
Improved Vector Pruning in Exact Algorithms for Solving POMDPs

Eric A. Hansen and Thomas J. Bowman
Dept. of Computer Science and Eng.

Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu, tjb623@msstate.edu

Abstract

Exact dynamic programming algorithms for
solving partially observable Markov decision
processes (POMDPs) rely on a subroutine that
removes, or “prunes,” dominated vectors from
vector sets that represent piecewise-linear and
convex value functions. The subroutine solves
many linear programs, where the size of the
linear programs is proportional to both the
number of undominated vectors in the set and
their dimension, which severely limits scala-
bility. Recent work improves the performance
of this subroutine by limiting the number of
constraints in the linear programs it solves by
incrementally generating relevant constraints.
In this paper, we show how to similarly limit
the number of variables. By reducing the size
of the linear programs in both ways, we further
improve the performance of exact algorithms
for POMDPs, especially in solving problems
with larger state spaces.

1 INTRODUCTION

The model of a partially observable Markov decision
process (POMDP) is widely used to formulate and solve
single-agent planning problems in stochastic domains
where decisions are made based on imperfect state infor-
mation (Kaelbling et al., 1998; Spaan, 2012; Dutech and
Scherrer, 2013). Because the optimization problem for
POMDPs is intractable, approximation is often needed
to solve real-world problems. But exact algorithms still
have an important role to play. They provide a bench-
mark for approximation algorithms; they give optimal
solutions to real-world problems that are simple enough
to be solved exactly; and they offer a principled approach
to approximation in which scalability can be improved in
exchange for bounded suboptimality.

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

Both exact and approximation algorithms for POMDPs
compute piecewise-linear and convex value functions
that are represented by finite sets of vectors over the
state space of a problem, a representation introduced
by Smallwood and Sondik (1973). Among exact algo-
rithms for POMDPs, the most efficient belong to a fam-
ily of incremental pruning algorithms (Cassandra et al.,
1997). These algorithms rely on a subroutine that re-
moves, or “prunes,” dominated vectors from a set of vec-
tors that represents a value function. This subroutine
solves one linear program for each vector. In the tra-
ditional approach, the number of variables in each linear
program is equal to the size of the state space and the
number of constraints is as large as the size of the vector
set that represents the value function. As a result, use of
this pruning subroutine severely limits scalability.

In recent work, Walraven and Spaan (2017) show how
to limit the number of constraints in the linear programs
solved by this pruning subroutine by incrementally gen-
erating relevant constraints. They show that the number
of constraints in the resulting linear programs can be a
small fraction of the number of vectors used to represent
a value function. As a result, their approach substantially
improves the performance of incremental pruning, and it
is the current state-of-the-art exact solver. However, their
approach does not reduce the number of variables in the
linear programs, and it increases the number of linear
programs that must be solved. As a result, the speedup
it provides decreases as the size of the state space of a
POMDP increases.

In this paper, we enhance the approach introduced by
Walraven and Spaan by showing how to incrementally
generate the variables as well as the constraints of the
linear programs. By reducing even further the size of
the linear programs solved by this subroutine, and espe-
cially by reducing the number of variables for problems
with large state spaces, our enhancement of this approach
improves performance even further, and leads to a more
scalable algorithm for solving POMDPs exactly.

2 BACKGROUND

We begin with a review of relevant background.

2.1 POMDP MODEL AND VALUE ITERATION

A POMDP models a planning problem with a set of hid-
den states S , a set of observations Z , and a set of actions
A. The process unfolds over a sequence of stages. At
each stage, an action a 2 A taken in a state s 2 S results
in a reward with expected value R(s, a), a transition to a
state s0 2 S with probability P (s0|s, a), and an observa-
tion z 2 Z with probability P (z|s0, a). A widely-used
objective is to maximize the expected discounted sum of
rewards over an infinite horizon, E[

P1
t=0 �

tRt], where
Rt is the reward received at stage t, and � 2 (0, 1) is a
discount factor that ensures this expected value is finite.

Although the state of the process is not directly observed,
state probabilities can be computed using Bayes rule. Let
b denote an |S|-dimensional vector of state probabilities,
called a belief state, where b(s) denotes the probability
that the process is in state s. If action a is taken and
followed by observation z, the successor belief state, de-
noted baz , is determined using Bayes’ rule, as follows,

baz(s
0) = P (z|s0, a)

X

s2S
P (s0|s, a)b(s)/P (z|b, a), (1)

for each successor state s0 2 S , where P (z|b, a) =P
s02S P (z|s0, a)

P
s2S P (s0|s, a)b(s). Because this

belief state provides all information about the history of
a process needed for optimal action selection, a POMDP
can be recast as an equivalent completely observable
MDP over belief states, called a belief-state MDP, where
B = {b 2 <|S||

P
s2S b(s) = 1 and b(s) � 0, 8s 2 S}

is its continuous |S|-dimensional state space.

