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Abstract

Causal parameters may not be point identified
in the presence of unobserved confounding.
However, information about non-identified pa-
rameters, in the form of bounds, may still be
recovered from the observed data in some cases.
We develop a new general method for obtain-
ing bounds on causal parameters using rules
of probability and restrictions on counterfac-
tuals implied by causal graphical models. We
additionally provide inequality constraints on
functionals of the observed data law implied
by such causal models. Our approach is moti-
vated by the observation that logical relations
between identified and non-identified counter-
factual events often yield information about
non-identified events. We show that this ap-
proach is powerful enough to recover known
sharp bounds and tight inequality constraints,
and to derive novel bounds and constraints.

1 INTRODUCTION

Directed acyclic graphs (DAGs) are commonly used to
represent causal relationships between random variables,
with a directed edge from A to Y (A→ Y ) representing
thatA “directly causes” Y . Under the interventionist view
of causality, this relationship is taken to mean that Y may
change if any set of variables S that includes A is set,
possibly contrary to fact, to values s. The operation that
counterfactually sets values of variables is known as an
intervention and has been denoted by the do(s) operator
in [11].

The variable Y after an intervention do(a) is performed is
denoted Y (a), and is referred to as a potential outcome, or
a counterfactual random variable [9]. Distributions over
counterfactuals such as P (Y (a)) may be used to quan-
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tify cause-effect relationships by means of a hypothetical
randomized controlled trial (RCT). For example, the aver-
age causal effect (ACE) is defined as E[Y (a)]−E[Y (a′)]
and is a comparison of means in two arms of a hypo-
thetical RCT, with the arms defined by do(a) and do(a′)
operations.

Since counterfactuals are not observed directly in the data,
assumptions are needed to link counterfactual parame-
ters with the observed data distribution. These assump-
tions are provided by causal models (often represented
by DAGs), which are substantively justified using back-
ground knowledge or learned directly from data [18].

Under some causal models, counterfactual distributions
P (Y (a)) may be identified exactly (expressed as func-
tionals of the observed data distribution) [19, 17, 5]. How-
ever, when causally relevant variables are not observed,
counterfactual distributions may not be identified.

The ideal approach for dealing with non-identified pa-
rameters is additional data collection that would “expand”
the observed data distribution by rendering previously
unobserved variables observable, and thus a previously
non-identified parameter identifiable.

If additional data collection is not possible, the alternative
is to impose additional parametric assumptions on the
causal model which would imply identification, or retreat
to a weaker notion of identification, where the observed
data distribution is used to obtain bounds on the non-
identified parameter of interest. The existence of such
bounds may yield substantively significant conclusions,
for instance by indicating that the causal effect is present
(if the corresponding parameter is bounded away from 0).

A well known example of a causal model with a non-
identified causal parameter with non-trivial bounds is the
instrumental variable (IV) model [1, 8, 16]. The original
sharp bounds for the causal parameter in the IV model
were derived using a computationally intensive, and dif-
ficult to interpret, convex polytope vertex enumeration



approach [1]. Subsequent work [12] has extended this
approach to other scenarios where a counterfactual objec-
tive can be expressed as a linear function of the observed
data law. These approaches are limited both by computa-
tional complexity and by the required linear form of the
objective.

Bounds on causal parameters are related to inequality
constraints on the observed data law implied by hidden
variable DAGs, as demonstrated by the derivation of the
original IV inequalities [1], and subsequent work on in-
equality constraints [3, 6]. The approach developed in
[21] for deriving such inequality constraints is very gen-
eral and is conjectured to be able to recover all constraints
implied by a hidden variable DAG, but is computationally
challenging to evaluate, and has no bounded running time.

In this paper, we present a new approach for deriving
bounds on non-identified causal parameters that directly
uses restrictions implied by a causal model, rules of prob-
ability theory, and logical relations between identified and
non-identified counterfactual events. We then build on
this approach to present a new class of inequality con-
straints on the observed data law.

The paper is organized as follows. We introduce nota-
tion and relevant concepts in Section 2. We provide an
intuitive introduction to our method by re-deriving known
sharp bounds in the binary IV model [1] in Section 3. In
Section 4, we present results important to our approach,
and provide a general algorithm for obtaining bounds on
causal parameters. Section 5 demonstrates how our ap-
proach may be used to derive generalized instrumental
variable inequalities, of which the original IV inequalities
and Bonet’s inequalities [2] are special cases. Finally, in
Section 6 we make use of these results to provide novel
bounds and inequality constraints for two sample models.

2 PRELIMINARIES

We let G denote a DAG with a vertex set V such that
each element of V corresponds to a random variable.
The statistical model of G is the set of joint distributions
P (V) that are Markov relative to the DAG G. Specifically,
it’s the set {P (V) : P (V) =

∏
V ∈V P (V |paG(V ))},

where paG(V ) is the set of parents of V in G.

The causal model of a DAG is also a set of joint dis-
tributions, but over counterfactual random variables. A
counterfactual Y (a) denotes the random variable Y in a
counterfactual world, where A is exogenously set to the
value a.

