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Abstract

A major obstacle to forming posterior distri-
butions in machine learning is the difficulty of
evaluating partition functions. Monte-Carlo ap-
proaches are unbiased, but can suffer from high
variance. Variational methods are biased, but
tend to have lower variance. We develop an
approximate inference procedure that allows
explicit control of the bias/variance tradeoff, in-
terpolating between the sampling and the vari-
ational regime. We use a normalizing flow to
map the integrand onto a uniform distribution.
We then randomly sample regions from a parti-
tion of this uniform distribution and fit simpler,
local variational approximations in the image of
these regions through the flow. When a partition
with only one region is used, we recover stan-
dard variational inference, and in the limit of an
infinitely fine partition we recover Monte-Carlo
sampling. We show experiments validating the
effectiveness of our approach.

1 INTRODUCTION

Integration of high-dimensional functions is a central
problem in many fields, serving as the workhorse that
powers posterior inference in probabilistic machine learn-
ing, inference with latent-variable models, and risk-
sensitive modelling in finance (Dick et al., 2013). How-
ever, methods that work well in low dimensions can
quickly become computationally intractable as the di-
mension increases: this is the so-called curse of dimen-
sionality. This challenge motivates the development of
approximate methods. The two main families of approx-
imate methods are: (1) variational approaches, which
fit an approximating function to the integrand, and (2)
Monte-Carlo methods, which take random samples from
the domain of the integrand to compute its average value
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(Bishop, 2006). While Monte-Carlo methods are guar-
anteed to give the correct result in the limit of infinite
samples (i.e., they are unbiased), they can suffer from
high variance. Conversely, variational methods are bi-
ased, but the resulting Evidence Lower Bound (ELBO)
(Ranganath et al., 2013) has zero variance if evaluated
analytically. Monte Carlo methods for approximating the
ELBO introduce some variance, but this variance is typi-
cally smaller than pure sampling-based methods. Viewing
the two families of methods as two extremes on the bias-
variance tradeoff (Bishop, 2006), we observe that it is
frequently useful to move along the bias/variance curve,
e.g. incurring some bias in order to reduce the variance to
manageable levels, or in order to speed up computation
time.

We describe a method that allows continuous interpola-
tion along the bias-variance curve, from the high-bias,
low variance variational inference (VI) regime to the high-
variance, low-bias sampling regime. We randomly sam-
ple from a partition of the integration domain and fit
variational approximations inside each ‘cell’ of the par-
tition. Stratification in Monte-Carlo methods refers to
sub-sampling the integration domain to increase sample-
efficiency: we can view our method as a form of stratifica-
tion for variational inference. In the limiting case where
the size of the cells goes to zero, we recover ordinary
importance sampling, where the proposal distribution is
given by the normalizing flow’s induced probability dis-
tribution, and in the limit with a single partition cell we
recover ordinary variational inference.

The variance of our method depends heavily on the choice
of partition. Similarly to importance sampling (IS), we
want to choose a partition which is adapted to the objec-
tive function, with most of the partition cells in regions
where the objective function is large. Normalizing flows
provide a natural method to provide this partition of the
integration domain, by choosing a uniform partition of
the flow’s base space and observing the image in the in-
tegration domain. In a toy experiment we show that the



Figure 1: A schematic illustrating our approach. Regu-
lar sub-regions of a uniform density are mapped via an
invertible transformation T✓ (learned via a normalizing
flow) onto regions of Z with equal f -density. We then
randomly sample a cell Ci in U , and fit a variational den-
sity q�i which via T✓ induces a distribution on Bi. We
compute the corresponding ELBO and repeatedly sample
further cells, combining the ELBO estimates to obtain an
estimate of

R
Z f(z)dz. We do not need to exhaustively

sample all the cells, some random subset is sufficient. The
number of sampled cells and size of the cells determines
the bias/variance tradeoff.

partitioning scheme gives lower ELBOs than the same ar-
chitecture fitted variationally. In a Bayesian linear regres-
sion experiment where we show that our method achieves
the same result as exhaustive sampling with hundreds of
millions of points, while the ordinary variational approach
suffers from high bias.