Once a POMDP is recast as a belief-state MDP, it can
be solved by dynamic programming. In the discounted
infinite-horizon case, an optimal value function V ⇤ :
B ! < is the fixed point of a dynamic programming
operator T that is defined for all belief states b 2 B as

TV (b) =max
a2A

(
R(b, a)+ �

X

z2Z
P (z|b, a)V (baz)

)
. (2)

Value iteration is a successive approximation algorithm
that converges to this fixed point in the limit; that is,
V ⇤ = limn!1 TnV0, where Tn denotes n applications
of the operator T to any initial value function V0. An op-
timal policy µ⇤ : B ! A is a greedy policy with respect
to V ⇤. In the discounted infinite-horizon case, the dy-
namic programming operator T is a contraction operator
with respect to the supremum norm, ensuring that value
iteration computes an arbitrarily close approximation of
V ⇤ and µ⇤ after a finite number of iterations.

Input: vector set W , tolerance ✏ � 0
Output: pruned vector set D

1 D ;
2 while W 6= ; do
3 w arbitrary element in W
4 if w(s) u(s), 9u 2 D, 8s 2 S then
5 W W\{w}
6 else if w(s) > u(s), 9s 2 S, 8u 2 D [W then
7 D D [{w}, W W\{w}
8 else
9 b LP (w,D, ✏)

10 if (b = nil) then
11 W W\{w}
12 else
13 ŵ argmaxw2W

P
s2S b(s) · w(s)

14 D D [{ŵ}, W W\{ŵ}
15 return (D)

Algorithm 1: PR(W): Vector pruning subroutine.

2.2 PRUNING SUBROUTINE

A key property of the dynamic-programming operator
for POMDPs is that it preserves the piecewise linearity
and convexity of the value function. A value function
V : B ! < that is piecewise linear and convex (PWLC)
can be parameterized by a finite set of |S|-dimensional
vectors of real numbers, V = {v0, v1, . . . , vk}, so that
the value of any belief state b is given as follows:

V (b) = max
vi2V

X

s2S
b(s)vi(s). (3)

For any PWLC value function, there is a unique and
minimal-size set of vectors that represents it. Algo-
rithm 1, due to Lark (White, 1991), prunes a set of vec-
tors to its minimum size by removing dominated vec-
tors, which are vectors whose removal does not affect
the value function that is represented. The following lin-
ear program tests whether a vector w is dominated by the
vectors in a set U :

max d s.t.
X

s2S
b(s) ·

�
w(s)� ui(s)

�
� d, 8ui 2 U

X

s2S
b(s) = 1, b(s) � 0, 8s 2 S. (4)

This linear program finds the belief state b at which the
value function represented by the vector set U is im-
proved the most by adding the vector w to U . If the value
d maximized by the linear program is non-positive, the
vector w is dominated. Otherwise, the vector w is not
dominated and d is the amount by which it gives a better
value for the belief state b than any vector in U .

Input: vector w, vector set U , tolerance ✏
Output: belief state b or nil

1 Solve the linear program
2 maximize d subject to the constraints
3

P
s2S b(s)

�
w(s)� ui(s)

�
� d, 8ui 2 U

4
P

s2S b(s) = 1, b(s) � 0, 8s 2 S
5 if (d ✏) then return (nil)
6 else return (b)

Algorithm 2: LP(w,U , ✏) returns the belief state b
that maximizes d, if d > ✏; otherwise, it returns nil.

Algorithm 2 is the subroutine invoked to perform this
linear program test. For convenience, we refer to it as
LP(w,U , ✏) from now on, where the parameter ✏ is ex-
plained below. If a vector w is dominated, it returns nil.
Otherwise, it returns the belief state b that maximizes d.
Line 13 of Algorithm 1 then selects the best vector for
the belief state b returned by Algorithm 2. Littman et al.
(1995) describe some subtle tie-breaking issues that are
left out of our pseudocode. In some cases, it is possible
to determine whether a vector is dominated or not with-
out solving a linear program. A vector w is dominated by
a vector u 2 U if w(s) u(s), for all s 2 S , as tested
by line 4 of Algorithm 1. It is not dominated if there is
some state s 2 S for which it gives a better value than
any vector in U , as tested by Line 6.

