
Learning to learn generative programs with Memoised Wake-Sleep

Luke B. Hewitt Tuan Anh Le Joshua B. Tenenbaum
{lbh,tuananh,jbt}@mit.edu

Department of Brain and Cognitive Sciences, MIT

Abstract

We study a class of neuro-symbolic generative
models in which neural networks are used both
for inference and as priors over symbolic, data-
generating programs. As generative models,
these programs capture compositional struc-
tures in a naturally explainable form. To tackle
the challenge of performing program induc-
tion as an ‘inner-loop’ to learning, we propose
the Memoised Wake-Sleep (MWS) algorithm,
which extends Wake Sleep by explicitly stor-
ing and reusing the best programs discovered
by the inference network throughout training.
We use MWS to learn accurate, explainable
models in three challenging domains: stroke-
based character modelling, cellular automata,
and few-shot learning in a novel dataset of real-
world string concepts.

1 INTRODUCTION
From the phonemes that make up a word to the nested
goals and subgoals that make up a plan, many of our
models of the world rely on symbolic structures such
as categories, objects, and composition. Such explicit
representations are desirable not only for interpretability,
but also because models that use them are often highly

flexible and robust. For example, in spreadsheet editing,
FlashFill uses program inference to allow specification
of batch operations by example (Gulwani et al., 2015).
In character recognition, the stroke-based model of Lake
et al. (2015) remains state-of-the-art at both few-shot
classification and generation, despite competition from
a variety of neural models (Lake et al., 2019).

In this work we focus on structured generative mod-
elling: we aim to find symbolic generative programs to
describe a set of observations, while also learning a prior
over these programs and fitting any continuous model pa-
rameters. For example, we model handwritten characters
by composing a sequence of strokes, drawn from a finite
bank of stroke types which is itself learned.

Unfortunately, learning such models from scratch is a
substantial challenge. A major barrier is the difficulty
of search: discovering a latent program for any given ob-
servation is challenging due to the size of the space and
sparsity of solutions. Furthermore, this inference must
be revised at every iteration of learning.

We build on the Helmholtz Machine (Dayan et al., 1995),
a longstanding approach to learning in which two mod-
els are trained together: a generative model p(z)p(x|z)
learns a joint distribution over latent and observed vari-
ables, while a recognition network q(z|x) performs fast
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Figure 1: Finding compositional structure can enable generalisation from minimal data. People can infer strokes in a
character to produce novel variations (Lake et al., 2015) or learn string concepts from a few examples (our dataset).
Seashells patterns can be described and extrapolated using simple cellular automaton rules (Wolfram, 2002).
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Figure 2: A. In Memoised Wake-Sleep, we train p using samples from a finite set Zi, containing the best K programs
found for Xi. We use a recognition network r (z|X) to propose updates to this set. B. For our regex model, each
Xi is a set of strings generated by a latent regex zi. As a recognition network, we use a program synthesis LSTM
(RobustFill, Devlin et al. (2017)) to propose regexes for each set Xi.

inference. This approach, including more recent variants
such as VAEs (Kingma & Welling, 2014), is well-suited
to learning neural generative models because, as noted
by Hinton et al. (1995) “the algorithm adapts the gen-
erative weights so as to make p(�|x) close to q(�|x)”.
That is, when p(x|z) is a neural network, the semantics
of the latent space are highly unconstrained, and so can
be learned to aid fast recognition.

Unlike such purely neural generative models, the models
we consider have a more constrained and interpretable
latent space. We take z to be a sequence of discrete to-
kens representing a data-generating program. Our goal
is to learn a prior p✓(z) over programs (which may be a
neural network such as an LSTM), alongside parameters
of a symbolic program evaluator p�(x|z) and a program
recognition network r (z|x). Figure 2 describes such a
model for string concepts, in which z is a regular expres-
sion and p� is a symbolic regex parser.

