
Greedy Policy Search:
A Simple Baseline for Learnable Test-Time Augmentation

Dmitry Molchanov∗ 1,2 Alexander Lyzhov∗ 1,3,4 Yuliya Molchanova∗ 1 Arsenii Ashukha∗ 1,2 Dmitry Vetrov 2,1

1Samsung AI Center Moscow
2Samsung-HSE Laboratory, National Research University Higher School of Economics

3National Research University Higher School of Economics
4Skolkovo Institute of Science and Technology

Abstract

Test-time data augmentation—averaging the
predictions of a machine learning model across
multiple augmented samples of data—is a
widely used technique that improves the pre-
dictive performance. While many advanced
learnable data augmentation techniques have
emerged in recent years, they are focused on
the training phase. Such techniques are not
necessarily optimal for test-time augmentation
and can be outperformed by a policy consist-
ing of simple crops and flips. The primary
goal of this paper is to demonstrate that test-
time augmentation policies can be successfully
learned too. We introduce greedy policy search
(GPS), a simple but high-performing method
for learning a policy of test-time augmenta-
tion. We demonstrate that augmentation poli-
cies learned with GPS achieve superior predic-
tive performance on image classification prob-
lems, provide better in-domain uncertainty es-
timation, and improve the robustness to do-
main shift.

1 INTRODUCTION

Convolutional neural networks (CNNs) have become a
de facto standard for problems with complex data that
contain a lot of label-preserving symmetries. Such archi-
tectures use spatially invariant operations that have been
specifically designed to reflect the symmetries present
in data. These architectural choices are not enough, so

∗ Equal contribution

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

Figure 1: A sample from the test-time data augmentation
policy learned by greedy policy search for EfficientNet-
B5 on ImageNet. Averaging the predictions across sam-
ples from the policy outperforms the conventional multi-
crop evaluation by a wide margin.

data augmentation that artificially expands a dataset with
label-preserving transformations is used during training
to further promote the invariance to such symmetries.

Training with data augmentation has been used for a
long time to improve the predictive performance of
machine learning and pattern recognition algorithms
(Yaeger et al., 1997; Simard et al., 2003; Krizhevsky
et al., 2012). Earlier techniques enlarge datasets with a
handcrafted set of transformations, such as scale, trans-
lation, rotation, and require manual tuning of augmenta-
tion strategies. Recent works explore learnable and more
diverse strategies of data augmentation (Cubuk et al.,
2019a,b; Lim et al., 2019). These strategies have become
a standard component of training powerful deep learning
models (Tan & Le, 2019).

Even when learning with data augmentation, CNNs
are still not perfectly invariant to all the symmetries
present in the data distribution. Therefore, test-time
augmentation—averaging the predictions of a model
across multiple augmentations of an object—often in-
creases predictive performance. A special case of test-
time augmentation called multi-crop evaluation has even
become a standard evaluation protocol for large scale im-
age classi�cation (Krizhevsky et al., 2009; Simonyan &
Zisserman, 2014; He et al., 2016). Test-time augmenta-
tion is, however, limited to simple transformations and
usually does not bene�t from using a more diverse aug-
mentation policy, e.g. the one used during training.

In this work, we aim to demonstrate that test-time aug-
mentation of images can bene�t more from a wide range
of diverse data augmentations if their composition is
learned. We introducegreedy policy search(GPS),
a simple algorithm that learns a policy for test-time
data augmentation based on the predictive performance
on a validation set. In an ablation study, we show
that optimizing the calibrated log-likelihood (Ashukha
et al., 2020) is a crucial part of the policy search algo-
rithm, while the default objectives—accuracy and log-
likelihood—lead to a signi�cant drop in the �nal perfor-
mance.

Our evaluation is performed on the following problems:
conventional image classi�cation, in-domain uncertainty
estimation, and classi�cation under dataset shift. We
demonstrate that test-time augmentation policies found
by GPS (see an example on Figure 1) outperform other
data augmentation baselines signi�cantly on a wide
range of deep learning architectures from VGG-style net-
works (Simonyan & Zisserman, 2014) to the recently
proposed Ef�cientNets (Tan & Le, 2019). GPS pro-
vides consistent improvements in the performance of en-
sembles, models trained with powerful train-time data
augmentation techniques such as AutoAugment (Cubuk
et al., 2019a) and RandAugment (Cubuk et al., 2019b),
as well as models trained without advanced data augmen-
tation. We also show that the obtained policies transfer
well across different architectures.

2 RELATED WORK

Test-time augmentation The test-time data augmen-
tation (TTA) has been present for a long time in deep
learning research. Krizhevsky et al. (2012) averaged the
predictions of an image classi�cation model over random
crops and �ips of test data. This became a standard evalu-
ation protocol (Krizhevsky et al., 2009; Simonyan & Zis-
serman, 2014; He et al., 2016). Shorten & Khoshgoftaar
(2019) provided an extensive survey of data augmenta-
tion for deep learning including test-time augmentation,

pointing out several successful applications of TTA in
medical imaging. As one example, Wang et al. (2019)
show that TTA improves uncertainty estimation for med-
ical image segmentation. Pang et al. (2019) demon-
strated that mixup data augmentation (Zhang et al., 2017)
can be applied during testing, improving defense against
adversarial attacks on image classi�ers.