2.3 APPROXIMATION

When a vector set U that represents a PWLC value func-
tion becomes very large, a tolerance ✏ � 0 can be used
to reduce its size in exchange for bounded-error approx-
imation. A vector w is said to be ✏-dominated by the
vectors in a set U if there is no belief state b for which
b · w > b · u + ✏, for all u 2 U , or, equivalently, if the
scalar d maximized by the linear program of Equation (4)
is less than or equal to ✏. Algorithm 2 includes ✏ as a pa-
rameter because it can be used to test for ✏-dominance.
A subset U✏ ✓ U is called an ✏-approximate covering of
a set U if every vector v 2 U\U✏ is ✏-dominated by one
or more vectors in U✏. The value function represented by
the vector set U✏ gives a value for any belief state that is
within ✏ of its exact value.

The pruning subroutine of Algorithm 1 allows ✏ to be
specified as a parameter, and finds an ✏-approximate cov-
ering of any vector set U . Although there is a unique and
minimal-size set of vectors U that represents a PWLC
value function V , there is not a unique set of vectors that
represents an ✏-approximate covering of the set U . Nev-
ertheless, this approach to approximation offers a useful
tradeoff between the size of the vector set that represents
a value function and the accuracy of the approximation,
where the tradeoff is adjusted by adjusting ✏.

2.4 INCREMENTAL PRUNING

The pruning subroutine of Algorithm 1 plays a key role
in the incremental pruning algorithm for POMDPs (Cas-
sandra et al., 1997), which leverages the fact that the up-
dated value function TV of Equation (2) can be defined
as a combination of simpler value functions, as follows:

V a
z (b) = R(b, a) + �Pr(z|b, a)V (baz), (5)

V a(b) =
X

z2Z

V a
z (b), and (6)

TV (b) = max
a2A

V a(b). (7)

Each of these value functions is piecewise linear and con-
vex, and thus can be represented by a set of vectors. We
use the symbols Va

z , Va, and V 0 to denote these sets, and
let PR(U) denote the set of vectors that remains after
the subroutine of Algorithm 1 prunes the vector set U .

The incremental pruning algorithm generates the vector
sets Va

z , Va, and V 0 as follows. In the projection step that
corresponds to Equation (5), a set of vectors is generated
for each pair of action a and observation z, as follows,

Va
z = PR

�
{v(i, a, z)|vi 2 V}

�
, (8)

where v(i, a, z) is the |S|-vector defined by

v(i, a, z)(s) =
R(s, a)

|Z| +�
X

s02S

P (z, s0|s, a)vi(s0), (9)

and P (z, s0|s, a) = P (z|a, s0)P (s0|s, a). In the cross-
sum step corresponding to Equation (6), a set of vec-
tors is generated for each action a, as follows, Va =
PR(. . . (PR(PR(Va

1�Va
2)�Va

3) . . .�Va
|Z|), where the

observations are indexed from 1 through |Z|. The max-
imization step corresponding to Equation (7) generates
the vector set: V 0 = PR ([a2AVa).

3 CONSTRAINT GENERATION

The pruning subroutine of Algorithm 1 accounts for most
of the computation time of the incremental pruning algo-
rithm. Cassandra et al. (1997) report that it takes 95% of
the running time of incremental pruning for their small
test problems. For larger POMDPs, it may take a higher
percentage because the linear programs are larger.

Recent work (Walraven and Spaan, 2017; Roijers et al.,
2018; Walraven, 2019) shows how to use a row-
generation technique called Benders decomposition to
speed up the linear program test for dominance used by
the pruning subroutine. We review this approach, and
also introduce a subtle but important improvement.

Input: vector w,vector set U , tolerance ✏
Output: belief state b or nil

1 b arbitrary belief state
2 U 0 ;
3 repeat
4 b0 b
5 if (U 0 6= U) then
6 û argminu2U\U 0

P
s2S b(s)(w(s)�u(s))

7 U 0 U 0 [{û}
8 (d, b) LP (w,U 0, ✏)
9 until (d ✏) or (b = b0)

10 if (d ✏) then return (nil)
11 else return (b)

Algorithm 3: BendersWS(w,U , ✏) uses Benders
decomposition to solve the linear program used to
test for vector dominance.

3.1 BENDERS DECOMPOSITION

In Benders decomposition, a large linear program is
solved more efficiently by decomposing it into a se-
quence of smaller linear programs. First, a master linear
program is defined that has no constraints. Then rele-
vant (or potentially relevant) constraints are added one at
a time. After each constraint is added, the revised master
linear program is solved, and information from the solu-
tion is used to add another constraint. The procedure re-
peats until the master linear program has all relevant con-
straints, and the procedure is terminated with a solution.
This approach is effective when most of the constraints
of the original linear program are superfluous, and can be
removed without affecting the solution.