In this setting, training a network for fast and accurate
inference is ambitious: even state-of-the-art program in-
duction networks often must guess-and-check thousands
of candidates. This is impractical for Helmholtz ma-
chine algorithms, which require inference to be repeated
at each gradient step. We propose a novel algorithm,
Memoised Wake-Sleep (MWS), which is better suited for
the structured domains we study. Rather than restart in-
ference afresh at each iteration, MWS maintains a finite
set Zi = {⇣1i , ⇣2i , . . . , ⇣Mi } containing the best programs
discovered by the recognition network for instance xi,
remembering and reusing these to train the generative
model in future iterations.

Our contributions in this paper are as follows. We first
outline the MWS algorithm, and prove that it optimises

a variational bound on the data likelihood, where Zi is
the support of a finite variational distribution Qi(zi).
We then illustrate MWS with a simple nonparametric
Gaussian mixture model and evaluate on three structure-
learning domains (Fig. 1), finding that it greatly out-
performs more computationally intensive approaches of
Reweighted Wake Sleep (Bornschein & Bengio, 2015)
and VIMCO (Mnih & Rezende, 2016) while often pro-
viding an significant speedup. We also develop a novel
String-Concepts dataset, collected from publicly avail-
able spreadsheets for our evaluation. This dataset con-
tains 1500 few-shot learning problems, each involving a
real-world string concept (such as date or email) to be
inferred from a small set of examples.

2 BACKGROUND

The Helmholtz Machine (Dayan et al., 1995) is a frame-
work for learning generative models, in which a recog-
nition network is used to provide fast inference during
training. Formally, suppose we wish to learn a generative
model p✓�(z, x) = p✓(z)p�(x|z), which is a joint distri-
bution over latents z and observations x, and a recogni-
tion network q (z|x), which approximates the posterior
over latents given observations. The marginal likelihood
of each observation is bounded by:

log p✓�(x) � log p✓�(x)� DKL[q (z|x)||p✓�(z|x)]

(1)

= E
z⇠q (z|x)

log p�(x|z)� DKL[q (z|x)||p✓(z)] (2)

where DKL[q (z|x)||p✓�(z|x)] is the KL divergence
from the true posterior p✓�(z|x) to the approximate pos-
terior q (z|x). Learning is typically framed as maximi-



sation of this evidence lower bound (ELBO) by training
the recognition network and generative model together.

Gradient-based maximisation of this objective with re-
spect to ✓ and � is straightforward: an unbiased gradient
estimate for Eq. 2 can be created by taking a single sam-
ple z ⇠ q (z|x) each gradient step. However, maximis-
ing Eq. 2 with respect to  is more challenging and two
main approaches exist:

VAE. We may update  also using an unbiased estimate
of Eq. 2, sampling z ⇠ q (z|x). However, if z is a
discrete symbolic expression, then estimating the gradi-
ent requires the REINFORCE estimator (Williams, 1992;
Mnih & Gregor, 2014). Despite advances in control-
variate techniques, this estimator often suffers from high
variance, which may lead to impractically slow training.1

Wake-Sleep. Instead of using the KL term that appears
in Eq. 1, we may update q approximately by minimis-
ing the reversed KL divergence DKL[p✓�(z|x)||q (z|x)].
In practice, this means updating q (z|x) at each it-
eration using data sampled from the model’s prior
z, x ⇠ p✓�(z, x). This yields an algorithm which is
not in general convergent, yet still often performs com-
petitively if z is discrete.

Beyond the optimisation difficulties that come with dis-
crete latent variable modelling, a further challenge arises
when the recognition model q (z|x) is simply incapable
of matching the true posterior p✓�(z|x) accurately. This
is common even in deep generative models, which can
flexibly adapt their latent representation. To address
this, the above approaches may be extended by tak-
ing multiple samples z1, . . . , zK from the recognition
model at each training iteration, then using importance
weighting to estimate the true posterior. For VAEs, this
yields the Importance Weighted Autoencoder (IWAEs,
Burda et al. (2016)), and is often applied to discrete
variables using multiple samples for variance reduction
(VIMCO, Mnih & Rezende (2016)). For Wake-sleep,
it yields Reweighted Wake-Sleep (RWS, Bornschein &
Bengio (2015)), in which the recognition model may be
trained either by the generative model (RWS-sleep) or the
importance-weighted posterior (RWS-wake).

