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Abstract

Bayesian neural networks (BNNs) are flexi-
ble function priors well-suited to situations
in which data are scarce and uncertainty
must be quantified. Yet, common weight
priors are able to encode little functional
knowledge and can behave in undesirable
ways. We present a novel prior over ra-
dial basis function networks (RBFNs) that
allows for independent specification of func-
tional amplitude variance and lengthscale
(i.e., smoothness), where the inverse length-
scale corresponds to the concentration of
radial basis functions. When the length-
scale is uniform over the input space, we
prove consistency and approximate variance
stationarity. This is in contrast to common
BNN priors, which are highly nonstationary.
When the input dependence of the length-
scale is unknown, we show how it can be
inferred. We compare this model’s behavior
to standard BNNs and Gaussian processes
using synthetic and real examples.

1 INTRODUCTION

Neural networks (NNs) are flexible universal func-
tion approximators that have been applied with suc-
cess in many domains. Bayesian neural networks
(BNNs) capture function space uncertainty in a prin-
cipled manner by placing priors over network param-
eters (Hinton and Neal, 1995). Unfortunately, priors
in parameter space often lead to unexpected behavior
in function space, making it difficult to incorporate
meaningful information about function space proper-
ties (Lee, 2004). Two such properties of importance
are amplitude variance and lengthscale, including
how they might vary over the input space.
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While Gaussian processes (GPs) are function priors
that can easily encode these properties via the covari-
ance function, there are many situations in which we
would prefer BNNs to GPs: BNNs may be computa-
tionally more scalable, especially at test time, and
they have an explicit parametric expression for pos-
terior samples, which is convenient when additional
computation is needed on the function (e.g., finding
a minima) (Hernández-Lobato et al., 2014).

Therefore, a natural question arises: can we design
BNN priors that encode function space properties as
in GPs while retaining the benefits of BNNs? Some
approaches use sample-based methods to evaluate
the discrepancy between the function space distribu-
tion and a reference distribution with desired prop-
erties (Flam-Shepherd et al., 2017; Sun et al., 2019).
Pearce et al. (2019) explores different BNN architec-
tures to recover equivalent GP kernel combinations
in the infinite width limit. While promising, these
approaches require challenging optimizations or rely
on infinite width assumptions.

As a first step towards more expressivity for BNNs,
this work focuses on a particular type of NN called
a radial basis function network (RBFN). RBFNs are
widely used across scientific disciplines (Dash et al.,
2016) and have received renewed interest recently,
both from a theoretical (Que and Belkin, 2016) and
inferential perspective (Zadeh et al., 2018; Asadi
et al., 2020). Importantly, each hidden unit has a
center parameter corresponding to a localized activa-
tion function, which enables controlling where (over
the input space) the hidden units contribute to the
complexity of the function.

In this work, we introduce Poisson Process Radial Ba-
sis Function Networks (PoRB-Nets), an interpretable
family of RBFNs that employ a Poisson process (PP)
prior over the center parameters in an RBFN. The
proposed formulation enables direct specification of



functional amplitude variance and lengthscale, the
latter of which can vary over the input space. We
show that these properties are decoupled; that is,
each can be specified independently of the other. In-
tuitively, PoRB-Nets work by trading off between
the concentration and scale of the radial basis func-
tions. Consider that a higher concentration of basis
functions allows for a smaller lengthscale but also
a larger variance, since the basis functions add up.
By making the scale of the basis functions depend
inversely on their concentration, PoRB-Nets undo
the impact on the variance.

PoRB-Nets have the additional benefit that the
choice of the lengthscale determines the network ar-
chitecture (width of the layer), since the expected
number of hidden units is equal to the integral of
the PP intensity over the input space. Hidden units
are added or deleted from the network during infer-
ence to adjust the overall lengthscale to the data,
and when the input dependence of the lengthscale is
unknown, we show how it can be inferred using a sig-
moidal Gaussian Cox process as a prior (Adams et al.,
2009). As with GPs, and unlike networks that force
a specific property (Anil et al., 2018), these proper-
ties can adjust given data. We focus on single-layer
RBFNs since our interest is in theoretical properties
and examining the true posterior.