Learnable train-time augmentation Data augmenta-
tion is more commonly applied during training rather
than during inference. Seeking to improve train-time
augmentation, a recent line of works starting from Cubuk
et al. (2019a) explored the practice of adapting it to pe-
culiarities of a speci�c dataset. AutoAugment (Cubuk
et al., 2019a) learns an augmentation policy with rein-
forcement learning and requires a repetition of an expen-
sive model training for each iteration of the policy search
algorithm. Subsequent works proposed more ef�cient
methods of policy search for training set augmentation
(Ho et al., 2019; Cubuk et al., 2019b; Lim et al., 2019;
Zhang et al., 2019).

Ensembling Neural network ensembling—computing
predictions using a distribution over neural networks in-
stead of a single model—improves performance on var-
ious machine learning problems. Often, ensembling in-
volves obtaining a set of trained neural networks and av-
eraging their predictions on each test object. There are
many methods of ensembling (Srivastava et al., 2014;
Blundell et al., 2015; Lakshminarayanan et al., 2017;
Huang et al., 2017), differing in time and memory re-
quirements, diversity of ensemble members and perfor-
mance.

Sub-ensemble selection Even though a single model
is used for TTA, it makes sense to see the TTA as an en-
semble of different models, each with its own augmenta-
tion sub-policy. The speci�c members in this ensemble
can be selected from a variety of discrete possibilities.
Historically, ensemble pruning methods have been ap-
plied for such optimization problems. Partridge & Yates
(1996) introduced a heuristic which can serve as a rule
of selection of ensemble members. Fan et al. (2002);
Caruana et al. (2004) described and used another, sim-
pler, greedy ensemble pruning method which is the one
that we adopt in this work for test-time augmentation.

3 LEARNABLE TEST-TIME
AUGMENTATION

In this section we discuss the training of test-time aug-
mentation policy for image classi�cation problems.

Policy We de�ne a test-time augmentation (TTA) policy

P as a set of sub-policiesf si (�)g. A sub-policys(�) con-
sists ofNs consecutively applied image transformations
t j (�; M j), j 2 f 1; : : : ; Nsg, wheret j is one of the pre-
de�ned image operations,M j � 0 being its magnitude.
The transformations that we use and their respective typ-
ical magnitudes are listed in Appendix A. A visualization
of these transforms is presented in Figure 13.

Inference During inference, the predictions are aver-
aged across samples of different sub-policies:

� P
� (x) =

1
jP j

X

s2 P

p(y j s(x); �): (1)

3.1 Naive approaches to test-time augmentation

Common test-time augmentation policies consist of sub-
policies that are sampled independently from a �xed dis-
tribution. For example, a single sub-policy may con-
sist of randomly resized crops and horizontal �ips. A
potential alternative is to use the same policy that has
been learned for training (e.g. a policy obtained with
RandAugment (Cubuk et al., 2019b) or AutoAugment
(Cubuk et al., 2019a)) to perform test-time augmenta-
tion. A possible motivation behind this choice is that
such a policy might re�ect the speci�cs of a particular
dataset or architecture better.

For simplicity, we use a slightly modi�ed set of PIL
transforms that is commonly used for learning the train-
ing time augmentation policies as test-time augmentation
transformation options.

Our experiments indicate that in some cases (Figure 2) a
TTA policy that was learned for training performs worse
than the default policy consisting of random scalings,
crops and �ips. This means that the process of learn-
ing a policy for training does not necessarily result in a
good TTA policy. A natural alternative is to learn the
TTA policy for a trained neural network by directly opti-
mizing some TTA performance objective. For example,
we can parameterize a policy with a magnitude parame-
ter shared across all transformations, as in RandAugment
(Cubuk et al., 2019b), and �nd the optimal magnitude
using grid search. As we show in Figure 12, the optimal
magnitude for test-time augmentation is different from
the optimal magnitude for training. To push the idea of
direct optimization of TTA performance further, we em-
ploy the greedy ensemble pruning for TTA. The resulting
method,greedy policy search, can be considered a sim-
ple yet strong baseline for more advanced discrete op-
timization method like reinforcement learning, used in
AutoAugment (Cubuk et al., 2019a), or Bayesian opti-
mization, used in Fast AutoAugment (Lim et al., 2019).

Figure 2: Accuracy of Ef�cientNet B2 (trained with
RandAugment) on ImageNet for two TTA strategies:
scale-crop-�ip augmentation, and RandAugment (the
same as during training). The scale-crop-�ip policy out-
performs the RandAugment policy and the effect still
holds for large number of samples. This example demon-
strates that the policy learned for training is not necessar-
ily optimal for test-time augmentation.

3.2 Greedy policy search

We introducegreedy policy search(GPS) as a means
of demonstrating that learnable policy for test-time aug-
mentation can boost the predictive performance, uncer-
tainty estimates and robustness of deep learning models.