2 BACKGROUND

Many problems require high-dimensional integration. An
example is computing the posterior distribution of a pa-
rameter ✓ over its possible values ⇥ given some data
D and a likelihood function P (D|✓): from Bayes’ the-
orem P (✓|D) = P (D|✓)P (✓)/P (D). Since P (D) =R
⇥ P (D|✓0)P (✓

0
)d✓

0, to compute P (D) we must inte-
grate over a possibly very high-dimensional space if
the dimensionality of ✓ is high. Similarly, in latent
variable models we must marginalise out latent vari-
ables h with possible values H , so that e.g. P (y|x) =R
H
P (y|x, h)P (h)dh. More generically, we can pose the

goal of an approximate inference algorithm: to provide

an estimate of
Z

Z
f(z)dz, (1)

with Z ⇢ Rd and f � 0.

In low dimensions, it is feasible to compute integrals to
high accuracy by evaluating f on a grid of points, but
the number of points needed grows exponentially with
the dimension d (Papageorgiou & Wasilkowski, 1990).
Monte-Carlo methods forego exhaustive enumeration on
a regular grid in favour of randomly choosing points in
Z and forming the empirical average. If the N points
are drawn from a known distribution q with q(z) > 0 for
points where f(z) > 0, we find

Z

Z
f(z)dz = Ez⇠q


f(z)

q(z)

�
⇡ 1

N

NX

i=1

f(zi)

q(zi)
, (2)

where zi ⇠ q. When the distribution q is proportional
to f , this estimator has zero variance, and will generally
have lower variance if q has high density in regions where
f has high values (Owen & Zhou, 2000).

In contrast to Monte-Carlo methods, variational meth-
ods maximize a lower bound to

R
Z f(z)dz, noting from

Jensen’s inequality that for any distribution q,

logEz⇠q


f(z)

q(z)

�
� Ez⇠q [log f(z)� log q(z)] . (3)

The quantity on the right hand side is known as the evi-
dence lower bound (ELBO). By parameterizing the distri-
bution q with a parameter ✓ from a set ⇥ and maximizing
the ELBO with respect to ✓, we can obtain a lower bound
on the value of the integral. In the extreme case when
f / q, the lower bound becomes tight. For each varia-
tional family corresponding to a set of possible parameters
⇥, there is a set of parameters ✓ which achieve the high-
est ELBO. Assuming we can carry out the optimization
to find such a ✓, and q and f are sufficiently simple so
that equation 3 can be evaluated analytically (e.g., mean
field inference in graphical models), this approximation
is deterministic. Even when equation 3 is estimated via
Monte Carlo as in black box variational inference (Ran-
ganath et al., 2013), the variance of the ELBO estimate is
typically small.

This characterizes the bias-variance tradeoff involved
in the choice between variational inference and impor-
tance sampling. Variational inference will always return
an underestimate of the objective, but typically has low
variance. The importance sampling approach is unbiased
but can have very high variance, so may take an unfeasi-
bly large amount of time to recover an accurate estimate.
With a poor proposal distribution, the estimate may even



appear to converge quickly, but to an incorrect value. This
is because significant contributions to the estimate can
come from very rare points under the proposal, with large
importance weights (Owen & Zhou, 2000). Our method
allows interpolation between the fully-variational and the
fully-importance-sampled extremes, allowing the amount
of bias and variance to be tuned according to the specific
problem.

2.1 NORMALIZING FLOWS

A normalizing flow (Rezende & Mohamed, 2015; Papa-
makarios et al., 2019) is a density model constructed by
applying an invertible transformation T : U ! Z to a
base density ⇡0, resulting in a density q on Z . The change
of variables equation gives an expression for q:

q(T (u)) = ⇡0(u)

����det
dT

du

���� , (4)

where dT

du
is the Jacobian of T with respect to u. Flow

models allow for exact likelihood evaluation, unlike some
other models, such as variational autoencoders (Kingma
& Welling, 2013), where we can only tractably evaluate
a lower bound on the likelihood. However, the exact
likelihood comes at a cost: parameterising T such that it
is invertible is not straightforward, and can require a large
number of parameters to develop expressive flow models.

Most density-modelling applications of flows involve
modelling the inverse transform T

�1 Dinh et al. (2017);
Grathwohl et al. (2019), using the equivalent formulation
q(z) = ⇡0(T

�1
(z))

���det dT
�1

dz

���, since learning a flow to
maximize the likelihood of samples z from a distribution
requires evaluating and optimizing q(z). By contrast, our
application does not assume that we can sample from
our objective f (in fact f does not even need to be a nor-
malized density). Therefore, we train our flow by taking
samples u from the base distribution, and only model the
forward transform T . Since we implemented our flow
using RealNVP, a coupling flow, we can tractably evalu-
ate both T and T

�1. However these considerations are
important if future work uses autoregressive flows, where
generally only one of T or T�1 are able to be tractably
evaluated, and computing the other may be up to d times
slower, for a d-dimensional flow (Papamakarios et al.,
2019).