Such a causal model can be described by a set of structural
equations {fV (paG(V ), εV ) | V ∈ V}, where each fV
can be thought of as a causal mechanism that maps values

of paG(V ) (parents of V ) and the exogenous noise term
εV to a value of V . For a given set of values a of paG(V ),
variation of εV yields the counterfactual random variable
V (a) as the output of fV (a, εV ).

Other counterfactuals can be defined through recursive
substitution [14], as follows:

Y (a) =

{
aY if Y ∈ A

fY ({V (a) | V ∈ paG(Y )}, εY ) otherwise
(1)

This definition, following from the structural equation
model view of the causal model of a DAG, allows the ef-
fects of exogenous intervention to propagate downstream
to the outcome of interest. Under this view, only the noise
variables in the set {εV : V ∈ V} are random. The
distributions of the observed data and of counterfactual
random variables can be thought of as the distributions of
different functions of {εV : V ∈ V} as described in (1).

As a notational convention, given any set {Y1, . . . , Yk} ≡
Y, and a set of treatments A set to a, we will denote
a set of counterfactuals {Y1(a), . . . , Yk(a)} defined by
(1) by the shorthand Y(a). We will sometimes denote
single variable events Y (a) = y via the shorthand y(a)
for conciseness, similarly multivariable events Y(a) = y
will sometimes be denoted as y(a).

One consequence of (1) is that some counterfactuals Y (a)
only depend on a subset of values in a, specifically those
values that make an appearance in one of the base cases
of the definition. Restrictions of this sort are sometimes
called exclusion restrictions.

The recursive substitution definition above implies the
following generalized consistency property, which states
that for any disjoint subsets A,B,Y of V,

B(a) = b implies Y(a,b) = Y(a). (2)

If all variables V in a causal model represented by
a DAG G are observed, every interventional distri-
bution P (Y(a)), where A ⊆ V, Y ⊆ V \ A,
is identified from P (V) via the following functional:∑

V\(Y∪A)

∏
V ∈V\(Y∪A) P (V |paG(V ))|A=a, known

as the g-formula [15].

In practice, not all variables in a causal model may be
observed. In a hidden variable causal model, represented
by a DAG G(V ∪ H), where no data is available on
variables in H, not every counterfactual distribution is
identified.

Reasoning about parameter identification is often per-
formed via an acyclic directed mixed graph (ADMG)
summary of G(V ∪H) called a latent projection G(V)
[20]. The latent projection keeps vertices corresponding
to V, and adds two kinds of edges between these vertices.
A directed edge (→) between any Vi, Vj ∈ V is added if
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Figure 1: (a) The classic instrumental variable model, and
(b) its latent projection.

there exists a directed path from Vi to Vj in G(V ∪H)
and all intermediate vertices on the path are in H. A
bidirected edge (↔) between any Vi, Vj ∈ V is added if
there exists a path from Vi to Vj which starts with an edge
into Vi, ends with an edge into Vj , has no two adjacent
edges pointing into the same vertex on the path, and has
all intermediate elements in H. See Fig. 1 (a) and (b) for
a simple example of this construction for the IV model.

If P (Y(a)) is identified from P (V) in a causal model
represented by a hidden variable DAG G(V ∪H), then
its identifying functional may be expressed using G(V)
via the ID algorithm [19]. See [13] for details.

If P (y(a)) is not identified from P (V) in a causal model
given by G(V∪H), bounds may nevertheless be placed on
this distribution. Before describing our approach for ob-
taining bounds in full generality, we illustrate how it may
be used to obtain known sharp bounds for a non-identified
counterfactual probability in the binary IV model.

3 BOUNDS IN THE BINARY
INSTRUMENTAL VARIABLE
MODEL

The instrumental variable model is represented graphi-
cally in Fig. 1 (a), with its latent projection shown in Fig. 1
(b). We are interested in the counterfactual probability
P (y(a)), which is known not to be identified without
parametric assumptions. In this section, we demonstrate
that known sharp bounds on P (y(a)) can be recovered by
reasoning causally about the structure of this graph and
the associated counterfactual distributions.

The Instrumental Variable Thought Experiment

We consider the binary IV model in Fig. 1 (a) in the setting
of clinical trials with non-compliance. We interpret Z to
indicate treatment assignment, A to indicate treatment
actually taken, and Y to indicate a clinical outcome of
interest. Unobserved factors, such as personality traits,
may influence both treatment decision and outcome, and
thus act as confounders.

Suppose we intervene to assign some subject to treatment
arm z. We observe that after this intervention, our subject
takes treatment a and has outcome y. Thus, in this subject,

we observe the event A(z) = a ∧ Y (z) = y.

Now suppose we are interested in intervening directly
on treatment for the same subject. We would like to set
A = a, leaving Z (arm assignment) to the physician’s
choice. Under the model, the outcome Y depends only
on A and the noise term εY , representing in this case
subject-specific personality traits. Because these traits are
unchanged by intervention on A or Z, and A is set to the
same value it took under our first intervention, we must
conclude that under this second intervention we would
observe the same outcome as under the first, denoted by
the event Y (a) = y.