Greedy policy search GPS starts with an empty pol-
icy and builds it in an iterative fashion. It searches for
the sub-policy that provides the largest performance gain
when added to the current policy. This selection step is
repeated until a policy of the desired length is built. To
make the procedure computationally ef�cient, we �rst
draw a pool of candidate sub-policies from a prior dis-
tribution over sub-policiesp(s). We precompute the pre-
dictions on all these sub-policies so that the sub-policy
selection step could be performed in the space of predic-
tions without passes through the neural network. Both
the pool generation and the selection procedure are em-
barrassingly parallel, so the resulting algorithm is ef�-
cient and easily scalable. The whole procedure is sum-
marized in Algorithm 1.

Optimization criterion The criteria of predictive per-
formance that are often used as objectives for policy, ar-
chitecture or hyperparameter search are classi�cation ac-
curacy and log-likelihood. We �nd, however, that these
criteria are ill-suited for TTA policy search. As we dis-
cuss in Section 4.2, the log-likelihood is unable to fairly
judge the performance of test-time augmentation, and
the accuracy is typically too noisy to provide an ade-
quate signal for learning a well-performing TTA policy.
We follow Ashukha et al. (2020) and use the calibrated
log-likelihood instead. The calibrated log-likelihood is
de�ned as the log-likelihood measured after the post-

Figure 3: An illustration of one step of the greedy policy search algorithm. Each step selects a sub-policy that provides
the largest improvement in calibrated log-likelihood of ensemble predictions and add it to the current policy.

Algorithm 1 Greedy Policy Search (GPS)

Require: Trained neural networkp(y j x; �)
Require: Validation dataX val ; yval

Require: Pool sizeB , policy sizeT
Require: Prior over sub-policiesp(s)

S ; . Pool of candidate sub-policies
for i 1 to B do

si � p(s)
S S [f si g . Add si to pool
� si

val p(y j si (X val); �) . Predict withsi

end for
P ; . GPS policy
� P

val 0 . Predictions made with GPS policy
for t 1 to T do
. Choose the best sub-policys� based oncalibrated

log-likelihood on validation:
s� arg max

s2 S
cLL

�
t � 1

t � P
val + 1

t � s
val ; yval

�

� P
val t � 1

t � P
val + 1

t � s�

val . Update predictions
P P [f s� g . Update policy

end for
return policy P

hoc temperature scaling (Guo et al., 2017). The tem-
perature scaling is typically performed by optimizing the
validation log-likelihood w.r.t. the temperature� of the
softmax(�=�) function used to obtain the predictions.
Our experiments show that the calibrated log-likelihood
is the key ingredient of GPS. This objective is suited for
learning TTA policies better than both accuracy and con-
ventional uncalibrated log-likelihood.

4 EXPERIMENTS

We perform experiments with greedy policy search on a
variety of architectures on CIFAR-10/100 and ImageNet
classi�cation problems. On CIFAR-10/100 datasets
(Krizhevsky et al., 2009), we use VGG16 (Simonyan &

Zisserman, 2014), PreResNet110 (He et al., 2016) and
WideResNet28x10 (Zagoruyko & Komodakis, 2016).
On ImageNet (Russakovsky et al., 2015), we use
ResNet50 and Ef�cientNet B2/B5/L2 (Tan & Le, 2019).
PyTorch (Paszke et al., 2017) is used for all experiments.
The source code is available athttps://github.
com/bayesgroup/gps-augment .

Training CIFAR models were trained for 2000 epochs
using a modi�ed version of RandAugment withN = 3
transformations for each image, where the magnitude of
each transformation for each image has been drawn from
the uniform distributionfM � U [0; 45]. We provide the
details of training these models in Appendix A.

We reused the publicly available snapshots2& 3 of Ima-
geNet models. Ef�cientNets B2/B5 were trained with
vanilla RandAugment, Ef�cientNet L2 was trained with
Noisy Student (Xie et al., 2020) and RandAugment,
ResNet50 was trained with AugMix (Hendrycks et al.,
2020) and RandAugment.

Policy search To obtain the results on CIFAR datasets,
we �rst train all our models with the same strati�ed train-
validation split (we use 45000 objects for training and
5000 objects for validation), and perform GPS or magni-
tude grid search on the validation set. We then retrain all
models on the full training set, and evaluate them with
the obtained policies. Since we did not train the Im-
ageNet models, we split the validation set in half with
a strati�ed split, use the �rst half for policy search and
report the results for the second half. We use approxi-
mately 1000 sub-policies in the candidate pools for GPS,
and describe the construction of the pools in Appendix A.

Evaluation Following Ashukha et al. (2020), we use
the calibrated log-likelihood as our main evaluation met-

2https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet

3https://github.com/rwightman/
pytorch-image-models

	INTRODUCTION
	RELATED WORK
	LEARNABLE TEST-TIME AUGMENTATION
	Naive approaches to test-time augmentation
	Greedy policy search

	EXPERIMENTS
	In-domain predictive performance
	What metric to use for policy search?
	Robustness to domain shift
	Policy transfer
	Greedy policy search for ensembles
	Greedy policy search for models trained with vanilla augmentation

	CONCLUSION
	Experimental details
	Additional experimental results