The base distribution ⇡0 is generally chosen to be a unit
multivariate normal distribution, which has a tractable
density, unbounded support, and is easy to sample from.
However, we use a base distribution which is the uniform
distribution on the unit cube [0, 1]

d, since we want to
choose partition cells with equal probability mass. These
are easily obtained with cubes in the base space for the

uniform distribution, and is somewhat more involved in
the Gaussian case. Using the uniform density requires
some care, which we discuss in section 4.2.

3 METHOD

Recall that our goal is to compute integrals of the formR
Z f(z)dz. Given a distribution q, we have a lower bound:

log

Z

Z
f(z) � Ez⇠q [log f(z)� log q(z)] . (5)

We can form a finite partition PN of Z: a family of N
disjoint nonempty sets Bi such that

S
i
Bi = Z . In each

cell we define a separate distribution qi (supported only
on Bi) and observe that
Z

Bi

f(z)dz � exp (Ez⇠qi [log f(z)� log qi(z)]) . (6)

Summing the lower bounds from each cell, we have
Z

Z
f(z)dz �

X

i

expEz⇠qi


log

f(z)

qi(z)

�
. (7)

If we introduce a distribution QN over cells in PN , we
can introduce importance-weighting to obtain our lower
bound LQN ,
Z

Z
f(z)dz � EBi⇠QN


1

QN (Bi)
expEz⇠qi


log

f(z)

qi(z)

��

= LQN . (8)

This expression reduces to familiar cases in two natural
limits. In the case with a single cell which encompasses
Z , we have the standard variational lower bound. At the
other extreme, in the limit when the size of the cells is
very small, f is approximately constant, and so the qi that
gives the tightest bound is the uniform distribution over
Bi. The family of distributions QN over cells approaches
a distribution Q over points in Z , and so we recover a
lower bound Ez⇠Q [f(z)/Q(z)], which is the standard
importance sampling expression. A special case that we
will use heavily is when we choose uniformly from a
partition R splitting Z into N pieces, where we get a
lower bound

LN = NEBi⇠U(R) [expEz⇠qi [log f(z)� log qi(z)]] ,

(9)

which we can estimate with an estimator

L̂N =
N

n

nX

i=1

exp

0

@ 1

n0

n
0X

j=1

log f(zi,j)� log qi(zi,j)

1

A ,

(10)



where we take the average from a sample of n cells (out
of a partition with N cells), in each cell computing the
ELBO using n

0 samples, where zi,j is the jth point in a
batch of n0 points drawn from the distribution qi.

Although LN is always a valid lower bound, we want
the tightest lower bound possible. The key idea behind
our approach is that since LN is valid for all choices of
inner-cell distributions qi, we can improve the estimator
by optimizing each qi before evaluating L̂N . Since we
expect the variational optimization task in each cell to be
easier than optimization over the entire space, we would
hope to be able to find a qi which is a close approximation
to f . However, the easier optimization task in each cell
comes at the cost of increased variance in the estimate of
the objective LN as we try to estimate the global ELBO
with individual ELBOs. The pseudocode in algorithm 1
describes this procedure. We can also interpret our ap-
proach as lazily sampling parts of a very good variational
function, which is defined piecewise in the cells of Z .

Theorem 1 illustrates that this procedure reduces to esti-
mation of

R
Z f(z)dz using importance sampling in the

limit of N ! 1, and Theorem 3 (in the appendix)
shows that finite-sample estimates of LN are indeed lower
bounds with high probability. In the next section, we dis-
cuss how to find a good partition of Z , which determines
the variance of our estimator.
Theorem 1. For any distribution q, we can construct a
sequence of partitions PN and probability distributions
over the cells QN such that the distribution of points
obtained by sampling a cell from QN then uniformly sam-
pling from that cell converges in distribution to q. Under
that choice of PN and QN , the importance-weighted ex-
ponential of the ELBO obtained in the cell as a function
of z converges pointwise to f(z)/q(z).

Proof. We choose a partition of Rd into rectangular
cells with side length 2

�n, and a probability distribu-
tion over the cells QN (Bi) =

R
Bi

q(z
0
)dz

0. If we
choose a point Z in Z by choosing a cell Bi with prob-
ability QN (Bi) and then choose a point uniformly in
the cell, Z has a piecewise-constant density RN (z) =

1
Vol(B(z))

R
B(z) q(z

0
)dz

0, where we define B(z) = {Bi :

z 2 Bi}. By the Lebesgue differentiation theorem,
limN!1 RN (z) = q(z) almost everywhere, and since
the densities are a.e. the same, the random variables con-
verge in distribution.