Specifically, we make the following contributions:
(i) we introduce a novel, intuitive prior formulation
for RBFNs that encodes distributional knowledge in
function space, decoupling notions of lengthscale and
amplitude variance in the same way as a GP with
a radial basis function (RBF) kernel; (ii) we prove
important theoretical properties of consistency and
amplitude stationarity; (iii) we provide an inference
algorithm to learn an input dependent lengthscale
and (iv) we empirically demonstrate the potential of
PoRB-Nets on synthetic and real examples. The code
is available at https://github.com/dtak/porbnet.

2 RELATED WORK

Early weight space priors for BNNs. Most
classical NN priors aim for regularization and model
selection while minimizing the amount of undesired
inductive biases (Lee, 2004). MacKay (1992) pro-
poses a hierarchical prior1 combined with empirical
Bayes. Lee (2003) proposes an improper prior for

1Hierarchical priors are convenient when there is lim-
ited parameter interpretability. The addition of upper
levels to the prior reduces the influence of the choice
made at the top level, making the prior at the bottom
level (the original parameters) more diffuse (Lee, 2004).

NNs, which avoids the injection of prior biases at
the cost of higher sensitivity to overfitting. Robinson
(2001) proposes priors to alleviate overparametriza-
tion of NN models. We build on classical weight
space priors but with the goal of obtaining specific
properties in function space.

Function space priors for BNNs. Some works
(Flam-Shepherd et al., 2017; Sun et al., 2019) match
BNN priors to specific function space priors (e.g.,
GPs) but rely on sampling function values at a col-
lection of input points. These approaches do not
provide guarantees outside of the sampled region,
and even in that region, their enforcement of prop-
erties is approximate. Neural processes (Garnelo
et al., 2018) use meta-learning to identify functional
properties that may be present in new functions, but
they rely on having many prior examples and do not
allow the user to specify basic properties directly. In
contrast, we encode functional properties via prior
design, without relying on function samples.

Bayesian formulations of RBFN models.
Closest to our work are Bayesian formulations of
RBFNs. Barber and Schottky (1998) consider a
fixed number of hidden units, fixed scale, and use
a Gaussian approximation to the posterior distribu-
tion, which is available in closed form in this case.
Holmes and Mallick (1998) and Andrieu et al. (2001)
propose fully Bayesian formulations that employ ho-
mogeneous Poisson process priors on the center pa-
rameters, but their focus is on inferring the number of
hidden units and their formulation does not decouple
amplitude variance and lengthscale.

3 BACKGROUND

Bayesian neural networks (BNNs). Let y =
f(x |w, b) + ε, where ε is a noise variable and w and
b refer to the weights and biases of a neural network
f respectively. In the Bayesian setting, we assume
a prior w, b ∼ p(w, b). One common choice is i.i.d.
normal distributions over each parameter. For better
comparison to PoRB-Nets we focus on BNNs with
Gaussian φ(z) = exp(−z2) activations. We will refer
to such a model as a standard BNN (Neal, 1996).

Radial basis function networks (RBFNs).
RBFNs are classical shallow neural networks that
approximate arbitrary nonlinear functions through a
linear combination of radial kernels (Powell, 1987).
They are universal function approximators (Park
and Sandberg, 1991) and are widely used across dis-
ciplines such as numerical analysis, biology, finance,
and classification in spatio-temporal models (Dash
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et al., 2016). For an input x ∈ RD, the output of a
single-hidden-layer RBFN of width K is given by:

f(x |θ) = b+
K∑
k=1

wk exp
(
−1

2s
2
k‖x− ck‖2

)
, (1)

where s2
k ∈ R and ck ∈ RD are the scale and center

parameters, respectively, wk ∈ R are the hidden-to-
output weights, and b ∈ R is the bias parameter.
Each k-th hidden unit can be interpreted as a local
receptor centered at ck, with radius of influence sk
and relative importance wk (Powell, 1987).

Poisson process. A Poisson process (PP) on RD
is a stochastic process characterized by a positive
real-valued intensity function λ(c). For any set C ⊂
RD, the number of points in C follows a Poisson
distribution with parameter

∫
C λ(c)dc. The process

is inhomogeneous if λ(c) is non-constant. We use a
PP as a prior on the center parameters of an RBFN.

Gaussian Cox process. A Bayesian model con-
sisting of a Poisson process likelihood and a log Gaus-
sian process prior g(c) on the intensity function λ(c)
is called a log Gaussian Cox Process (Møller et al.,
1998). Adams et al. (2009) present an extension,
called the sigmoidal Gaussian Cox process, which
passes the Gaussian process through a scaled sigmoid
function. To infer an input dependent lengthscale
of an RBFN, we use this process as a model for
the intensity function of the PP prior on the center
parameters of the RBFN.