1Many approaches for training discrete VAEs are inappli-
cable to the models we study here. Rolfe (2017) constructs
architectures for which discrete variables can be marginalised
out, while relaxation techniques (Jang et al., 2017) approximate
discrete variables continuously to produce low-variance gradi-
ent estimators or control variates (Tucker et al., 2017; Grath-
wohl et al., 2018). These methods are intractable for the com-
positional symbolic models we consider, as they require expo-
nentially many path evaluations (Le et al. (2019)). The EC2

algorithm (Ellis et al., 2018) enables inference in such compo-
sitional models, but does not learn model parameters.

3 MEMOISED WAKE-SLEEP
Our goal is learning and inference in rich neurosymbolic
models such as that shown in Figure 2, for which all
parameters are continuous, and the latent variables are
symbolic programs. These models pose a challenge for
Helmholtz machines: given the strong constraints on z,
it is common that only a small set of latent programs can
well-explain any given observation xi, and these may be
difficult for q to recognise quickly and reliably. The
importance-weighted methods described above (RWS,
VIMCO) may therefore require evaluating very many
samples zk ⇠ q (z|x) per iteration to train p✓�. This
is computationally wasteful, as it amounts to re-solving
the same hard search problems repeatedly.
We propose an alternative approach which actively
utilises the sparsity of good solutions in p✓�(z|xi) to its
advantage. In the Memoised Wake-Sleep algorithm we
do not discard the result of inference after each train-
ing step. Instead, for each observation xi we introduce
a memory Qi containing a set of the best distinct his-
torical samples from the recognition model. Formally,
we take Qi to be a variational distribution over zi, which
has finite support Zi = {⇣1i , . . . , ⇣Mi } and probabilities
Qi(⇣) / p✓(⇣, xi). In the box below, we prove two state-
ments which suggest a simple algorithm for updating Qi,
which maximises the ELBO (Eq. 1) by minimising:

L = DKL[Qi(z)||p(z|xi)] =
X

⇣2Zi

Qi(⇣) log
Qi(⇣)

p(⇣, xi)
+ C

Let Qi(⇣) =
X

m=1..M

w
m
i �⇣mi

(⇣), with
X

m

w
m
i = 1.

Claim 1 Fixing the support of Qi toZi = {⇣1i , . . . , ⇣Mi }
the optimal weights are given by w

m
i / p(⇣mi , xi).

Proof. At optimality, there can be no pair (m,m
0)

for which L is reduced by moving probability mass
from Q(⇣mi ) to Q(⇣m

0

i ). We therefore solve by setting
dL/dw

m
i = dL/dw

m0

i . Hence,

w
m
i /p(⇣mi , xi) = w

m0

i /p(⇣m
0

i , xi), for all (m,m
0).

Claim 2 Fixing the weights wi, we decrease L if we
replace any ⇣mi with a new value ⇣ 0, such that ⇣ 0 /2 Zi

and p(⇣ 0, x) > p(⇣mi , xi).

Proof. Rewriting the loss as

L =
X

m

w
m
i (logwm

i � log p(⇣mi , xi)) + C

we see that the only dependence on ⇣
m
i is through

[�wm
i log p(⇣mi , xi)]. The update therefore satisfies:

�L = w
k
i log p(⇣

k
i , xi)� w

k
i log p(⇣

0
, xi) < 0.