Now consider as a function of z, the corresponding value
obtained, SN (z) = QN (B(z))�1

expELBO(B(z)). In
the limit n ! 1, we have

lim
N!1

SN (z) = lim
N!1

1

QN (B(z)) exp


E
z0⇠qi

log
f(z

0
)

qi(z
0)

�
.

(11)

Noting that our choice of the uniform distribution over
the cell has qi(z) = vol(Bi(z)), we also have QN (Bi) =

RN (z) vol(Bi), so cancelling the log q term we obtain

lim
N!1

SN (z) = lim
N!1

1

RN (z)
exp

Z

B(z)

log f(z
0
)

vol(B(z))dz
0
,

(12)

so limN!1 SN (z) = f(z)/q(z).

Theorem 2. For a variational distribution q sup-
ported on Z with ELBO ELBO(Z), and a parti-
tion of Z into two parts A,B with

R
A q =

R
B q,

log [expELBO(A) + expELBO(B)] � ELBO(Z),
where ELBO(A) is the renormalized q with q(z) = 0

if z /2 A, q(z)/
R
A q(z

0
)dz

0 otherwise, similarly for B.

Proof. Expanding ELBO(Z),

ELBO(Z) =
1
2

Z

Z
qA(z)


log

f(z)

qA(z)
+ log 2

�
dz

(13)

+
1
2

Z

Z
qB(z)


log

f(z)

qB(z)
+ log 2

�
dz (14)

=
1
2 ELBO(A) +

1
2 ELBO(B) + log 2,

(15)

If we use those two ELBO estimates separately in our
estimator and compare to the log of our lower bound,

logL2 = log [expELBO(A) + expELBO(B)] ,

using Jensen’s inequality,

logL2 � 1

2
[ELBO(A) + ELBO(B) + 2 log 2] (16)

� ELBO(Z). (17)

4 IMPROVING OUR ESTIMATOR

Recall our estimator from equation (10). We can see that
its bias and variance will depend on both our choice of
a partition of Z and of the individual variational distri-
butions qi. In this section we discuss how to find a good
partition which will allow us to train flexible variational
distributions.

4.1 CHOICE OF PARTITION

We can see from inspection of equation (10) that the
variance of L̂N is minimized when the ELBO is the same



Algorithm 1: Pseudocode for Evaluating L̂QN

Input :Set of cells P partitioning Z into N parts,
distribution Q assigning probability Q(Bi) to
cell Bi, number of cells to sample n, number of
inner optimization steps m, objective function f .

output :Estimate of L̂QN , with
R
Z fdz � L̂QN with

high probability given sufficiently large n.
for i 2 (1, . . . , n) do

Initialize distribution q✓i with parameters ✓i from
random
Sample Bi from QN

for j 2 (1, . . . ,m) do
Sample n

0 points from Bi

Compute ELBO(Bi) =
1
n0

P
n0 log

f(z)
qi(z)

Step ✓i in direction of r✓i ELBO(Bi)

end
Store Si = QN (Bi)

�1
expELBO(Bi)

end
Return N

n

P
i
Si

across all partition cells. We do not know what the ELBO
in each cell will be, as it depends on the specifics of the
optimization procedure and variational family. However,
we know that ELBO(Bi) 

R
Bi

f(z)dz, and so a useful
heuristic would be to choose a partition such that that
the total density of f in each cell is equal. However, in
general such a partitioning would be difficult to specify
explicitly for a complicated f , as each cell would have
a complicated shape. Therefore, we can leverage the
properties of normalizing flows to obtain this partitioning.