4 MODEL

In this section we introduce Poisson Process Ra-
dial Basis Function Networks (PoRB-Nets), which
achieve two essential desiderata for a functional prior.
First, they enable the user to encode the funda-
mental basic properties of lengthscale (i.e., smooth-
ness), amplitude variance (i.e., signal variance), and
(non)stationarity. Second, PoRB-Nets adapt the com-
plexity of the network based on the inputs. For exam-
ple, if the data suggests that the function needs to be
less smooth in a certain input region, then that data
can override the prior. Importantly, PoRB-Nets fulfill
these desiderata while retaining appealing properties
of NN-based models, as discussed in Section 1.

Generative model. As in a standard BNN, we
assume a Gaussian likelihood centered on the net-
work output, and independent Gaussian priors on
the weight and bias parameters. Unique to the novel
PoRB-Net formulation is a Poisson process prior

over the set of center parameters and a deterministic
dependence of the scale parameters on the Poisson
process intensity. The generative model is given by:

{ck}Kk=1 |λ ∼ exp
(
−
∫
C
λ(c)dc

) K∏
k=1

λ(ck) (2)

s2
k |λ, ck = s2

0λ
2(ck) (3)

wk ∼ N
(
0, σ2

w

)
(4)

b ∼ N
(
0, σ2

b

)
(5)

yn |xn,θ ∼ N
(
f(xn;θ), σ2) , (6)

where f(xn;θ) is given by Eq. (1); λ : C → R+ is the
(possibly non-constant) Poisson process intensity; θ
is the set of RBFN parameters, including the centers,
weights, bias, and intensity; and s2

0 is a hyperparam-
eter that defines the scale of the radial basis function
when the intensity is one. In practice, s2

0 allows the
user to control the baseline number of hidden units.
For example, if computational constraints limit the
number of hidden units that can be used, decreasing
s2

0 allows the user to model a smaller lengthscale
without adding more units.

Different priors could be considered for the intensity
function λ. One simple case is to assume a uniform
intensity λ(c) = λ with λ2 ∼ Gamma(αλ, βλ). Under
this specific formulation, Section 5 proves that the
amplitude variance is stationary as the size of the re-
gion C tends to infinity, and Section 6 proves that the
posterior regression function is consistent as the num-
ber of observations tends to infinity; such amplitude
variance only depends on the variance of the hidden-
to-output weights and output bias V[f(x)] ≈ σ2

b +σ̃2
w,

where σ̃2
w is just σ2

w scaled by s0. We further show
that the intensity λ controls the lengthscale.

Hierarchical prior for unknown input depen-
dence of the lengthscale. In the case when the
input-dependence of the lengthscale is unknown, we
further model the intensity function λ(c) of the
Poisson process by a sigmoidal Gaussian Cox pro-
cess (Adams et al., 2009):

g ∼ GP(0,Σ(·, ·)) (7)
λ(c) = λ∗σ(g(c)), (8)

where λ∗ is an upper bound parameter on the inten-
sity function and σ(z) = (1 + e−z)−1 is the sigmoid
function. In the forward pass of the network, we use
the posterior mean of g to evaluate λ(c).

Contrast to BNNs with Gaussian priors. In
Sections 5 and 6, we prove that the proposed for-
mulation has the desired properties described above.



However, before doing so, we briefly emphasize that
the i.i.d. Gaussian weight space prior commonly used
with BNNs does not enjoy these properties. To see
why, let us consider a standard feed-forward NN layer
with 1-dimensional input and a Gaussian φ(z) =
exp(−z2) activation function. We can rewrite the
hidden units as φ(wkx+ bk) = φ(wk(x− (−bk/wk))).
This means that the corresponding center of the k-th
hidden unit is ck = −bk/wk and the scale is sk = wk.
If bk and wk have i.i.d. Gaussian priors with zero
mean, as in standard BNNs, then the center parame-
ter has a Cauchy distribution centered around zero.
This is an important observation that motivates our
work: A standard BNN concentrates the center of
hidden units near the origin, resulting in nonstation-
ary priors in function space.