Algorithm 3 gives pseudocode for the algorithm de-
scribed by Walraven and Spaan (2017), which uses Ben-
ders decomposition to solve the linear program of Equa-
tion (4). It is invoked by the pruning subroutine instead
of invoking Algorithm 2, and it computes the same result.
Let U denotes the set of all vectors, and let U 0 denote a
subset of this set that defines the constraints of a master
linear program. If d ✏, where d is the scalar optimized
by the linear program, the vector w is ✏-dominated and
the algorithm terminates. If d > ✏, the belief state b that
solves the linear program is used to try to find an addi-
tional relevant constraint, as follows,

û argmin
ui2U\U 0

X

s2S
b(s)

�
w(s)� ui(s)

�
, (10)

and the minimizing vector û is added to the vector set
U 0 that defines the constraints of the master linear pro-
gram, which is solved again. The process repeats until
the scalar d returned by the linear program is less than
or equal to ✏, or the belief state in successive iterations is
the same, which indicates that w is not dominated.

Input: vector w,vector set U , tolerance ✏
Output: belief state b or nil

1 b arbitrary belief state
2 U 0 ;
3 repeat
4 if (U 0 6= U) then
5 û argminu2U\U 0

P
s2S b(s)(w(s)�u(s))

6 du
P

s2S b(s) (w(s)� û(s))
7 if (du ✏) then
8 U 0 U 0 [{û}
9 (b, d) LP (w,U 0, ✏)

10 else du d
11 until (d ✏) or (du > ✏)
12 if (d ✏) then return (nil)
13 else return (b)

Algorithm 4: Improved BendersWS(w,U , ✏).

3.2 IMPROVED TERMINATION CONDITION

Algorithm 4 shows pseudocode for a modified version
of Algorithm 3 that we have found to be more efficient.
The two algorithms behave in exactly the same way when
they detect that a vector w is dominated. But when w is
not dominated, Algorithm 3 returns the same belief state
as the linear program of Equation (4), which is the belief
state that maximizes the objective value d. Algorithm 4
simply returns the first belief state it finds that shows w
is not dominated.

When Algorithm 4 adds a constraint to the master linear
program by selecting a vector û 2 U\U 0, as follows,

û argmin
ui2U\U 0

X

s2S
b(s)

�
w(s)� ui(s)

�
, (11)

it also computes the value:

du
X

s2S
b(s) (w(s)� û(s)) . (12)

If du < ✏, the minimizing vector û is added to the set
U 0 used to define the constraints of the master linear pro-
gram, which is then solved again. But if du � ✏, no other
vector in U gives a better value (within ✏) for the belief
state b than the vector w, and so the algorithm concludes
that w is not dominated and terminates.

It follows that Algorithm 4 does not always return the
same belief state as Algorithms 2 and 3. But that
does not affect its correctness. Algorithm 4 always cor-
rectly determines whether or not w is dominated (or ✏-
dominated), and it usually does so by solving fewer and
smaller linear programs. As a result, it usually runs
faster, and often much faster than Algorithm 3, as our
experimental results will show.

4 VARIABLE GENERATION

We next describe the primary contribution of our paper:
an approach to improving the scalability of vector prun-
ing by incrementally generating the variables as well as
the constraints of the linear program dominance test.

4.1 DUAL LINEAR PROGRAM

The linear program dominance test given by Equation (4)
has a dual linear program that can also be used to test for
dominance: a vector w is ✏-dominated if the following
linear program has a solution d where d ✏:

min d s.t.
|U|X

i=1

c(i) ·
�
w(s)� ui(s)

�
 d, 8s 2 S

|U|X

i=1

c(i) = 1, c(i) � 0, i = 1 . . . |U|. (13)

In this case, the vector w is ✏-dominated if there is some
probability distribution c over the constraints of the linear
program such that

P|U|
i=1 c(i) ·ui(s)+ ✏ � w(s), 8s 2 S .

We refer to c from now on as a convex combination.

As noted by Poupart and Boutilier (2004), use of this
dual linear program to test whether a vector w is domi-
nated generalizes the test for pointwise dominance used
in line 4 of Algorithm 1. That is, the convex combina-
tion c can be used to define an |S|-dimensional vector
uc, where for each s 2 S:

uc(s) =

|U|X

i=1

c(i) · ui(s). (14)

If uc(s) � w(s), 8s 2 S , then the vector w is dominated.
(From this perspective, the test for pointwise dominance
in line 4 of Algorithm 1 is a degenerate convex combi-
nation where a single constraint has a probability of 1.0
and the other constraints have a probability of zero.)

Since most linear program solvers return the solution of
the dual linear program in addition to the solution of the
primal linear program, Algorithm 5 shows a revision of
Algorithm 2 that returns the solutions of both. We refer
to it as LP(w,U ,S, ✏). Note that the scalar d that is mini-
mized by the dual linear program is the same as the scalar
d that is maximized by the primal linear program. There
is an interesting relationship between these two cases. In
solving the primal linear program, the value d is max-
imized in an attempt to find a belief state b for which
the vector w is not dominated. In solving the dual linear
program, the value d is minimized in an attempt to find
a convex combination of the vectors that shows that w is
dominated. Thus these two cases complement each other
in establishing whether a vector w is dominated or not.