If we train a normalizing flow to have density proportional
to f , equal-probability-mass regions in the base space will
be mapped to equal f -mass regions in Z . The simplest
approach, and the one we will take here, is to learn a flow
with its base density supported uniformly on the unit cube
(0, 1)

d. We can then choose a partition of the unit cubes
into smaller cubes. The image of the smaller cubes under
the flow transformation are the cells in the partition of Z .
We learn the flow by minimizing the KL-divergence

DKL(q(z)kf̃(z)) = E
z⇠q


log

q(z)

f(z)
� log

Z

Z
f(z

0
)dz

0
�
,

(18)

where f̃(z) = f(z)/
R
Z f(z)dz, so that f̃ is a probability

distribution. However, the normalization term does not
appear during optimization of q, since it is independent
of q. Note that we cannot use the forward KL-divergence
because we do not assume that we can sample from f̂ . Fi-
nally, we must ensure that our partition covers the entirety
of Z by designing q such that it has support everywhere
in Z . This condition is generally satisfied for most flow

Figure 2: A uniform partition under the image of a flow
model trained to fit a 2d unit Gaussian. Uniform cells in
the base space are mapped to nonlinear regions in Z . Faint
lines show level sets of the Gaussian density, thick lines
show grid lines in the base space. Points are uniformly
sampled in the base space.

architectures if we use a base distribution with unbounded
support such as the normal, but it is not necessarily sat-
isfied for our uniform distribution. We discuss how we
ensure the flow has unbounded support in section 4.4.

Using a flow to provide our partition has two desirable
features. We have a method to learn partitions that will
result in lower-variance estimates. Secondly, we have an
explicit transformation which maps a regularly-shaped
domain (a box in the base space) to a region with a com-
plicated shape. This allows us to perform optimization
(e.g. fitting a variational approximation) in the region
by fitting in the regularly-shaped cell in the base space
and projecting into Z . Figure 2 shows an example of a
partitioning from the unit cube to the unit Gaussian.

4.2 OPTIMIZATION OF NORMALIZING FLOW

For many normalizing flow architectures it is important
to specify whether the forward transform T or the reverse
transform T

�1 is the primary direction to model. Inspect-
ing the optimization procedure, we see that we have to
compute

r✓DKL

⇣
q✓(z)kf̃(z)

⌘
= r✓Ez⇠q


log

q(z)

f(z)

�
. (19)

If we are able to compute rzf(z), then we can reparam-
eterize (Kingma & Welling, 2013) in terms of the base
density to obtain

r✓DKL

⇣
q✓(z)kf̃(z)

⌘
=� Eu⇠⇡0

⇥
r✓ log

��JT✓(u)

��⇤

(20)

� Eu⇠⇡0 [r✓ log f(T✓(u))]

(21)



where ⇡0 is the uniform distribution on the unit cube, and
JT✓(u) is the Jacobian of T at u. The requirement of be-
ing able to compute rzf(z) does not seem particularly
onerous given that we assume we have a method to com-
pute f(z) and the mature tools available for automatic
differentiation (Maclaurin et al., 2015).

However, if we cannot evaluate rzf(z), then we
must use the higher-variance score function esti-
mator (Williams, 1992), with a gradient estimator
�Ez⇠q✓ [log(f(z)/q✓(z))r✓ log q✓(z)], using the reverse
Jacobian to compute q✓(z) and r✓ log q✓(z). Since our
approach would then require evaluation of both T and
T

�1, this would be slow for flow architectures such as
autoregressive models.

4.3 JOINT TRAINING

Until now we have only discussed finding good partitions
PN and variational functions qi separately. However,
we might find that optimization difficulties or limited
model expressiveness result in a partition which is not
well-suited for our task. For example, if the flow col-
lapses to a single mode of a multimodal distribution, most
of the cells would be in that mode, resulting in a high
variance estimator. Exactly matching the density of f is
certainly a sufficient condition for providing a partition-
ing with minimal variance, but it is not necessary. Indeed
when evaluating LN using algorithm 1, any partitioning
which splits up Z into regions of equal f density will
work equally well given flexible qi. We want to obtain
our partitioning flow by solving the easiest possible prob-
lem, which raises the question of whether it is possible to
directly optimize the flow parameters for the task of pro-
viding good partition cells, not simply density matching.

The most straightforward approach would be to directly
optimize LN from estimates using equation 10. However,
the exponentials involved give the gradient a very high
variance, with almost all of the gradient contribution to
the base flow’s parameters coming from the cell which
happens to have a higher ELBO than the rest. This con-
tinues until the cell with the largest ELBO has become
very large. Taking a more heuristic approach, we could
also sample cells and optimize the mean ELBO. However,
since we do not sample all the cells and the non-active
cells do not contribute to the objective being optimized,
there is a danger of the active cells expanding to take all
of the density of f , essentially overfitting the active cells
onto the density. We found that we could regularize this
optimization procedure by including a term in the loss
equal to the ELBO using a partition with only a single
cell, with a variational density provided by the uniform
distribution over the flow base space. In other words, the
regularization term is the ELBO using the partitioning

flow as a variational approximation on the whole space.
Since the ELBO over the whole space will suffer if indi-
vidual cells become too large, including the ELBO over
the whole space penalises the behaviour of cells growing
too large. Therefore the surrogate loss we use in training
with n cells is