This thought experiment demonstrates that an event in
one hypothetical world, under one intervention, can imply
an event under another intervention. We call this phe-
nomenon “cross-world implication,” and it is formalized
in proposition 2. We now develop the intuition further
to recover sharp bounds for the IV model with binary
random variables.

Sharp Bounds in the Binary IV Model

In the following derivation of sharp bounds for P (y(a))
in the binary IV model, we will denote values 1 for all
variables by lower case (e.g. a), and values 0 by a lower
case with a bar (e.g. ā).

Our strategy will be to partition the event Y (a) = y into
smaller, more manageable events:

A(z̄) = a ∧ Y (z̄) = y (3)
A(z̄) = ā ∧A(z) = a ∧ Y (z) = y (4)
A(z̄) = ā ∧A(z) = ā ∧ Y (a) = y. (5)

Note that events in (4) and (5) are related to the compliers
and never-takers principal strata [4].

To see that these events form a partition (i.e. are mutually
exclusive and exhaustive) of the event Y (a) = y, we first
observe that by the exclusion restriction in the model, and
generalized consistency, Y (z̄) and Y (z) in equations (3)
and (4) respectively will be equal to Y (a). Then we can
see that (3) covers the portion of Y (a) = y whereA(z̄) =
a, (4) covers the portion where A(z̄) = ā ∧ A(z) = a,
and (5) covers the portion where A(z̄) = A(z) = ā.

Because these events partition Y (a) = y, the sum of their
probabilities will be equal to P (Y (a) = y), and a sum
of lower-bounds on their probabilities will yield a lower
bound on P (Y (a) = y). A general form of partitions of
this sort for counterfactual events under models with an
exclusion restriction will be given in Proposition 5.

The event (3) represents a single world event with an
identified probability, that therefore does not need to be
bounded. We will see that we can recover sharp bounds



without bounding the probability of (5).

We therefore turn our attention to event (4). This event can
be understood as a conjunction of events in two worlds.
First, A(z̄) = ā in the world in which Z is set to z̄. Then,
A(z) = a ∧ Y (z) = y in the world in which Z is set to
z. As a cross world event, (4) does not have an identified
density. Our goal will be to provide lower bounds for this
event that are identified.

First, we find some eventE1 under the interventionZ = z̄
that entails A(z̄) = ā. We can then identify outcomes
under the (conflicting) intervention Z = z that are com-
patible with E1, i.e. that would not be ruled out by
observing E1 under intervention Z = z̄. We denote such
events by ψz(E1). Now, by definition:

P (E1)− P (E1,¬
(
A(z) = a ∧ Y (z) = y

)
) (6)

= P (E1,
(
A(z) = a ∧ Y (z) = y

)
).

We note that E1 =⇒ ψz(E1) by construction, as E1

rules out all outcomes in the sample space not in ψz(E1),
so P (E1,¬

(
A(z) = a ∧ Y (z) = y

)
) is bounded from

above by P (ψz(E1),¬
(
A(z) = a ∧ Y (z) = y

)
).

Substituting this bound into equation (6) yields:

P (E1)−P (ψz(E1),¬
(
A(z) = a ∧ Y (z) = y

)
)

≤ P (E1,
(
A(z) = a ∧ Y (z) = y

)
). (7)

Because E1 was chosen to entail A(z̄) = ā, the probabil-
ity of event (4) is bounded from below by P (E1,

(
A(z) =

a ∧ Y (z) = y
)
). Therefore by equation (7), the probabil-

ity of event (4) is also bounded from below by:

P (E1)− P (ψz(E1),¬
(
A(z) = a ∧ Y (z) = y

)
). (8)

Through exactly analogous reasoning, we can obtain
another lower bound on the probability of event (4) by
starting with some event E2 under Z = z that entails
A(z) = a ∧ Y (z) = y:

P (E2)− P (ψz̄(E2),¬
(
A(z̄) = ā

)
). (9)

To apply these bounds, we must select events that sat-
isfy the criteria for E1 and E2. We start by examin-
ing potential events E1. We note that there are only
three options: A(z̄) = ā, A(z̄) = ā ∧ Y (z̄) = ȳ, and
A(z̄) = ā ∧ Y (z̄) = y. It turns out that we need only
consider the latter two of these (see Proposition 10 in
Appendix C).

First, we take E1 to be A(z̄) = ā ∧ Y (z̄) = ȳ. Then we
note ψz(A(z̄) = ā ∧ Y (z̄) = ȳ) is:(

A(z) = ā ∧ Y (z) = ȳ
)

∨
(
A(z) = a ∧ Y (z) = ȳ

)
∨
(
A(z) = a ∧ Y (z) = y

)
.

The only outcome under the intervention Z = z excluded
from this event is A(z) = ā ∧ Y (z) = y. Any subject

who experienced this event could not have experienced
A(z̄) = ā ∧ Y (z̄) = ȳ, due to the exclusion restriction in
the IV model.