Input: vector w, vector set U , state set S, tolerance ✏
Output: belief state b, convex combination c, value d

1 Solve the primal linear program
2 maximize d subject to the constraints
3

P
s2S b(s)

�
w(s)� ui(s)

�
� d, 8ui 2 U

4
P

s2S b(s) = 1, b(s) � 0, 8s 2 S
5 and simultaneously solve the dual linear program
6 minimize d subject to the constraints
7

P|U|
i=1 c(i) ·

�
w(s)� ui(s)

�
 d, 8s 2 S

8
P|U|

i=1 c(i) = 1, c(i) � 0, i = 1 . . . |U|
9 if (d ✏) then return (nil, c, d)

10 else return (b, c, d)
Algorithm 5: LP(w,U ,S, ✏) returns the belief state b
that maximizes d, if d > ✏; the convex combination c
that minimizes d; and the scalar objective d.

4.2 DIMENSION OF SOLUTION

We next note a useful relationship between the belief
state b that solves the primal linear program and the con-
vex combination c that solves its dual: the number of
states for which the belief state b has positive probabil-
ity is (almost always) equal to the number of vectors for
which the convex combination c has positive probability.

This observation follows from the elementary theory of
linear programming: a belief state that solves the primal
linear program (or, equivalently, a convex combination
that solves its dual) must be a basic feasible solution of
the linear program. That means it is the solution of a sys-
tem of linear equations where the equations correspond
to a subset of the constraints of the linear program with
the inequalities changed to equalities, and the variables
in this system of linear equations are the variables of the
linear program that have non-zero values in a solution,
that is, they are basic variables. (Geometrically, each
basic feasible solution corresponds to a corner point of
the polyhedron of feasible solutions defined by the con-
straints. A corner point is a belief state, and the number
of states with non-zero probabilities in the belief state is
equal to the number of hyperplanes that intersect at this
corner point.) From this observation, it follows that the
number of useful constraints in the solution of the linear
program test for dominance is bounded by the size of the
state set.

If the linear program of Equation (4) has a degenerate
solution, in which case there are multiple solutions, the
number of non-zero probabilities in the belief state b that
solves the linear program may not be equal to the num-
ber of non-zero probabilities in the convex combination c
that solves its dual. But in our experiments with POMDP
pruning, this occurs infrequently, and when it does, the
difference is small, and usually just a difference of one.

4.3 COMBINED BENDERS DECOMPOSITIONS

Given that the number of non-zero variables in the so-
lution of the linear program test for dominance is equal
to the number of non-zero constraints, we next consider
whether the number of variables in the linear program
can be limited in the same way as the number of con-
straints. If so, that could be useful in pruning vector sets
for POMDPs with large state spaces.

Obviously, a similar Benders decomposition can be used
to solve the dual linear program of Equation (13). Let S 0

denote a subset of the state set S that is used to define
the constraints of a master linear program. If the scalar
d minimized by this linear program has a value greater
than 0 (or greater than some ✏ > 0, in the case of approx-
imation), the vector w is not dominated. Since no convex
combination of vectors in U dominates w for this subset
of states S 0, then no convex combination of vectors can
dominate w for the full state space S . If d ✏, however,
it is not yet clear whether w is dominated or not because
only a subset of the state set has been considered so far.
In this case, the convex distribution c over vectors given
by the solution of the linear program is used to select a
state ŝ to add to the master linear program, as follows

ŝ arg max
s2S\S0

|U|X

i=1

c(i) ·
�
w(s)� ui(s)

�
, (15)

where

ds w(ŝ)�
|U|X

i=1

c(i) · ui(ŝ). (16)

If ds d, the vector w must be dominated because for
every state s 2 S , its value is less than or equal to the
value of the vector created by a convex combination c
of vectors from U . If ds > d, the minimizing state ŝ is
added to the master linear program, which is re-solved.