1� �

n

X

i

ELBO(Bi) + �ELBO(Z), (22)

where ELBO(Z) is the ELBO taken over the whole space.
Figure 3 shows a comparison of the two methods on a
two-dimensional mixture-of-sixteen-Gaussians objective.
We see that the plain variational approach has large areas
of the support of the objective where there is little support
from the variational function, and has some partition cells
with quite pathologically stretched out shapes, while the
method trained with the joint approach covers all of the
modes.

4.4 IMPLEMENTATION DETAILS

We implemented our method with the RealNVP normal-
izing flow archtitecture (Dinh et al., 2017), using four
layers for the partitioning normalizing flow and another
four layers to model each of the instantiated variational
distributions qi. Each scale-and-shift function was mod-
elled with a 256-hidden-unit multilayer perceptron with
ReLU nonlinearities. Since a scale-and-shift from a unit
cube does not result in support over Rd, we added an
elementwise inverse sigmoid operation before the first
scale-and-shift, updating the log Jacobian accordingly. To
model the densities in individual cells, we used a flow
with an elementwise sigmoid after the final shift-and-
scale layer, mapping into the unit box, and then scaled
and shifted the output into the required cell, again incor-
porating the shift into the total log Jacobian. We incorpo-
rated a small ✏ = 10

�5 into the sigmoid (i.e. mapping to
[✏, 1�✏]

d instead of (0, 1)d) to avoid numerical instability
from samples that were very near the box boundary and
so mapped to areas with extremely low objective density.

5 EXPERIMENTS

5.1 GAUSSIAN GRIDS

A setting where we expect our approach to help is the
situation when the target density f has multiple modes.
It has been noted that normalizing flows struggle with
multi-modal densities (Dinh et al., 2019), and we would
hope that our model would be able to focus on particular
modes in each cell.

We generate a mixture-of-Gaussians density, with modes
evenly spaced between �1 and 1, in four to twelve dimen-



Algorithm 2: Stratified Normalizing Flow
Input :Gradient-based update step, number of cells in

partition N , number of cells to sample n, mixing
parameter �

Initialize parameters ✓ for a flow model with
transformation T✓ : Rd ! Rd

// Train the normalizing flow to give the best partition
for k Training Steps do

Sample n cells, Ci, randomly from the uniform
partition of (0, 1)d
Initialize n flow models giving distributions q�i on
Ci, let q✓,�i be the distribution on T✓(Ci) induced by
transforming q�i through T✓

for m Inner Training Steps do
Compute ELBOi from q✓,�i for each i

Compute ELBO0 induced by the uniform
distribution on (0, 1)

d transformed through T✓

Let R = � · ELBO0 +
(1��)

n

P
i
ELBOi

step �i and ✓ in the direction of r�iR, r✓R

end
end
Use Algorithm 1 with pretrained partitioning flow
parameters ✓ to obtain L̂N

sions. We use target distributions with two modes per side,
and four modes per side. These are highly multi-modal
distribution, with 65,536 modes in the eight-dimensional
case with four modes per side. Each Gaussian is isotropic
with variance 0.01 for the four mode per side case and
0.09 for the two mode per side case, ensuring that the
modes are well-separated. We train our method with a
base flow with 4 layers and instantiated flows of 4 lay-
ers, and compare to the ELBOs formed by training flow
models on the reverse KL. We show results for a varia-
tional model using four and eight layers for comparison.
The variational normalizing flows were trained using the
Adam optimizer (Kingma & Ba, 2015) with step-size
10

�5 for 10
5 iterations after an initial hyperparameter

sweep. For our partitioning scheme, we used a grid side
length of 0.5 in the base space, resulting in 2

d cells in
dimension d. All the methods were implemented using
the JAX differentiable programming library (Bradbury
et al., 2018).1

The results are shown in figure 4. The true ELBO in all
cases is equal to zero since the target is a properly normal-
ized probability density. We see that all the models drop
in performance as the dimension increases, probably due
to the increasingly multimodal density. The variational
models all perform better with two modes per side, likely

1Code is available at https://github.com/
ermongroup/stratified-flows

Figure 3: On this mixture-of-Gaussians problem, the right
shows a flow model fitted variationally. On the left is the
learned flow model for our approach. Our approach seems
to lead to more mode-covering behaviour.

due to the increased multi-modality of the four-per-side
distribution. However, our approach maintains more accu-
racy as the dimension increases, and is consistantly more
accurate than the straightforward variational approach.
As expected, we also observe the increased variance of
our method as the number of cells increases, becoming
noticably larger in ten, eleven and twelve dimensions.