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

BNN

−1.0 −0.5 0.0 0.5 1.0
x

PoRB-Net

Figure 1: PoRB-Net captures amplitude sta-
tionarity while a standard BNN does not. Pos-
terior predictive distributions given 4 observations.

5 VARIANCE AND
LENGTHSCALE

We now return to the core desiderata: to specify a
prior that separately controls a function’s lengthscale
and amplitude variance, as one could do using a GP
with an RBF kernel. To do so, we first derive the
covariance of the proposed PoRB-Net model. The
full derivations supporting this section are available
in Appendix A.

Neal (1996) showed that the covariance function for a
single-layer BNN with a fixed number of hidden units
ρ(x; θ1), . . . , ρ(x; θK) and independent N (0, σ2

w) and
N (0, σ2

b ) priors on the hidden-to-output weights and
output bias takes the following general form:

Cov(f(x1), f(x2)) = σ2
b + σ2

wKEθ [ρ(x1; θ)ρ(x2; θ)] .

We show that the covariance function for a BNN
with a distribution over the number of hidden units
takes an analogous form, replacing the fixed number
of hidden units K with its expectation:

Cov(f(x1), f(x2)) = σ2
b + σ2

wE [K]Eθ [ρ(x1; θ)ρ(x2; θ) |K]︸ ︷︷ ︸
:=U(x1,x2)

.

In the PoRB-Net model, θ = {λ(·), ck}, ρ(x; θk) =
φ(λ(ck)s0‖x − ck‖) where φ(z) = exp(− 1

2z
2), and

E [K] =
∫
C λ(c) dc. By deriving the form of U(x1, x2)

for the case of a homogeneous Poisson process, we
next show that the covariance becomes increasingly
stationary as the region C increases in size. We then
illustrate how the covariance is decoupled from the
lengthscale.

A homogeneous PP yields stationarity. In the
case of constant intensity λ(c) = λ defined over C =
[C0, C1], the expression of U(x1, x2) can be derived
in closed form:

U(x1, x2) = 1
µ(C)

√
π

s2 exp
{
−s2

(
x1 − x2

2

)2
}

[
Φ((C1 − xm)

√
2s2)− Φ((C0 − xm)

√
2s2λ)

]
, (9)

where s2 = s2
0λ

2, Φ is the cumulative distribution
function of a standard Gaussian, and xm = (x1 +
x2)/2 is the midpoint of the inputs. As the bounded
region C increases, the second term approaches one,
and so the covariance of a PoRB-Net approaches a
squared exponential kernel with inverse lengthscale
s2

0λ
2 and amplitude variance σ̃2

w :=
√
π/s2

0 (defined
for convenience):

Cov (f(x1), f(x2)) ≈

σ2
b + σ̃2

w exp
{
−s2

0λ
2
(
x1 − x2

2

)2
}
, (10)

which is stationary since it only depends on the
squared difference between x1 and x2. Notice that
this result does not rely on an infinite width limit
of the network, but only on the Poisson process
region [C0, C1] being relatively large compared to
the midpoint xm. In practice, [C0, C1] can be set
larger than the range of observed x values to achieve
covariance stationarity over the input domain. Fig-
ure 2 shows that over the region [−5, 5] the ana-
lytical covariance from Equation (9) is fairly con-
stant with only slight drops near the boundaries.
In Appendix A we also derive the covariance when
λ2 ∼ Gamma(αλ, βλ), which results in a qualitatively
similar shape. In contrast, the covariance function of
an RBFN with a Gaussian prior on the center param-
eters is not approximately stationary. Specifically,
for ck ∼ N (0, σ2

c ) and a fixed scale s2 = 1/(2σ2
s),

Williams (1997) shows that U(x1, x2) takes the fol-
lowing form, which Figure 2 shows is highly non-
stationary:

U(x1, x2) ∝ exp
(
− (x1 − x2)2

2(2σ2
s + σ4

s/σ
2
c )

)
︸ ︷︷ ︸

Stationary

exp
(
− x2

1 + x2
2

2(2σ2
c + σ2

s)

)
︸ ︷︷ ︸

Nonstationary

.
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Figure 2: PoRB-Net captures amplitude sta-
tionarity while an RBFN with a Gaussian
prior on the centers does not. The lines are
Cov(x − t/2, x + t/2) for different t. We set all of
σ2
w = s2

0 = s2 = λ = 1 and C = [−5, 5].

