40 (40 samples).
BW_1st and BW_2nd completely failed for this experi-
ment, resulting in the normalized error rate of 1.440 and
3.153, respectively. Thus, we could not include them in
the figure, and we instead included the results of a hybrid
method, i.e, running N-DUDE with BW estimated chan-
nels. BW_1st and BW_2nd in the figure stand for such a
hybrid of BW with N-DUDE.

Paralleling the results in the previous sections, we observe
from Figure 2(a) that ICE-N-DUDE and ICE-CUDE get
very close to N-DUDE(Π) and CUDE(Π), respectively,
and significantly outperform the BW hybrid methods, as
k increases. This shows the accuracy and effectiveness of
ICE; its channel estimation quality is much better than
BW when the underlying xn is far from being a Markov
and while it is based on N-DUDE, the estimated channel
can be readily plugged-in to other schemes like CUDE.
We believe this is quite a strong result since ICE-CUDE
can remove almost 70% of noise solely based on Zn

and with no other information on the noise and the clean
source.

Moreover, in Figure 2(b), we see that ICE-N-DUDE
and ICE-CUDE are extremely robust with respect to the
initial δ(0), while the mismatched N-DUDE(Π(0)) and
CUDE(Π(0)) completely fails for wrong initializations.
Additionally, the BW hybrid methods also show large
variance, mainly due to the sensitivity of the channel esti-
mation quality of BW with respect to the initial δ(0).
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Figure 3: Convergence and estimation performance analysis with respect to iteration t

4.4 Convergence & estimation analyses

We now give a closer analysis on the channel estimation
performance of ICE for all of our experiments given in the
above sections. Figure 3 shows the following two metrics;

• |L(w?, Zn; Π)− L(w(t), Zn; Π)|
• ‖Π−Π(t)‖1/|X ||Z|

The first metric shows the difference between the value of
the objective function (6) for N-DUDE(Π) parameter w?

and for the model w(t) after each approximate E-step of
ICE. Note (6) is computed with the true Π. The second
metric is the normalized L1-norm of Π −Π(t), which
directly measures the channel estimation accuracy.

The first two figures in Figure 3 show the two metrics
for all experiments with respect to the iteration t of ICE,
respectively, except for the large alphabet Markov source
case. For the first metric, we observe that the difference
becomes very small after just a few iterations for all cases.
The result suggests that w(t) of ICE and w? become
indistinguishable from the perspective of objective func-
tion value, hence, it justifies the good performance of
ICE-N-DUDE in denoising experiments. For the second
metric, we observe the channel estimation errors also be-
come small and stable with respect to the iteration t. This
result empirically confirms the convergence of Π(t), as
elaborated in the theoretical motivation section above, and
advocates the validity of our Assumption 1. Moreover, the
excellent denoising performance of ICE-CUDE, which
just plugs-in the estimated channel to CUDE, confirms
that the level of the estimation error in the figure is tolera-
ble and has a negligible effect in denoising. Moreover, the
estimation errors seem to get smaller for larger noise lev-
els. The third figure shows the second metric at iteration
3 for the synthetic Markov source data, with respect to
the alphabet size |X | = 12 ∼ 18 and the sequence length

n = 103 ∼ 106. We clearly observe that the estimation er-
rors become smaller as the sequence length increases, and
for sufficiently large n, the estimation error approaches 0
for |X | = 18 ∼ 30.

5 Discussion and Concluding Remarks

In this paper, we proposed a novel iterative channel estima-
tion method for removing the known channel assumption
of the recently developed N-DUDE. The resulting ICE-
N-DUDE and ICE-CUDE achieved excellent denoising
performance for various types of data, without any knowl-
edge on the channel and the clean source, except for the
DMC matrix being invertible. Some limitations also exist.
First, the computational cost for ICE is relatively high
since it requires multiple model training. It is a necessary
price to pay for the channel uncertainly, however, as in
Figure 3, the number of iterations tends to be not large.
Second, as shown in various experiments, ICE tends to
perform better for higher noise rates than for the low noise
regime. For future work, we plan to extend ICE to more
general settings, e.g., to general state estimation beyond
denoising and to the continuous-alphabet case.
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