5.2 BAYESIAN LINEAR
REGRESSION/HIERARCHICAL MODEL

As a more realistic example, we consider marginalization
in the setting of Bayesian linear regression. We generate
a set of points according to the following probabilistic
model: first an indicator h 2 {1, 2, 3, 4} is drawn uni-
formly, indicating an assignment to one of four lines.
Then y is sampled conditional on x and the parameters
with probability

p(y|a, b, x, h) =
X

i

N
�
aix+ bi,�

2
�
I(h = i), (23)

with I(h = i) the 1-0 indicator function. We have a fixed
known � = 0.1. We generate a set of 80 data points
(x,y), with (a, b) pairs (0, 2), (1, 0), (�1,�1), (0.5, 2).
The data is plotted in figure 5. We use a Gaussian prior
on ai and bi with standard deviation equal to 3.

To perform posterior inference given the data we need
to marginalise out variables by computing integrals. For
instance,

P (a1, b1|y,x) =
P (y|a1, b1,x)P (a1, b1)R

P (y|a, b,x, h)P (a, b, h)dadbdh
,

(24)

https://github.com/ermongroup/stratified-flows
https://github.com/ermongroup/stratified-flows


Figure 4: Showing the ELBOs calculated by our com-
pared to the ELBO obtained by fitting the same architec-
ture variationally, on a mixture-of-Gaussians objective.
Left: 4d modes. Right: 2d modes. In all cases the ground
truth value is 0.

logP1 logP2

Uniform Sampling �159± 4 �173± 6

Importance Sampling �162.5± 0.1 �163.04± 0.04

Stratified Flow �156.5± 0.4 �158.7± 0.42

Variational (n = 4) �232.6± 0.9 �234.7± 0.9

Variational (n = 8) �232.4± 0.7 �234.6± 0.8

Table 1: Results of calculating two probabilistic posteriors
using various models, where P1 = P (a1 = 0, b1 =

2|y,x), P2 = P (b1 = 2|y,x)

with P (y|a1, b1,x) itself requiring marginalisation over
all other slopes and intercepts and latent groupings h.
To simplify the integration we absorb the marginali-
sation over h implicitly into the objective, with like-
lihood function 1

4

P
i
N (aix + bi,�

2
). To compare

our method with other approaches, we imagine that
we want to compute P (a1|b1 = 2,y,x). Doing this
requires computing P (a1, b1 = 2|y,x) and P (b1 =

2|y,x). The first term is a six-dimensional integral over
(a2, a3, a4, b2, b3, b4). The second is a 7-dimensional in-
tegral over (a1, a2, a3, a4, b2, b3, b4). Since we have a
reasonable number of data points, we expect that the pos-
terior has high density around the ground-truth values for
the parameters. However, the posterior density is not uni-
modal, since with our data-generating process, the four
different (a, b) pairs are not identifiable: we can swap
the values of e.g. (a1, b1) with (a2, b2) and obtain the

same likelihood for observed data. Since we fix b2 = 2,
this means there are six equivalent maximum-likelihood
solutions under an infinite amount of data. There is also
an additional set of high-likelihood parameters that can
be seen from figure 5. Since the two lower lines are closer
together, they can be explained by a single line which
is close to horizontal and intercepts at around -2. The
remaining two sets of parameters then become two degen-
erate lines which lie on top of each other with intercept
zero. This solution also has equivalent modes–three in
this case. As we show later, this mode is the mode that
the variational methods collapse onto.

5.2.1 RESULTS

We compare the performance of the variational method
with four layers, the variational method with eight layers
and our approach. Since we cannot analytically evalu-
ate the posterior, we do not know the exact ground truth
values that we are hoping to approximate. To obtain an ac-
curate benchmark, we construct an importance sampling
distribution with a mixture of isotropic Gaussians, with
one centered on each of the six permutations of ground
truth parameters, taking 10 million samples from the pro-
posal distribution for estimation. We also do a brute-force
method of sampling with the uniform distribution using
200 million points. We expect that the uniform method
has quite poor coverage of the space, since covering the
[�2, 2]

7 box with spacing 0.1 would require over a hun-
dred billion points.