Decoupling of variance and lengthscale.
From Equation 9, notice the variance is V[f(x)] ≈
σ2
b + σ̃2

w, which has no dependence on the inten-
sity λ, freeing it to act as an inverse lengthscale.
This is a point of differentiation of PoRB-Nets. If
the scale were fixed or independent of the intensity,
as is the case in previous priors over RBFNs (e.g.,
Holmes and Mallick (1998)), the variance would be
V[f(x)] ≈ σ2

b+λσ̃2
w. Intuitively this happens because

a higher intensity implies a higher number of basis
functions, which implies a higher amplitude variance
as the basis functions add up. If we instead allow
the scale parameters s2 to increase as a function of
the intensity, thus making the radial basis functions
more narrow, we can counteract the impact of their
concentration on the amplitude.

To support the hypothesis that the intensity λ con-
trols the lengthscale, we examine the average number
of upcrossings of y = 0 of sample functions. For a
GP with an RBF kernel, the expected number of
upcrossings u over the unit interval is inversely re-
lated to the lengthscale l via u = (2πl)−1. Figure 3
shows a histogram of the upcrossings from functions
drawn from a PoRB-Net with a stepwise intensity
λ(c) (greater above x = 0). Notice the lengthscale
is clearly smaller above x = 0 but the amplitude
variance V[f(x)] is approximately constant for all x.

An inhomogeneous PP yields non-
stationarity. When the intensity is a non-constant
function λ(c), then Equation (9) does not hold.
However, we find that setting the scale parameter
of each hidden unit to s2

k = s2
0λ(ck)2, where λ(ck)

is the intensity evaluated at the center parameter
ck, allows for an input dependent lengthscale that is
approximately decoupled from the variance.
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Figure 3: PoRB-Nets decouple lengthscale (as
measured by the upcrossings) and variance.

6 CONSISTENCY
In this section, we study consistency of predictions.
That is, as the number of observations goes to infinity,
whether the posterior predictive concentrates around
the true function. When dealing with priors that
can produce an unbounded number of parameters,
consistency is a basic but important property. To our
knowledge, we are the first to provide consistency
for RBFNs with a Poisson distributed number of
hidden units (no consistency guarantees were derived
by Andrieu et al. (2001)).

Define r0(x) to be the true regression function and
r̂n(x) = Ef̂n

[Y | X] to be the estimated regression
function, where p̂n is the estimated density in param-
eter space based on n observations. The estimator
r̂n(x) is said to be consistent with respect to the true
regression function r0(x) if, as n tends to infinity:∫

(r̂n(x)− r0(x))2 dx
p−→ 0. (11)

Doob’s theorem shows that Bayesian models are con-
sistent as long as the prior places positive mass on
the true parameter (Miller, 2018). For finite dimen-
sional parameter spaces, one can ensure consistency
by simply restricting the set of zero prior probability
to have arbitrarily small or zero measure. Unfor-
tunately, in infinite dimensional parameter spaces,
this set might be very large (Freedman, 1963). In
our case where functions correspond to uncountably
infinite sets of parameters, we cannot restrict this set
of inconsistency to have measure zero.

Instead, we aim to show a strong form of consistency
called Hellinger consistency. We closely follow the
approach of Lee (2000), who shows consistency for
standard BNNs with normal priors on the parame-
ters. Formally, let (x1, y1), . . . , (xn, yn) ∼ p0 be the
observed data drawn from the ground truth density
p0 and define the Hellinger distance between joint
densities p and p0 over (X,Y ) as:

DH(p, p0) =

√∫∫ (√
p(x, y)−

√
p0(x, y)

)2
dx dy.



The posterior is said to be consistent over Hellinger
neighborhoods if for all ε > 0,

p({f : DH(p, p0) ≤ ε}) p−→ 1.

Lee (2000) shows that Hellinger consistency of joint
density functions implies frequentist consistency as
described in Equation (11). The following theorem
describes an analogous result for PoRB-Nets with
homogeneous intensities.
Theorem 1. (Consistency of PoRB-Nets) A radial
basis function network with a homogeneous Pois-
son process prior on the location of hidden units
is Hellinger consistent as the number of observations
goes to infinity.