According to (8), to obtain a bound we will need to sub-
tract from the mass of E1 the mass of the portion of
ψz(E1) where A(z) = a∧Y (z) = y does not hold. This
will be the mass of the first two events in the disjunction
above.

Using this value of E1, we therefore obtain the following
lower bound on the probability of (4):

P (A(z̄) = ā, Y (z̄) = ȳ)− (10)

P (
(
A(z) = ā,Y (z) = ȳ

)
∨
(
A(z) = a, Y (z) = ȳ

)
).

We now consider the bound induced by using A(z̄) =
ā ∧ Y (z̄) = y as the event E1. Following an analogous
procedure, we produce the lower bound:

P (A(z̄) = ā, Y (z̄) = y)− (11)

P (
(
A(z) = ā,Y (z) = y

)
∨
(
A(z) = a1, Y (z) = ȳ

)
).

Next, we consider possible values of E2. In this simple
case, there is only one such possibility, A(z) = a ∧
Y (z) = y, which of course entails itself. We observe
that ψz̄(E2) ∧ ¬

(
A(z̄) = ā

)
is equivalent to A(z̄) =

a ∧ Y (z̄) = y, yielding the following lower bound by
expression (9):

P (A(z) = a,Y (z) = y)− P (A(z̄) = a, Y (z̄) = y).

We now have all the pieces we need to obtain a sharp
lower bound on P (y(a)). We make use of the fact that
distributions of potential outcomes after interventions on
Z are identified as the distribution of the corresponding
observed random variables conditioned on Z (since Z is
randomized in the IV model). Noting that the density of
the event (4) is also bounded from below by 0, we add the
identified density of the event (3) to the best of the lower
bounds we have obtained for (4). Then

P (y(a)) ≥ P (a, y | z̄)+

max


0

P (ā, ȳ | z̄)− P (ā, ȳ | z)− P (a, ȳ | z)
P (ā, y | z̄)− P (ā, y | z)− P (a, ȳ | z)
P (a, y | z)− P (a, y | z̄).

This is the sharp lower bound obtained by Balke [1].
P (y(a)) may be bounded from above by 1 less the lower
bound on P (ȳ(a)). In the binary case, bounds on the ACE
may simply be represented as differences between appro-
priate bounds on P (y(a)) and P (y(ā)). Each of these
bounds bounds is sharp for the binary IV model. However,
characterizing models for which bounds derived by the
procedure we propose, described in the next section, are
sharp is an open problem.



4 BOUNDS ON COUNTERFACTUAL
EVENTS

In this section we provide a graphical criterion for the
presence of an implicative relationship between counter-
factual events, which we call cross-world implications,
and demonstrate its use in bounding non-identified proba-
bilities of counterfactual events. We then show how these
bounds can be aggregated to bound non-identified coun-
terfactual events of primary interest. Proofs of all claims
are found in Appendix A.

Causal Irrelevance, Event Implication and Event
Contradiction

In deriving bounds on a counterfactual event under the
IV model, we made use of the exclusion restriction
Y (z, a) = Y (a). We begin this section by providing
a general graphical criterion for when such restrictions
appear in causal models.

Proposition 1 (Causal Irrelevance). If all directed paths
from Z to Y contain members of A, then

Y(Z = z,A = a) = Y(A = a).

In such cases, we say Z is causally irrelevant to Y given
A, because after intervening on A, intervening on Z
will not affect Y. If in addition the joint distribution
P (Y(z),A(z)) is identified, Z is said to be a generalized
instrument for A with respect to Y. If the set A can
be partitioned into A1 and A2 such that A1 is causally
irrelevant to Y given A2, then any such A1 is said to be
causally irrelevant to Y in A. See also rule 3∗ in [7], and
the discussion of minimal labeling of counterfactuals in
[14]. As noted earlier, constraints in a causal model corre-
sponding to the existence of causally irrelevant variables
are sometimes called exclusion restrictions.

In the following proposition, we observe that whenever
an exclusion restriction appears in the graph, there exists
a logical implication connecting counterfactual events
across interventional worlds.

Proposition 2 (Cross-world Implication). Let Z be
causally irrelevant to Y given A. Then

A(z) = a ∧Y(z) = y =⇒ Y(a) = y.

We define a collection of events to be compatible if
none of them implies the negation of any other event
in the collection. We define a collection of events to
be contradictory if it is not compatible. Conceptually,
events in different hypothetical worlds are contradictory
if, under the model, no single subject can experience
all of the events under their corresponding interventions.

For example, in the IV model though experiment, we
saw that no single subject can experience both the event
A(z) = a∧Y (z) = y and the event Y (a) 6= y, rendering
them contradictory.

It will be of use to be able to determine whether events are
contradictory through reference to the graphical model.
To that end, we provide a recursive graphical criterion
that is sufficient to establish that events are contradictory.

Proposition 3 (Contradictory Events). Two events
X(a) = x and Y(b) = y are contradictory if there
exists Z ∈ X ∪Y such that Z(a) 6= Z(b), and all of the
following hold:

(i) Variables in the subsets of both X ∪A and Y ∪B
causally relevant for Z are set to the same values in
x,a, and y,b.