We compute some of these integrals and compare the
results in table 1. The results our method obtains are
close to the importance sampled answer, and in fact on
both computations, the stratified flow obtains a lower log-
probability than the sampling methods. We believe this
arises due to the importance sampling method having
poor support on the extra solution with two degenerate
lines. Since the IS distribution q is a mixture of Gaussians,
the chance of getting a point far outside the ground-truth
modes is very small (although compensated in expectation
by a very large weight 1/q). So we will tend to observe
underestimation of the probability mass (Smith, 2001).
With the reduced dimensionality of the 6-dimensional
problem, we see that the uniform sampling method is
closer to our method. This makes sense, as the same
number of points achieve a much denser average packing
in lower dimensions, and so give a more accurate result.
Finally, in the appendix we analyse the failure of the vari-
ational methods, showing slices of the density assigned
by the variational approaches. From these plots it is clear
that the variational approach is identifying only a single
mode of the distribution, which is the one where a single
line has zero slope at intercept -1.5, and two lines have
slope 1 at an intercept of zero.



Figure 5: The data distribution used in the Bayesian
marginalization task, and the lines corresponding to the
ground-truth parameters.

6 RELATED WORK

6.1 FLEXIBLE IMPORTANCE SAMPLING

There is a large body of work on finding good importance
sampling distributions (Cappé et al., 2004; Liang, 2002;
Martino et al., 2015). In general, importance sampling
proposal distributions require fast sampling of a sample
z ⇠ q and fast exact evaluation of q(z), requirements
which are naturally satisfied by normalizing flows. Pre-
vious work has investigated the application of flows to
importance sampling, with an application to ray tracing
in animation (Müller et al., 2019).

6.2 FLOWS AND MULTIMODALITY

The Real And Discrete (RAD) architecture (Dinh et al.,
2019) combines a continuous flow with a categorical dis-
tribution. This allows separate modes to be assigned to
different values of the categorical distribution, obtaining
better log-likelihoods for multi-modal density estimation
tasks such as the two-moons dataset. Similarly, the Lo-
calised Generative Flow family of models introduced in
Cornish et al. (2019) are comprised of a collection of
flows, where each individual flow only has to learn a lo-
cal region of the objective function. They demonstrate
that Masked Autoregressive Flows (Papamakarios et al.,
2017) fail to learn a probability distribution comprised
of two separated uniform distributions: the fact that the
transform used is bijective means that some density must
exist in a path between modes, leading to pathological
distributions and unstable learning.

6.3 ADAPTIVE INFERENCE METHODS

Deliberately over or under-sampling regions of parameter
space in order to reduce variance is a mature statistical

technique known as stratified sampling (Neyman, 1934).
A key aim of our method is to use the samples collected
so far to learn which regions to over- or under-sample.
This idea has a long history, with initial work such as the
VEGAS algorithm (Lepage, 1978) significantly speeding
up high-dimensional integration by forming a proposal
distribution using histograms over the input space, fitted
with the observed density. Adaptive inference methods
can fail to converge on the correct value (Cappé et al.,
2008) since they generally use samples from the previous
proposal distributions to fit the next proposal distribution.
Recent work introduces inference trees (Rainforth et al.,
2018), a method for recursive partitioning the parameter
space to give guarantees on the result obtained.

7 DISCUSSION AND CONCLUSION

We have introduced the stratified normalizing flow ap-
proach to approximate inference, allowing us to trade off
between the high-bias, low-variance variational methods
and the low-bias, high-variance Monte-Carlo methods
with an approach that fits variational approximations in-
side a set of learned partition cells. In the limit of a single
partition we recover the standard variational approach,
while with an infinite number of cells our approach is
equivalent to importance sampling. Through experiments
on a highly multimodal toy problem and a more realistic
Bayesian inference problem, we observe that this gives
more accurate inference. We avoid the mode-collapsing
tendency of variational methods (Bishop, 2006) while
retaining their relatively quick optimization and good per-
formance, but can reduce their bias by moving towards
the importance sampling case by increasing the number
of cells used. There are many possible avenues for further
work. For instance, how exactly does the bias-variance
tradeoff evolve as we increase the number of cells–is there
an optimal size for the partition cells? It is plausible that
the number of partition cells needed could be learned
through optimization–perhaps by encoding the number
of cells as a random variable and using a continuous re-
laxation of this (Maddison et al., 2017) to learn the best
distribution.
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