Algorithm 1: MWS training procedure (batching omitted for notational simplicity). We refer to the learning rate as �,
and to the joint probability p✓(z)p�(x|z) as simply p✓�(z, x). In the optional algorithmic variant, MWS-fantasy, the
recognition model is instead training using a sample from p✓� (i.e. only one  -step marked * is required).

initialize ✓,�, Parameters for prior p✓(z), evaluator p�(x|z), recognition network r (z|x)
initialize Zi = {⇣mi }m=1..M for i = 1..N For each instance i, Zi is a set of M distinct programs
repeat

draw instance (i, xi) from dataset

Wake

8
><

>:

z
1
, . . . , z

R ⇠ r (�|xi)

Z̃  unique(⇣1i , . . . , ⇣Mi , z
1
, . . . , z

R)

Zi  best M values in Z̃ , sorted by p✓�(·, xi)

Update memory with
samples from recognition

network

Sleep: replay

8
><

>:

zQ ⇠ Zi with probability Qi(⇣ki ) / p✓�(⇣ki , xi)

(✓,�) (✓,�) + �r✓� log p✓�(zQ, xi)

   + �r log r (zQ|xi) *

Train generative & recognition
models on sample from memory

Sleep: fantasy *

(
zp, xp ⇠ p✓�

   + �r log r (zp|xp)

⇣
Optional variant: Train recognition network on

sample from generative model

⌘

until convergence

Repeated application of claims 2 and 1 yields an intuitive
algorithm for optimising Qi. Every iteration, we sam-
ple a set of new programs z1, . . . , zR from a recognition
network, which we call r (z|xi), and compare those to
the programs already in memory (Zi). We then update
the memory to contain the best M unique elements from
either the sampled programs or the existing memory ele-
ments, ranked by p✓�(·, xi). We then resample a program
zQ ⇠ Qi from memory to train p✓�(z, x).

To train the recognition network, we propose two vari-
ants of our algorithm. In MWS-fantasy, we train r on
z, x pairs sampled directly from the generative model
p✓(z)p�(x|z), as in the sleep phase of the wake-sleep
algorithm. In MWS-replay, we train r on the same pair
xi, zi that was sampled from memory Qi to train p (anal-
ogous to RWS-wake, Bornschein & Bengio (2015)). In
practice we find that the latter performs well, and is sig-
nificantly faster as it requires no additional sampling. In
this paper, we therefore refer to MWS-replay and RWS-
wake as simply MWS and RWS, but include additional
results for MWS-fantasy and RWS-sleep in the appendix.

The three phases of the algorithm (wake, sleep:replay
and sleep:fantasy) are summarised in Figure 3, and the
full algorithm is provided above. Unlike RWS and
VIMCO, the memory usage of Memoised Wake-Sleep
contains a term linear in the dataset size O(MN), due
to maintaining a separate set Zi of programs for each in-
stance i. However, in practice this is typically negligible
compared the reduction of memory required for training
the recognition network: MWS can achieve strong per-
formance with many fewer recognition samples (R) per
iteration.

The memory size, M , may be chosen to trade off accu-
racy and efficiency, with M = 1 corresponding only to
MAP inference, and M !1 approaching full Bayesian
inference over z. For modest values of M, achieving a
small variational gap DKL(Qi||p(z|xi)) relies on spar-
sity in the true posterior, as Qi(z) will converge to the
best M -support posterior approximation of p(z|xi).2

In this paper, we use default values of M = R, and define
K = M +R when presenting results. This means MWS
is matched to baseline algorithms on the number of the
p✓�(z, x) evaluations per iteration (K), but requires half
as many recognition model evaluations (R).

sleep: replay
!~#$

(variant)
sleep: fantasy

!, & ~ '

wake
! ~ ()(!|&)

Memory
#$(!)

- = 1. . 1

Recognition
network
() !|&

Generative model 
'23(!, &)

Figure 3: MWS extends Wake-Sleep with a separate
memory Qi for each observation xi. This memory is
a discrete distribution defined over a finite set Zi. Each
phase of MWS uses a sample from one model to update
another: during wake, the recognition network samples a
program z ⇠ r(z|xi) and, if p(z, xi) is large, z is stored
in memory Qi. During sleep:replay, z is sampled from
Qi and used to train p and r. Alternatively, r may be
trained by sampling from p (in a sleep:fantasy phase).