Proof. Leveraging the results and proof techniques
from Lee (2000), we use bracketing entropy from
empirical process theory to bound the posterior prob-
ability outside Hellinger neighborhoods. We need to
check that this model satisfies two key conditions.
Informally, the first condition is that the prior prob-
ability placed on parameters larger in absolute value
than a bound Bn, where Bn is allowed to grow with
the data, is asymptotically bounded above by an
exponential term exp(−nt), for some t > 0. The
second condition is that the prior probability placed
on KL neighborhoods of the ground truth density
function p0 is asymptotically bounded below by an
exponential term exp(−nν), for some ν > 0. The
proof is in the Appendix B.

Note that consistency of predictions does not imply
concentration of the posterior in weight space, since
radial basis function networks, like other deep neural
models, are not identifiable.

7 INFERENCE
We infer the posterior p(θ | D) over the network
parameters θ with Markov-Chain Monte Carlo
(MCMC) and model predictions for new observations
and their associated uncertainties with the posterior
predictive distribution:

p(y?|x?,D) =
∫
p(y?|x?,θ)p(θ|D)dθ.

The inference algorithm can be broken down into
three steps. Step 1 updates the network weight,
center, and bias parameters

(
{wk, ck}Kk=1, b

)
condi-

tional on the network width K and intensity func-
tion with Hamiltonian Monte-Carlo (HMC) (Neal,
1996). Step 2 updates the network width K con-
ditional on the network parameters and intensity

function with birth and death Metropolis-Hastings
(MH) steps. Finally, Step 3 updates the Poisson
process intensity conditional on the other network
parameters and network width. In the case of a ho-
mogeneous intensity with a Gamma prior, we use an
MH step. In the case of a inhomogeneous intensity
defined by Equations 7 and 8 we follow the inference
procedure of Adams et al. (2009) for a sigmoidal
Gaussian Cox process, treating the current center pa-
rameters {ck} as the observed events. This involves
introducing three auxiliary variables: a collection
of “thinned” center parameters {c̃m}, the number of
thinned center parametersM , and the latent GP eval-
uated at the thinned center parameters {g̃m}. Step
3 requires updating each of these auxiliary variables,
along with the latent GP values {gk} evaluated at
the current center parameters {ck}. For convenience
we define gM+K as vector concatenating {g̃m}Mm=1
and {gk}Kk=1 and cM+K as the vector concatenating
{c̃m}Mm=1 and {ck}Kk=1. We also define L(θ) as the
likelihood of the data given all network parameters.
We next describe these steps in more detail assuming
a sigmoidal Gaussian Cox process prior on an inho-
mogeneous intensity λ(c), but the full details of the
inference procedure are available in the Appendix C.

Step 1: Update network weights, bias, and
centers. The full conditional distribution of the
weights, bias, and centers can be written as:

p({wk}, b, {ck} |K, {cm}, {g̃m}, {g̃k})

∝ L(θ) exp
{
− 1

2σ2
b

b2
}

exp
{
− 1

2σ2
w

K∑
k=1

w2
k

}

|Σ|−1/2 exp
{
−1

2gTM+KΣ−1gM+K

}
,

where Σ is the kernel matrix of the GP underlying
the intensity evaluated at all of the center parameters.
We use HMC, which requires tuning L leap-frog steps
of size ε, to propose updates from this distribution.

Step 2: Update network width K. We adapt
the network width with birth or death Metropolis-
Hastings (MH) steps chosen with equal probability.
For a birth step, we propose a weight w′ and a center
c′ from their prior distributions, and we propose a
GP function value g′ (representing g(c′)) from the
GP conditioned on the current function values gM+K
observed at cM+K . For the death step, we propose
to delete the k′th hidden unit by uniformly select-
ing among the existing hidden units. Therefore, we
can write the hidden unit birth and death proposal



densities as follows:

q(K → K + 1) ∝ N (w′; 0, σ2
w)

p(g′ | c′, cM+K ,gM+K)/µ(C)
q(K → K − 1) = 1/K

Note that since the GP has a zero mean function,
we propose c′ uniformly over µ(C), but for any fixed
intensity we propose from the density λ(c)/Λ. The
acceptance rates work out to:

abirth = L(θ′)
L(θ)

λ∗σ(g′)µ(C)
K + 1

adeath = L(θ′)
L(θ)

K

λ∗σ(gk′)µ(C) .