However, this use of Benders decomposition only limits
the number of states used to define the dual linear pro-
gram test for dominance. We want to combine it with
the Benders decomposition described by Walraven and
Spaan (2017), which limits the number of vectors used
to define the primal linear program test for dominance.
That is, we want to use both Benders decompositions in
order to limit both the number of states and the number
of vectors used to define a master linear program that is
used to test whether a vector w is dominated. How we do
so is summarized by the following theorem, which has a
straightforward proof.
Theorem 1. Consider the linear program of Equa-
tion (4) and its dual, given by Equation (13), which test
whether an |S|-dimensional vector w is ✏-dominated by
the value function represented by a vector set U . If de-
fined for only a subset S 0 ✓ S of states and a subset

Input: vector w, vector set U , tolerance ✏
Output: belief state b or nil

1 // Initialize S 0 with 2 states and U 0 with 2 vectors
2 (ŝ, û) argmins2S,u2U (w(s)� u(s))
3 S 0 {ŝ}, U 0 {û}
4 ŝ argmaxs2S\S0 (w(s)� û(s))

5 S 0 S 0 [{ŝ}
6 û argminu2U\U 0 (w(ŝ)� u(ŝ))

7 U 0 U 0 [{û}
8 repeat
9 (b, c, d) LP (w,U 0,S 0, ✏)

10 if (d > ✏) and (U 0 6= U) then // add vector
11 û argminui2U\U 0

P
s2S0 b(s)

�
w(s)�ui(s)

�

12 du
P

s2S0 b(s) (w(s)� û(s))
13 if (du ✏) then U 0 U 0 [{û}
14 else du d
15 if (d ✏) and (S 0 6= S) then // add state
16 ŝ argmaxs2S\S0

⇣
w(s)�

P|U 0|
i=1 c(i)·ui(s)

⌘

17 ds w(ŝ)�
P|U 0|

i=1 c(i) · ui(ŝ)
18 if (ds > ✏) then S 0 S 0 [{ŝ}
19 else ds d
20 until ((d ✏) and (ds ✏)) // w is dominated
21 or ((d > ✏) and (du > ✏)) // w is not dominated
22 if (d ✏) then return (nil)
23 else return (b)

Algorithm 6: BendersNew(w,U ,S, ✏) uses Benders
decomposition of both variables and constraints to
perform linear program dominance test.

U 0 ✓ U of vectors, the smaller linear program and its
dual, denoted LP (w,S 0,U 0, ✏), can still detect whether
a vector w is dominated or not, as follows.

(a) A vector w is not ✏-dominated if the scalar d op-
timized by the linear program LP (w,U 0,S 0, ✏) is
greater than ✏, and for the belief state b in the solu-
tion of the linear program,

min
ui2U\U 0

X

s2S0

b(s)
�
w(s)� ui(s)

�
> ✏, (17)

where the latter condition is tested without linear
programming.

(b) A vector w is ✏-dominated if the scalar d optimized
by the linear program LP (w,U 0,S 0, ✏) is less than
or equal to ✏, and for the convex combination c
given by the solution of the linear program,

max
s2S\S0

|U 0|X

i=1

c(i)
�
w(s)� ui(s)

�
 ✏, (18)

where the latter condition is tested without linear
programming.

Proof. (a) In the first case, the vector w gives a better
value (by more than ✏) for the belief state b over S 0 than
any vector in U 0. If w also gives a better value (by more
than ✏) for belief state b than any vector in U\U 0, it fol-
lows that

min
ui2U

X

s2S0

b(s)
⇣
w(s)� ui(s))

⌘
> ✏, (19)

which means that w is not ✏-dominated.

(b) In the second case, the vector w is ✏-dominated by the
convex combination c of vectors from U 0 when just the
subset of states S 0 is considered. If it is also ✏-dominated
by this convex combination c when all states in S are
considered, we have

max
s2S

0

@w(s)�
|U0|X

i=1

c(i) · ui(s)

1

A ✏, (20)

which means that w is ✏-dominated.

Algorithm 6 shows pseudocode for an algorithm that
solves the linear program test for dominance using both
Benders decompositions, that is, by incremental generat-
ing both variables and constraints. It starts with an ini-
tial subset S 0 of two states and an initial subset U 0 of
two vectors, selected in lines 2 through 7 by the same
heuristic used in the rest of the algorithm to add states
and vectors. In each iteration of the algorithm, the linear
program LP (w,S 0,U 0, ✏) is solved, which is defined by
the subsets S 0 and U 0. If d ✏, where ✏ is the approx-
imation parameter and ✏ = 0 means no approximation,
the algorithm uses the reasoning of case (a) of Theorem 1
to try to show w is not dominated. But if it finds a vec-
tor û 2 U\U 0 that gives as good or better a value for
the belief state b than w, it adds û to U 0 and returns to
the top of the loop to solve the linear program again. If
d > ✏, the algorithm uses the reasoning of case (b) of
Theorem 1 to try to show w is dominated. But if it finds
a state ŝ 2 S\S 0 for which w is not dominated, it adds ŝ
to S 0 and returns to the top of the loop to solve the linear
program again.