2See appendix for more discussion of MWS limiting be-
haviour, including an empirical study of sparsity in p(z|x).



Figure 4: Quantitatively (top) MWS outperforms RWS and VIMCO in terms of both speed of convergence and quality
of learned model and inference. MWS learns near-perfect model and inference parameters with only K = 5 particles.
Qualitatively (bottom), the neural amortized inference of RWS and VIMCO fails to cluster accurately. The model
compensates by increasing the within-cluster variance ⌃, as seen by the more spread out posterior predictive (gray).

4 EXPERIMENTS

4.1 GAUSSIAN MIXTURE MODEL

We first validate the MWS algorithm for learning and
inference in a simple nonparametric Gaussian mixture
model, for which we can evaluate model performance
exactly. In this model, the latent variable z corresponds
to a clustering of datapoints. MWS is therefore well-
suited because the latent space is discrete and exponen-
tially large in the number of data points, while the true
posterior is highly peaked on few clusterings of the data.

We generated a synthetic dataset of 100 mini-datasets,
with each comprising J = 7 two-dimensional data
points, as illustrated in the bottom-left of Fig. 4. The
latent variable for each dataset x := x1:J is a sequence
of cluster assignments z := z1:J and a mean vector µc

for each cluster c. The only learnable model parameter is
⇥ 2 R2⇥2 which parameterizes the cluster covariance.

We use a Chinese restaurant process (CRP) prior for z
in order to break the permutation invariance of cluster-
ing and to avoid fixing the number of clusters. The full
generative model is therefore given by:

z1:J ⇠ CRP(↵)

µc ⇠ N (0, I), for c = 1..1
xj ⇠ N (µzj ,⌃ = ⇥⇥T ), for j = 1..J

In this model, the cluster means may be marginalized
out analytically, allowing us to exactly calculate p✓(z, x)
during learning. For the recognition model r (z|x) we
use a feedforward neural network with one hidden layer
and a tanh activation whose output logits are masked to
enforce valid sequences under the CRP prior.

We train the model using Adam with default hyperpa-
rameters for 50k iterations for K 2 {2, 5, 10, 20, 50},
and evaluate model quality using the average negative
log marginal likelihood. For inference quality, we eval-
uate KL(q(z|x)||p(z|x)) where p(z|x) is the posterior
under the true data-generating model and q(z|x) is the
memory-induced posterior approximation for MWS and
the importance-weighted recognition-based approxima-
tion for RWS and VIMCO. In Figure 4 (top), we show
medians and inter-quartile ranges of the marginal likeli-
hood and the KL from 10 runs of training.

With a moderate number of particles K, both RWS and
VIMCO algorithms fail to cluster the data accurately
using the recognition network. By contrast MWS can
maintain a persistent, high-quality approximation to the
true posterior for each mini-dataset. This discrepancy of
inference quality is shown by the sample clustering in
Figure 4 (bottom). In turn, the use of inaccurate infer-
ence during training causes RWS and VIMCO converge
to a model p✓ with poorer marginal likelihood.
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Figure 5: A. Schematic for our stroke-based model of handwritten characters. p✓(z) is a prior over tokens sequences
z, where each token j points to a particular stroke from a finite set. The available strokes are learned parameters of the
renderer p�(x|z), varying in length, direction, thickness and sharpness, curvature. Strokes chosen in z are placed end
to end on a canvas (optionally marked as OFF for pen movement without drawing). B. Reconstructions of Omniglot
characters. In each row we sample a program z ⇠ Qi, and visualise the canvas of the renderer p�(x|z).