Step 3: Update Poisson process intensity λ.
We adopt an inference procedure similar to (Adams
et al., 2009) with two crucial differences: the “events”
{ck} (center parameters in our case) are unobserved
and the full conditional of the function values gM+K
includes the likelihood L(θ) of the data D, since
the forward pass of the network uses the posterior
mean of g to evaluate the intensity λ(c) = λ∗σ(g(c)).
We proceed as follows: i) update the number M of
thinned centers using birth and death steps, analo-
gous to updating the number of actual centers K; ii)
update the thinned center parameters {cm}Mm=1 us-
ing MH steps with perturbative proposals; iii) update
the GP function values gM+K using HMC.

8 RESULTS

Next we empirically demonstrate desirable properties
of PoRB-Net. In particular, PoRB-Net allows for
(a) easy specification of lengthscale and amplitude
variance information (analogous to a GP), and (b)
learning of an input-dependent lengthscale. We re-
port additional empirical results on synthetic and
real datasets in Appendix D.

PoRB-Net allows for easy specification of sta-
tionary lengthscale and signal variance. Fig-
ure 5 shows prior function samples from different
models (columns) with different prior settings (rows).
Compared to the top row, the second row has a
smaller overall lengthscale and the bottom row has a
higher overall variance. We plot 50 function samples
(red lines) and the estimated variance based on 10,000
function samples (black, dotted line). Like a GP, the
amplitude variance of PoRB-Net is constant over the
input space and does not depend on the lengthscale.
On the other hand, the model of Andrieu et al. (2001)
(B-RBFN), which effectively assumes a homogeneous

Poisson process prior on the center parameters but
does not rescale the basis functions based on the
intensity, has a variance that changes over the input
space and does depend on the lengthscale. For a
standard BNN (last column), the amplitude variance
and lengthscale are concentrated near the origin and
the variance increases as we decrease the lengthscale
(from 1st to 2nd row).

PoRB-Net can recover a known, input depen-
dent lengthscale. Figure 4 illustrates the capacity
of PoRB-Net to infer an input-dependent lengthscale.
Here the true function is a GP with a sinusoidal
lengthscale (see kernel in the Appendix D). The right
panel shows the center parameter intensity, inferred
from noisy (x, y) observations, corresponds to the
inverse of the true lengthscale.
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Figure 4: PoRB-Net is able to learn input-
dependent lengthscale information. The
ground truth synthetic example has been generated
from a nonstationary GP with a sinusoidal length-
scale function lsin(x).

PoRB-Nets exhibit competitive performance
on synthetic and real datasets. We compare
the performance of PoRB-Nets, GPs, and single-layer
BNNs with Gaussian activations, with the first two
sets of models trained with and without inferring
the input dependence of the lengthscale. For the
GP models, to use a constant lengthscale we use a
regular GP with an RBF kernel; to infer an input
dependent lengthscale we use the nonstationary GP
model of Heinonen et al. (2016), which we denote by
LGP.

At a high level, we see qualitative similarity between
PoRB-Nets and GPs that infer the lengthscale, and
PoRB-Nets and GPs that do not infer the lengthscale,
but the BNNs look different from the rest. This is
due to the nonstationarity of the prior, which has
higher variability near the origin. All models except
the GP are inferred using HMC (including the LGP).

We use four synthetic datasets — all drawn from GPs
with known lengthscale functions l(x) — and six real,
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Figure 5: PoRB-Net allows for easy specification of lengthscale and amplitude like a GP. We
show prior samples from PoRB-Net with a homogeneous intensity, a GP with RBF kernel, B-RBFN (Andrieu
et al., 2001), and a BNN (Neal, 1996) with a Gaussian activation. Compared to the first row, the second row
has lower lengthscale and similar amplitude, while the third row has higher amplitude and similar lengthscale.

nonstationary time series datasets – four from mimic
(Johnson et al., 2016), the CBOE volatility index over
one year starting in October 2018 (“finance”), and the
motorcycle dataset (Silverman, 1985). The datasets
drawn using a sinusoidal lengthscale lsin(x) and an
increasing lengthscale (from left to right) linc(x) can
be seen in Figures 4 and 6, respectively. lconst(x)
is a constant lengthscale, on which the GP with a
stationary, RBF kernel not surprisingly performs best
(with PoRB-Net coming in second).