5 EXPERIMENTS AND ANALYSIS

Our experiments compare the performance of three
pruning subroutines. For convenience, we let “WS”
denote the Walraven and Spaan algorithm; “IWS”
denotes our revision of their algorithm, which uses
an “improved” termination condition; and “New” de-
notes the new algorithm. All algorithms are imple-
mented in a Java open-source POMDP solver made
available by Walraven (www.erwinwalraven.nl/
solvepomdp), using the Gurobi 8 linear program
solver, on an Intel 4.2GHz processor with 16GB RAM.

5.1 RANDOMLY-GENERATED VECTOR SETS

Table 1 compares the performance of the three algo-
rithms in pruning randomly-generated vector sets of
varying size and dimension, where roughly 30% of the
vectors in each set are undominated. Pruning is exact,
that is, ✏ = 0, and the table compares running times
in CPU seconds. The table also compares the size of
the largest (that is, the final) linear program solved when
testing a given vector for dominance, for each method.
It shows the average and maximum number of non-zero
variables and constraints in the final linear program for
each method, and the average and maximum number of
total variables and constraints in the final linear program.
For WS and IWS, the number of variables is always equal
to the size of the state set. Finally, the table shows the
average and maximum number of linear programs solved
for each vector tested.

It is clear from the results that WS is slower than the other
two methods. Note also the different sizes of the largest
linear programs solved by each method. Both IWS and
New solve linear programs with many fewer constraints
than the linear programs solved by WS. That is because
they terminate as soon as they find a belief state for which
w is better than any other vector, whereas WS continues
to try to find a belief state for which d is maximized.
When we don’t care about maximizing d, and just want
to determine whether w is dominated or not, the final
linear program is just the first linear program that pro-
vides enough information to settle that question. It fol-
lows that there is not a single final linear program that
every method finds. That is why the sizes of the final lin-
ear programs solved by each method are different. Im-
portantly, New solves linear programs with even fewer
constraints than those solved by IWS. That is because in-
cremental variable generation biases the search towards
solutions with fewer variables, and a bound on the num-
ber of non-zero variables in the solution also bounds the
number of non-zero constraints.

Although New solves smaller linear programs than IWS,
it also solves more linear programs because it incremen-
tal generates variables as well as constraints. Unfor-
tunately, this offsets some of the advantage of solving
smaller linear programs. But as the size of the state space
increases, New gains more of an advantage.

The presence of more zero-probability constraints in the
final linear program as the size of the vector set increases
is explained by Walraven and Spaan (2017). Constraints
are first added for the extrema of the belief simplex, and
then additional constraints are added that more narrowly
define the region of belief space for which the vector w
optimizes the value function. In the process, the initial
constraints often become zero-valued.

Table 1: For randomly generated vector sets of varying size and dimension, the table compares the performance of the
three pruning subroutines. It shows the average (avg) and maximum (max) number of nonzero and total variables and
constraints in the solution of the final linear program used to test a vector for dominance, the average and maximum
number of linear programs solved in testing a vector, and the runtime in CPU seconds for pruning the entire set.

Variables Constraints
Time Non-0 Total Non-0 Total LPs

Problem Alg. sec avg max avg max avg max avg max avg max
|S| = 500 WS 134 42 64 500 500 42 64 58 106 58 106
|V| = 5, 000 IWS 24 11 24 500 500 11 24 11 26 11 26

New 13 6 11 7 20 6 11 15 34 19 41
|S| = 500 WS 454 47 74 500 500 47 74 68 125 68 125
|V| = 10, 000 IWS 69 13 25 500 500 13 25 13 25 13 25

New 36 7 11 8 23 7 11 19 37 24 45
|S| = 1, 000 WS 375 58 92 1,000 1,000 58 92 78 137 78 137
|V| = 5, 000 IWS 45 10 21 1,000 1,000 10 21 11 22 11 22

New 19 6 14 7 31 6 14 14 27 18 43
|S| = 1, 000 WS 1,261 66 107 1,000 1,000 66 107 94 175 94 175
|V| = 10, 000 IWS 126 12 25 1,000 1,000 12 25 12 25 12 25

New 49 6 16 7 28 6 16 18 36 22 43

5.2 POMDP BENCHMARKS

Table 2 shows how the pruning subroutines perform
when used as part of the incremental pruning algo-
rithm in solving two robot navigation POMDPs, CIT
and Hallway2, described in Cassandra’s (1998) disser-
tation and available on his website (https://www.
pomdp.org). It also shows results for a benchmark
POMDP described by Smith and Simmons (2004), called
RockSample[4,4], available at the website (http://
longhorizon.org/trey/zmdp/index.html).