4.2 DRAWING HANDWRITTEN CHARACTERS

Next, we build a generative model of handwritten char-
acters using an explicit stroke-based renderer. Drawing
inspiration from Lake et al. (2015), our model contains
a finite bank of learnable stroke types, varying in param-
eters such as length, thickness, direction and curvature.
Each latent variable z is a sequence of integers which in-
dex into this bank. For generation, the renderer p�(x|z)
places the corresponding strokes sequentially onto a can-
vas, which is differentiable with respect to the stroke pa-
rameters � (Fig. 5A). To calculate p�(x|z), we use this
canvas to provide Bernoulli pixel probabilities, marginal-
ising across a set of affine transforms in order to allow
programs to be position invariant. The prior p✓(z) and
the recognition network r (z|x) are LSTMs and recog-
nition network additionally takes as input an image em-
bedding given by a convolutional network.

In Fig. 5B, we visualise the stroke sequences inferred by
our model after training on a random subset of characters
from the Omniglot dataset (approximately 10 characters
per alphabet across 50 alphabets). For each character, we
sample a program z from the memory Q of the MWS al-
gorithm, and visualise the render canvas at each step of z.
We find that our model is able to accurately reconstruct
a wide variety of characters, and does so using a natural
sequencing of pen strokes. In Table 1, we compare the
performance of baseline algorithms applied to the same
model. We find that MWS is able to learn effectively
with very few particles, yet continues to outperform al-
ternative algorithms at learning even up to K = 40.

Our approach combines the strengths of previous work
on modelling handwritten characters. Like Ganin et al.
(2018), we learn only from raw images, aided by a neural
recognition model. However, like Lake et al. (2015), we
use a symbolic representation of characters: our model

K = 3 5 10 20 40
RWS 0.363 0.348 0.333 0.324 0.322
VIMCO 0.361 0.333 0.326 0.318 0.319
MWS 0.311 0.305 0.321 0.310 0.316
Table 1: Marginal NLL (bits/pixel, avg. of 3 runs).

uses a limited symbolic vocabulary of 64 strokes rather
than allowing the model to produce a free-form stroke at
each time step, and we restrict z to a maximum of only
10 strokes. This provides an inductive bias that should
encourage reuse of strokes across characters, potentially
allowing our model to make richer generalisations.

To illustrate this, we extend our model by conditioning
the prior and the recognition model on the alphabet label
which we provide during training. Given the ten char-
acters from an alphabet (red), this conditioned-model
can generate novel samples which somewhat capture its
high-level style by reusing common patterns (Fig. 6C).

Figure 6: A. Samples from unconditional model. B. and
C Samples from the alphabet-conditional model, for both
instance reconstruction and novel character generation.



Character classes
. ! any character (�.)
\w! alphanumeric character (�\w)
\d! digit (�\d)
\u! uppercase character (�\u)
\l! lowercase character (�\l)
\s! whitespace character (�\s)

� contains specific probabilities
for each allowed character

Operators
Optional subexpression
E? ! E (�?) | ✏ (1 � �?)

Repetition
E* ! E+ (�⇤) | ✏ (1 � �⇤)
E+ ! EE*

Either/or
E1|E2 ! E1 (�|) | E2 (1 � �|)

� contains production probabilities

A
A,B,J,U
B,D,E
B,E
B,J,U

\u(,\u)*

3
0

2
1

2

A
A,B,J,U
B,D,E
B,E
B,J,U

P,W,Y
T,E,S,X,A
O,J

! =

Figure 7: Character classes (left) and operators (center) included in our probabilistic regex model. Parameters �
determine the probability of a regex producing any given string p�(x|z), which can be calculated exactly by dynamic
programming. Right: Given five example strings, the model finds a plausible regex explanation z = \u(,\u)* which
can be used to generates novel instances. The inferred repeating subexpression (,\u)* is highlighted in green.

4.3 STRUCTURED TEXT CONCEPTS

We next apply MWS at learning short text concepts, such
as date or email address, from a few example strings.
This task is of interest because such concepts often have
a highly compositional and interpretable structure, while
each is itself a fairly rich generative model which can be
applied to generate new strings.

For this task we created a new dataset comprising 1500
concepts, each with 5 training strings and 5 test strings,
collected by random sampling of spreadsheet columns
crawled from public GitHub repositories. The data was
filtered to remove columns that contain only numbers,
English words longer than 5 characters, or common
names (see Figure 1 and Appendix for dataset samples).