(ii) Let C ∈ {X∪A}\{Y∪B} be any variable that is
causally relevant toZ in X∪A and causally relevant
to Z given Y ∪ B, with C set to c in x,a. Then
X(a) = x and Y(b) = y ∧ C(b) = c′ are known
to be contradictory by this proposition if c 6= c′.

(iii) Let C ∈ {Y∪B}\{X∪A} be any variable that is
causally relevant toZ in Y∪B and causally relevant
to Z given X ∪ A, with C set to c in y,b. Then
Y(b) = y and X(a) = x ∧ C(a) = c′ are known
to be contradictory by this proposition if c 6= c′.

Propositions 2 and 3 provide graphical criteria for im-
plication and contradiction, based on paths in the causal
diagram. Both criteria are stated in terms of exclusions
restrictions in the graph. It should be noted that not all
exclusion restrictions can be represented graphically; for
example, some exclusions may obtain only for certain
levels of the variables in the graph, and not universally.
If such context-specific exclusion restrictions arise, they
may lead to implications or contradictions not captured
by these criteria. However, in the absence of exclusion
restrictions not represented by the graphical model, the
graphical criteria provided by these propositions are nec-
essary and sufficient. See Appendix B for details.

Bounds Via a Single Cross-World Implication

In this section, we describe a lower bound on P (y(a))
induced by a single cross-world implication, of the sort
described by Proposition 2. We will demonstrate that this
line of reasoning can be used to recover the bounds for the
IV model in [8, 16], and produce a new class of bounds
on densities of counterfactual events where the density is
identified under intervention on a subset of the treatment
variables.
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Figure 2: A Sequential Treatment Scenario

We begin with a simple result from probability theory,
which can broadly be viewed as stating that supersets will
always have weakly larger measure than their subsets.

Proposition 4. Let E1, E2 be any events in a causal
model such that E1 =⇒ E2. Then P (E1) ≤ P (E2).

In the case of the IV model, we have noted the exclu-
sion restriction between Z and Y given A. Due to
the implication established by the IV thought experi-
ment and formalized in Proposition 2, Proposition 4
then yields P (Y (a) = y) ≥ P (A(z) = a, Y (z) = y)
for any value of z. Noting that Z has no parents in
the model, and that therefore the interventional distri-
bution is identified as the conditional, we can write this
as maxz P (A = a, Y = y | Z = z), which is equivalent
to the binary IV bounds in [8, 16].

We now present new bounds on causal parameters, based
on the observation that the empty set may act as a gener-
alized instrument for any treatment set A with respect to
any outcome Y. This observation allows us to combine
Propositions 2 and 4 to obtain the following Corollary.

Corollary 1. For any sets of variables Y,A,

P (y(a)) ∈ [P (Y = y,A = a), 1−P (Y 6= y,A = a)].

A consequence of this Corollary is that for discrete vari-
ables, densities of counterfactual events can be non-
trivially bounded for any causal model, though we do
not expect these bounds to be informative in general.

Finally, we present bounds on densities of counterfactuals
when a subset of the treatment set can act as a generalized
instrument for the remainder.

Corollary 2. Let Ã and Â partition A, such that the
density P (Y(ã), Â(ã)) is identified, where ã is the subset
of a corresponding to Ã. Then

P (Y(ã) = y, Â(ã) = â) ≤ P (Y(a) = y)

1− P (Y(ã) 6= y, Â(ã) = â) ≥ P (Y(a) = y),

where â is the subset of a corresponding to Â.

Example 1 (Sequential Treatment Scenario). In the
model depicted in Fig. 2, the A variables represent treat-
ments and the Y variables represent outcomes. This
model may be applicable if the initial treatment A1 is
selected by the subject – and is therefore confounded with

the outcomes through the subject’s unobserved traits H –
but the second treatmentA2 is selected solely on the basis
of the first-stage outcome, Y1.

We may be interested in P (Y2(a1, a2)) – the distribu-
tion of the second stage outcome under intervention on
both treatments. This distribution is not identified. How-
ever, since P (A1(a2) = a1, Y2(a2) = y2) is identified as∑

y1

P (a1,y1,a2,y2)
P (a2|y1) , Corollary 2 yields the bounds:∑

y1

P (a1, y1, a2, y2)

P (a2 | y1)
≤ P (Y (a1, a2) = y2)

1−
∑

y1,ỹ2 6=y2

P (a1, y1, a2, ỹ2)

P (a2 | y1)
≥ P (Y (a1, a2) = y2).

Bounds Via Multiple Cross-World Implications

In this section, we show how information from multiple
cross-world implications may be used to obtain bounds.
We begin by describing a partition of the event of interest,
where the partition is defined by cross-world potential
outcomes. We then develop a method for bounding the
density of the cross-world events in the partition, and
aggregate the bounds. This section generalizes the proce-
dure used to obtain sharp bounds for the binary IV model
in Section 3.