To highlight differences in model behavior rather
than prior specification, we first identify the variance
and lengthscale parameters that optimize the log
marginal likelihood of the GP. We then match the
overall variance and lengthscale (as measured by the
number of upcrossings mentioned in Section 5) of the
BNN and PoRB-Net to the GP by a grid search over
the model parameters. Note that the BNN will still
have a different input dependence of variance and
upcrossings over the input space (both concentrated
near the origin). Since adjusting the lengthscale
of PoRB-Net adjusts the prior expected number of
hidden units, and during inference they can further
adapt to the data, we train BNNs with 25, 50, and
100 units, roughly corresponding to the range of units
used by PoRB-Net.

There are two main takeaways from these results:

• Examining the posterior predictives in Figure 6
qualitatively, both PoRB-Net and the LGP
adapt the local lengthscale to the smoothness of
the data, though the effect is more pronounced
in the LGP. In contrast, the BNN underesti-
mates uncertainty near x ≈ .2 in the synthetic
dataset (top row) and overestimates uncertainty
near x ≈ .8 in the real dataset (bottom row).

• The test log likelihoods in Table 1 show PoRB-
Net exhibits strong performance across the
datasets. In contrast, the performance of the
BNN varies greatly by the number of hidden
units. PoRB-Nets remove this choice by averag-
ing over different numbers of units, fully taking
advantage of the Bayesian paradigm.

Test RMSEs, posterior predictives, and inferred in-
tensities for all datasets are available in the Appendix
D. Note that HMC is a gold standard for posterior
inference; the fact that the standard BNN lacks de-
sirable properties under HMC demonstrates that its
failings come from the model and not the inference.
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Figure 6: PoRB-Net posterior predictive captures non-stationary patterns in real scenarios,
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Table 1: Test Log Likelihoods. For the BNN, we
show the best(worst) performance among models of
size 25, 50, and 100 units.

PoRB-
Net†

PoRB-
Net GP LGP BNN

sin* 0.77 0.82 0.73 0.81 0.79 (0.74)
inc* -0.40 0.00 -0.23 0.18 -0.15 (-0.28)
inc2* 0.66 0.75 0.54 0.18 0.68 (0.63)

const* 0.28 0.33 0.41 0.24 0.01 (-0.30)
mimic1 0.89 0.95 0.83 0.90 1.05 (0.91)
mimic2 0.53 0.60 0.56 0.54 0.47 (0.39)
mimic3 -0.63 -0.57 -0.67 -0.58 -0.59 (-0.65)
mimic4 -1.72 -1.53 -1.85 -1.44 -0.59 (-1.38)
finance -1.41 -0.52 -1.97 0.03 -0.73 (-2.63)
motor. 0.18 0.16 0.17 0.14 0.16 (0.12)

*synthetic dataset †infers homogeneous intensity

9 CONCLUSION

This work presents a novel Bayesian prior for neu-
ral networks called PoRB-Net that allows for easy
encoding and inference of two basic functional proper-
ties: amplitude variance and lengthscale. We provide
a principled inference scheme and future work can
address how it can be scaled.

Under standard BNN formulations, we show that it
is impossible to get such properties. The essential
pieces to achieve these properties were: i) a center-
scale parametrization (instead of classical weight-
bias), ii) an automatic adaptation of the number of
hidden units, and iii) a rescaling of the radial basis
functions based on their concentration.

We focused on Gaussian activations because they
have a limited region of effect, unlike other popu-
lar activations like tanh or ReLU. Exploring how to
get desirable properties for those activations seems
challenging, and remains an area for future explo-
ration. That said, we emphasize that RBFNs are
commonly used in many practical applications, as
surveyed in (Dash et al., 2016).

Finally, all of our work was developed in the context
of single-layer networks. From a theoretical perspec-
tive this is not an overly restrictive assumption, as
single layer networks are still universal function ap-
proximators (Park and Sandberg, 1991). However,
deep RBFNs, where only the last layer has a radial
basis function parameterization, have received re-
newed interest (Zadeh et al., 2018), so exploring deep
PoRB-Nets is an interesting area of future work.

Given the popularity of NNs and the need for uncer-
tainty quantification in them, understanding prior
assumptions—which will govern how we will quantify
uncertainty—is essential. If prior assumptions are
not well understood and not properly specified, the
Bayesian framework makes little sense: the posteriors
that we find may not be ones that we expect or want.
Though we focus on RBFNs, our work provides an
important step toward specifying NN priors with
desired basic functional properties.
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