We aim to model this dataset by inferring a regular ex-
pression (regex) z for each concept. This is a convenient
choice because regexes can naturally express composi-
tional relationships, and can be evaluated efficiently on
any given string. Specifically, we consider probabilistic
regexes: programs which generate strings according to a
distribution, and for which the probability of any given
string p(x|z) can be calculated exactly and efficiently.

The full model we develop for this domain is shown
in Fig. 2. We use an LSTM prior over regexes p✓(z),
a program-synthesis LSTM network r (⇣|x) to infer
regexes from strings (RobustFill, Devlin et al. (2017)),
and a symbolic regex evaluator p�(x|z). The prior and
recognition networks output a sequence of regex tokens,
including characters (4, 7, etc.), character classes (\d for
digit, \u for uppercase, etc.), operators (* for repetition,
etc.) and brackets. In the regex evaluator p�(x|z), learn-
able parameters determine the assignment of probability
to strings: for example, when * appears, the number of
repeats is geometrically distributed with parameter �⇤.
The full set of parameters � is shown in Figure. 7.

We first present the results from training this model using
the MWS algorithm, with K = 10. Table 2 shows prior
samples generated by the learned model. For each row,
we draw a new concept from the LSTM prior z ⇠ p✓(z),
and then generate several instances using the symbolic
regex evaluator, sampling x ⇠ p�(x|z). This demon-
strates qualitatively that our model generalises meaning-
fully from the training concepts: the invented concepts
are highly plausible, containing motifs such as # pre-
ceding a string of digits, or % as a final character. The
model’s prior has learned high level structures that are
common to many concepts in the training data, but can
compose these structures in novel ways.

In Table 3 we quantitatively evaluate MWS, RWS and
VIMCO algorithms for the same neurosymbolic model
architecture (additional results with MWS-fantasy and
RWS-sleep variants are provided in the appendix). We

Prior z ⇠ p✓ Generated x ⇠ p�(x|z)

c\s\d.\d+ c 0.6, c 4.4, c 6.0

\w\d\d\d\d-\d\d 56144-73, 60140-63

$\d00 $600, $300, $000

\l\l\d hc8, ft5, vs9

#\d\d\u\u #57EP, #11UW, #26KR

\u0\d\d\d\d\d\d B0522234, M0142810

\u\u\u\d.\s\d0% TAP0. 70%, THR6. 50%

R0<\d+ R0<3, R0<9, R0<80

\u+. EA., SD., CSB.

Table 2: Novel concepts sampled from the MWS model.
In each row we sample a regex z from the learned prior,
then generate examples from this regex.
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Figure 8: Inferred regexes and posterior predictive samples from models trained on the String-Concepts dataset. Pos-
terior samples are taken from Qi in MWS, and from q(z|xi) with K-importance sampling in RWS and VIMCO.

estimate the true marginal likelihood of all models on
held out test data using importance sampling. MWS not
only exceeds the performance of baselines algorithms for
large values of K, but also achieves strong performance
with only K = 2 particles. This allows a model to be
fit accurately at a very significant reduction in computa-
tional cost, requiring 5⇥ fewer evaluations of p✓�(z, x)
per iteration. Such efficiency is particularly valuable for
domains in which likelihood evaluation is costly, such
as those requiring parsing or enumeration when scoring
observations under programs.

Figure 8 shows qualitatively the inferences made by our
model. Across a diverse set of concepts, the model learns
programs with significant compositional structure. In
many cases, this allows it to make strong generalisations
from very few examples.

Furthermore, comparison across algorithms demon-
strates that these more complex expressions are challeng-
ing for the recognition network to infer reliably. For ex-
ample, while RWS and VIMCO are typically able to dis-
cover template-based programs (e.g. Figure 8 concept 4),

MWS is the only algorithm to utilise operators such as
alternation (|) or bracketed subexpressions for any con-
cepts in dataset (e.g. concepts 7 and 1).