Partitioning the Event of Interest

We denote our event of interest as Y(a1) = y. We are in-
terested in providing a lower bound for the non-identified
probability P (Y(a1) = y). We begin by defining a par-
tition of the event to interest. We will work with these
partition sets for the remainder of the section.
Proposition 5 (Partition Sets). Let Z be causally irrele-
vant to Y given A. Assume Z,A are discrete, and take
levels z1, · · · , zM and a1, · · · ,aN respectively.

Then the following events are a partition of Y(a1) = y:

Y(a1) = y ∧ ∀z
(
A(z) 6= a1

)
(12)

A(z1) = a1 ∧Y(z1) = y (13)

and, for k = 2, · · · , N ,

A(z1) = ak ∧ ∃z
(
A(z) = a1 ∧Y(z) = y

)
. (14)

We now develop lower bounds on the density of each
of the partition events, which we can then use to lower
bound the density of the target event Y(a1) = y.

Bounding Partition-Set Densities

Event (13) is a single world event with identified den-
sity, so there is no need to find a lower bound. Sub-
jects that experience event (12) will never experience



Y(z) = y ∧A(z) = a1 under any intervention Z = z
with an identified distribution. Because our strategy uses
information from identified distributions to bound uniden-
tified densities, we cannot provide bounds on the density
of this partition event.

We now turn our attention to events of the form of (14).
We let Ek denote the event of the form of (14) where
the first term is A(z1) = ak. Then we note Ek can be
represented as the disjunction

∨M
j=1 γ

k
j , where γkj denotes

the event:

γk
j , A(z1) = ak ∧A(zj) = a1 ∧Y(zj) = y. (15)

Because γkj ⊆ Ek, we know γkj =⇒ Ek. It follows
from Proposition 4 that

P (Ek) ≥ max
j
P (γk

j ). (16)

Unfortunately P (γkj ) is also not point-identified, and
must be bounded from below itself.

The event γkj conjoins statements about potential out-
comes under two different interventions. Its density is the
portion of the population who would experience A(z1) =
ak under Z = z1, and A(zj) = a1 ∧Y(zj) = y under
Z = zj. We know the exact proportion of the population
who would experience either, because Z is a generalized
instrument, but we do not know the exact portion of the
population that would experience both.

To address this problem, we first consider the problem
of bounding the density of an event conjoining potential
outcomes under two different interventions in general
terms, in the following Proposition. This result can then
be directly applied to lower bound the density of γkj .

Proposition 6 (Cross-World Lower Bounds). Let ψc(E)
represent the disjunction of all outcomes in the sample
space under intervention C = c that do not contradict
the event E, such that E =⇒ ψc(E).

Let Ex be any event that implies X(a) = x, and Ey

be any event that implies Y(b) = y. Then P (X(a) =
x,Y(b) = y) is bounded from below by each of:

P (Ex)− P (ψb(Ex),Y(b) 6= y)

P (Ey)− P (ψa(Ey),X(a) 6= x).

Proposition 6 is useful because, in each of the bounds
provided, each of the densities involved are in terms of
events under a single intervention. If densities under those
interventions are identified, the bounds can be calculated
exactly.

We return to our goal of bounding P (γkj ) from below. In
the case of γkj , the two interventions we are interested
in are on the same set of variables, Z. As described

above, we are interested in the proportion of patients who
experience A(z1) = ak under the intervention Z = z1,
and A(zj) = a1 ∧ Y(zj) = y under the intervention
Z = zj. Substituting these values for X(a) = x and
Y(b) = y into Proposition 6 immediately yields the
following Corollary.
Corollary 3 (Lower bounds on P (γkj )). Let E1 be an
event under intervention Z = z1 that entails A(z1) = ak,
and E2 be event under intervention Z = zj that entails
A(zj) = a1 ∧Y(zj) = y.

Then P (A(z1) = ak ∧ A(zj) = a1 ∧ Y(zj) = y) is
bounded from below by each of:

P (E1)− P (ψzj(E1) ∧ ¬
(
A(zj) = a1 ∧Y(zj) = y

)
)

P (E2)− P (ψz1(E2) ∧A(z1) 6= ak).

With this result in hand, we can we can modify (16) to
obtain the following bound on P (Ek) in terms of the
observed data law. Let ξ(·) represent the set of lower
bounds on the density P (·) obtained through Corollary 3
for all possible values of E1 and E2. Then

P (Ek) ≥ max
j

(
max ξ(γkj )

)
. (17)

Recalling that P (Y(a1) = y) can be bounded from be-
low by the sum of lower bounds on densities of its parti-
tion sets, we obtain the lower bound

P (A(z1) = a1,Y(z1) = y) +

N∑
k=2

max
j

(
max ξ(γk

j )
)
,

where the first term corresponds to the density of event
(13) and the second term is a sum is over lower bounds
on the densities of the events of the form of (14).