K = 2 3 5 10
RWS 87.1 86.5 85.2 85.0
VIMCO 97.5 89.1 84.8 83.5
MWS 84.1 83.1 82.8 82.5

Table 3: Marginal NLL (nats, avg. of 3 runs)

4.4 NOISY CELLULAR AUTOMATA

Finally, to demonstrate the use of MWS in estimating
meaningful parameters, we consider the domain of cel-
lular automata (CA). These processes have been stud-
ied by Wolfram (2002) and are often cited as a model
of seashell pigmentation. We consider noisy, elementary
automata: binary image-generating processes in which
each pixel (cell) is sampled stochastically given its im-
mediate neighbours in the previous column (left to right).
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Figure 9: A. In our model, z describes a CA in canonical binary form (depicted is Rule 30, Wolfram (2002)). Images
are generated from left to right, with each pixel stochastically conditioned on its three left-neighbours. B. MWS is
able to infer the CA rule for each image, and learns a global noise parameter �, which we then use to extrapolate the
images. The model accurately matches the true generative noise, as is most visually apparent in row 1.

For this domain, we build a dataset of 64⇥64 binary im-
ages generated by cellular automata. For each image we
sample a “rule”, z, which determines the value of each
pixel given the configuration of its immediate 3 neigh-
bours in the previous column. Each rule is represented
canonically as a binary vector of length 23 = 8 (see
Figure 9). To generate an image x, the leftmost column
x1 is sampled uniformly at random, and then subsequent
columns are determined by applying the rule z to each
pixel xj,k, with corruption probability ✏ (fixed to 2%):

p(xj,k = 1|z,xj�1) =

(
1� ✏, if z(xj�1,k�1:k+1) = 1

✏, otherwise.

We then build a generative model which matches this
process, but where the rules are latent variables and the
noise ✏ is replaced by a learnable parameter �. We aim
to perform joint learning and inference in this model, and
use � to estimate the true ✏. This estimation a significant
challenge, because any inaccurate inferences of z will
cause the model will overestimate the noise ✏ to compen-
sate. As a stringent test of the algorithm, we also evalu-
ate on a harder domain of nonelementary automata, with
cells depending on five neighbours (so z has length 32).

In Figure 9B, we visualise the automata inferred by
MWS by extrapolating images from the dataset. It is
visually apparent that the model accurately captures the
generative process for each image xi, including both the
rule zi and noise ✏. This is confirmed quantitatively: for
both the easy and hard task variants, MWS is able to es-
timate the true generative process parameter with signif-
icantly greater accuracy than alternative algorithms.

5 DISCUSSION
This work sits at the intersection of program learning and
neural generative modelling. From a dataset, we aim to
infer a latent generative program to describe each obser-
vation, while simultaneously learning a neural prior over
programs and any additional model parameters.

To tackle the challenge of performing program induc-
tion repeatedly during learning, we train our models by
a novel algorithm called Memoised Wake-Sleep (MWS),
and find that this improves the quality of learning across
all domains we study. MWS builds upon existing
Helmholtz machine algorithms by maintaining a memory
of programs seen so far during training, which reduces
the need for effective amortized inference. We optimise
a variational bound previously proposed by Saeedi et al.
(2017), extending their algorithm to include parameter
learning for a recognition network and for the genera-
tive model. Algorithmically, our approach is also similar
to memory-based reinforcement learning methods (Abo-
lafia et al., 2018; Liang et al., 2018) which maintain a
queue of best action-traces found during training.

In general, MWS can be applied to any models for which
all parameters are continuous, and all latent variables are
discrete. However, we particularly advocate its use for
the class of ‘programmatic’ generative models we study,
due to the difficulties of sparse inference that they of-
ten present. If learning can be made tractable in such
models, they have the potential to greatly improve gen-
eralisation in many domains, discovering compositional
structure that is rich and understandable.
Acknowledgements. This work was supported by
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