Algorithm 1 Lower Bounds on P (Y(a1) = y)

Input: event Y(a1) = y
generalized instrument Z

Output: bounds on P (Y(a1) = y)
1: Bounds = {}
2: For k = 2, . . . , N :
3: KBounds = {}
4: For j = 1, . . . ,M :
5: For E1 in {E1 =⇒ Y(z1) = ak}
6: induce bound by E1 through Corollary 3
7: KBounds.add(bound)
8: ForE2 in {E2 =⇒ Y(zj) = y∧A(zj) = a1}
9: induce bound by E2 through Corollary 3

10: KBounds.add(bound)
11: Bounds.add(max(KBounds))
12: P(Y(z1) = y1,A(z1) = a1) + sum(Bounds)

Algorithm 1 summarizes how the results described in this
section can be used to calculate these bounds.



5 GENERALIZED INSTRUMENTAL
INEQUALITIES

In this section, we develop generalized instrumental in-
equalities and show that the IV inequalities, and Bonet’s
inequalities [2], are special cases. To begin, we bound
the sum of probabilities of events in terms of the size of
the largest subset thereof that is made up of compatible
events.
Proposition 7. Let E1, · · · , EN be events under arbi-
trary interventions such that at most k of the events are
compatible. Then

N∑
i=1

P (Ei) ≤ k.

This result is a consequence of the fact that by construc-
tion, no value of εV can lead to contradictory events. If
such a value did exist, observing one of the events leaves
open the possibility that εV takes that value, in which case
we would observe the other event under the appropriate
intervention, and the events would not be contradictory.
It follows that if we are adding the densities of events of
which at most k are compatible, no set in the domain of
εV may have its measure counted more than k times.

We make use of this result, in combination with our exist-
ing results about causal irrelevance, to obtain the follow-
ing class of inequality constraints.
Corollary 4 (Generalized Instrumental Inequalities). Let
Z be causally irrelevant to Y given A, and let S be any
set of triples (z,a,y) which represent levels of Z,A,Y.
Then ∑

(z,a,y)∈S

P (A(z) = a,Y(z) = y) ≤ Φ(S)

where

Φ(S) = max
{∣∣Q∣∣ | Q ⊆ S ∧ ∀(z,a,y), (z′,a′,y′) ∈ Q
¬
(
(z = z′ ∧ a 6= a′) ∨ (a = a′ ∧ y 6= y′)

)}
.

This result makes use of the fact that by Propo-
sition 3, if Z is causally irrelevant to Y given
A and (z = z′ ∧ a 6= a′) ∨ (a = a′ ∧ y 6= y′), then
A(z) = a ∧Y(z) = y and A(z′) = a′ ∧Y(z′) = y′

are contradictory. Φ(S) can therefore be interpreted as
the size of largest compatible subset of S.

The IV inequalities derived in [10], which can be written
∀a
∑

y maxz P (Y (z), A(z)) ≤ 1, are a special case of
the generalized instrumental inequalities with k = 1. For
each selection of a, the sum is over densities of events
with different values of y, rendering them pairwise con-
tradictory. We now review the inequality derived in [2].

Example 2 (Bonet’s Inequalities). Bonet [2] presents the
following constraint for the IV model, where treatment
and outcome are binary and the instrument is ternary:

P (a1, y2 | z2) + P (a1, y1 | z3) + P (a1, y2 | z1)

+ P (a2, y2 | z2) + P (a2, y1 | z1) ≤ 2

These densities are respectively equal to the densities of
the following events, through the fact that densities under
intervention on variables with no parent are identified as
the conditional distribution:

A(z2) = a1 ∧ Y (z2) = y2 (18)
A(z3) = a1 ∧ Y (z3) = y1 (19)
A(z1) = a1 ∧ Y (z1) = y2 (20)
A(z2) = a2 ∧ Y (z2) = y2 (21)
A(z1) = a2 ∧ Y (z1) = y1. (22)

It can easily be confirmed that no subset of size 3 or
greater is mutually compatible. For example, event (18) is
compatible with events (20) and (22), but these are incom-
patible with each other, due to Z taking the same value
in both but A taking a different value in each. The same
pattern follows for all events; each event is compatible
with two others which in turn are not compatible with
each other.

It follows from Corollary 4 that the sum of the densities
of these events must be bounded from above by 2.

6 EXAMPLE APPLICATIONS

In this section, we derive bounds and inequality con-
straints for the ADMGs presented in Fig. 3 using the
results presented in Sections 4 and 5. We are not aware
of any existing methods that can obtain the bounds pre-
sented below. Code used to obtain these results, as well
as a general implementation of the methods described in
this paper, is publicly available 1.

Due to space constraints, we denote the identified dis-
tribution under intervention on Z = z as Pz(·). In ad-
dition, we do not consider more complicated scenarios,
e.g. involving multiple instruments Z and treatments A,
instruments with challenging identifying functionals, or
non-binary variables. However, bounds and constraints in
such scenarios may be obtained using our software.

The IV Model With Covariates

We first consider the model represented by Fig. 3 (a).
In the traditional IV model, the instrument must be ran-
domized with respect to the treatment and outcome. In
practice, it can be difficult to find such instruments. The

1https://noamfinkelste.in/partial-id

https://noamfinkelste.in/partial-id
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Figure 3: (a) The IV model with covariates, and (b) the
confounded frontdoor IV model.

IV model with covariates allows for the instrument to be
conditionally randomized.

In the social sciences, exogenous shocks are often used
as instrumental variables. For example, suppose an earth-
quake damages a number of school buildings, increasing
class size at nearby schools. An economist studying the
effect of class size on test scores might use school closure
due to the earthquake as an instrument for class size.

This instrument may not be entirely plausible. Families
with more resources may be able to avoid living in areas at
risk of earthquake damage, and wealthier school districts
may be better able to build robust school buildings. In
this case, the instrument would be confounded with the
treatment and outcome. Observed baseline covariates for
the school districts, including information on tax revenue,
may be sufficient to account for this kind of confounding.
In settings of this kind, the IV model with covariates is
appropriate, whereas the traditional IV model is not.

We present the following lower bound on P (Y (ā) = ȳ)
under this model when variables are binary:

Pz̄(ā, ȳ)+

max



0

Pz(ā, ȳ, c)− Pz̄(c, ā, ȳ)

Pz̄(a, c, ȳ)−
(
Pz(c, ā, y) + Pz(c, a, ȳ)

)
Pz̄(a, c̄, y)− Pz(c̄, y)

Pz(ā, ȳ)− Pz̄(ā, ȳ)

Pz̄(a, y)− Pz(y)

Pz̄(a, ȳ)−
(
Pz(a, ȳ) + Pz(ā, y)

)
Pz̄(a, c, y)− Pz(c, y)

Pz(ā, ȳ, c̄)− Pz̄(c̄, ā, ȳ)

Pz̄(a, c)−
(
Pz(c, y) + Pz(c, a, ȳ)

)
Pz̄(a, c̄)−

(
Pz(c̄, a, ȳ) + Pz(c̄, y)

)
Pz̄(a, c̄, ȳ)−

(
Pz(c̄, ā, y) + Pz(c̄, a, ȳ)

)
.

A derivation of these bounds is provided in Appendix E.

We can use Corollary 4 to obtain inequality constraints
on the observed data law implied by the model. Such
constraints cannot easily be concisely expressed. Two
representative expressions, each bounded from above by
1, are as follows:

max
(c,a)6=(c′,a′)

(∑
y 6=z

P (a, c, y, z)

P (z | c) +
∑
y=z

P (a′, c′, y, z)

P (z | c′)

)

max
c6=c′,z 6=z′

∑
a,y

(
P (a, c, y, z)

P (z | c) +
P (a, c′, y, z′)

P (z′ | c′)

)
.

Front-Door IV Model With Confounding

This model, illustrated in Fig. 3 (b), is appropriate when
the effect of treatment is only through an observed me-
diator, which is itself confounded with the outcome. In
such cases, the traditional IV model can be applied by
ignoring data on M , but tighter bounds can be obtained
when the mediator is considered. When all variables are
binary, our method yields the following lower bound on
P (Y (ā) = ȳ):

Pz̄(ā, ȳ)+

max



0

Pz(ā, ȳ, m̄)− Pz̄(ā, m̄, ȳ)

Pz(ā, ȳ)− Pz̄(ā, ȳ)

Pz̄(a, m̄, y)−
(
Pz(m̄, y) + Pz(ā,m, y)

)
Pz̄(a,m, y)−

(
Pz(m, y) + Pz(ā, m̄, y)

)
Pz̄(a, ȳ)−

(
Pz(a, ȳ) + Pz(ā, y)

)
Pz̄(a,m)−

(
Pz(a,m, ȳ) + Pz(m, y) + Pz(ā, m̄, y)

)
Pz(ā, ȳ,m)− Pz̄(ā,m, ȳ)

Pz̄(a,m, ȳ)−
(
Pz(ā, m̄, y) + Pz(a,m, ȳ)

)
Pz̄(a, m̄, ȳ)−

(
Pz(ā,m, y) + Pz(a, m̄, ȳ)

)
Pz̄(a, y)− Pz(y)

Pz̄(a, m̄)−
(
Pz(m̄, y) + Pz(ā,m, y) + Pz(a, m̄, ȳ)

)
.

Finally, we present two functionals of the observed data
law that, under the model, are bounded from above by 1.
Each is representative of a class of constraints that does
not have a concise general formula.

P (ā, m̄, y | z̄)+P (a,m, y | z̄)+P (ā,m, ȳ | z)+P (a, m̄, ȳ | z)

∑
a′

P (a′, m̄, ȳ | z̄) +
∑
y′

P (a,m, y′ | z̄) + P (a, m̄, y | z).

7 CONCLUSION

The methods pursued in this work take advantage of iden-
tified counterfactual distributions to bound causal param-
eters that are not identified, and provide inequality con-
straints on functionals of the observed data law. These
bounds expand the class of causal models under which
counterfactual random variables may be meaningfully
analyzed, and the inequality constraints facilitate falsifi-
cation of causal models by observed data. Characterizing
the conditions under which these bounds and inequalities
are sharp remains an open question. We also leave open
application of these ideas to other areas of study inter-
ested in counterfactual parameters, such as missing data,
dependent data, and policy learning.
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