Table 2 shows similar statistics as Table 1, but for the first
six iterations of value iteration, and for all steps of the
incremental pruning algorithm. That means the vector
sets that are pruned in each iteration have different sizes,
and can grow from one iteration to the next. To prevent
the vector sets from growing too large too quickly, an
✏-approximation threshold was used and tuned to each
problem, with the value of ✏ shown in the table. The
size of the state sets, and the average and maximum size
of the vector sets, is also shown in the table, since both
have a significant influence on the efficiency of pruning.

Similar to the results for randomly-generated vector sets,
the table shows that the improved pruning subroutine
IWS is often more efficient than the original subroutine
WS. In particular, note that no results are shown for WS
in solving RockSample[4,4]. For this problem, WS runs
so slowly compared to the other methods that it does not
finish in a reasonable amount of time. It is still strug-
gling to finish iteration two of value iteration after IWS
and New have finished six iterations.

In fact, a large part of the reason for the improved per-
formance of New relative to WS is the same as the rea-
son for the improved performance of IWS relative to WS.
Both New and IWS terminate as soon as they find a belief
state b for which the vector w ✏-dominates every vector
u in U , which proves that w is not ✏-dominated. By con-
trast, WS continues to search for a belief state b for which
the vector w maximizes d. As a result, it takes longer to
converge, and solves larger linear programs.

It is worth noting that increasing the tolerance ✏ used for
approximation further reduces the number of iterations
required by New and IWS to converge, in addition to fur-
ther reducing the size of the linear programs solved. By
contrast, previous approaches to vector pruning do not
allow the number of variables and constraints in linear
programs to be decreased by increasing the tolerance ✏.

Although New solves smaller linear programs than IWS,
it has the drawback that it requires more iterations to con-
verge, as is clear from the results in the table. It would
help to have some way to reduce the number of extra iter-
ations. With that in mind, we added a simple heuristic to
the New pruning subroutine, and used it in solving these
benchmark POMDPs. When a state ŝ is added to S 0 in
line 18 of Algorithm 6, a vector û is also added to U 0,
which is selected as follows:

û argmin
u2U\U 0

(w(ŝ)� u(ŝ)) . (21)

The intent of this heuristic is to further reduce the number
of iterations of the algorithm, and it often has this effect,
although the effect is modest and problem-dependent.

Table 2: For each POMDP and pruning algorithm, the table shows the average and maximum number of nonzero and
total variables and constraints in the solution of the final linear program solved to test a vector for dominance, the
average and maximum number of linear programs solved to test a vector for dominance, and the running time in CPU
seconds, for the first six iterations of value iteration using incremental pruning. For each POMDP, it also gives the ✏
tolerance, and the size of the state and vector sets, denoted |S| and |V|, respectively.

Variables Constraints
Time Non-0 Total Non-0 Total LPs

Problem Alg. sec avg max avg max avg max avg max avg max
Hallway2, ✏ = 0.012 WS 9,948 9 16 92 92 9 17 24 57 24 57
|V|avg = 598, |S| = 92 IWS 5,135 8 15 92 92 8 15 21 54 21 54
|V|max = 37, 211 New 2,898 7 14 9 17 7 14 28 80 27 79
RockSample[4,4], ✏ = 1.5 WS - - - - - - - - - - -
|V|avg = 5, 583, |S| = 257 IWS 5,581 4 13 257 257 4 13 8 31 8 31
|V|max = 218, 448 New 3,548 4 12 6 21 4 12 12 53 11 52
CIT, ✏ = 0.05 WS 37,414 12 25 284 284 12 25 27 65 27 65
|V|avg = 1, 476, |S| = 284 IWS 29,664 12 25 284 284 12 25 24 66 24 66
|V|max = 22, 352 New 12,119 9 22 11 27 9 22 34 92 33 91

5.3 POTENTIAL IMPROVEMENTS

Given how much smaller the linear programs solved by
New are compared the the size of the linear programs
solved by the other methods, the timing results reported
above still seem to leave room for further improvement.

Roijers et al. (2018) describe an optimization of the Wal-
raven and Spaan (WS) algorithm for vector pruning in
which constraint sets from previous iterations of value
iteration are used to bootstrap constraint generation in
the current iteration. It seems likely that this approach
could be generalized to allow bootstrapping of variable
generation as well.

For pruning small vector sets, incremental constraint
generation is not needed or helpful, and Walraven’s im-
plementation of WS includes a test for the size of the
vector set, and only uses incremental constraint gener-
ation to prune large vector sets. Similarly, incremental
variable elimination is not needed or helpful for small-
dimensional vector sets, and should only be used for
problems with a relatively large state set.

Perhaps the most significant drawback of the additional
iterations required by incremental variable and constraint
generation is the time overhead of repeated calls to an
external linear program solver, especially for very small
linear programs. It seems likely that performance could
be improved substantially by implementing a special-
purpose linear program solver that leverages the structure
of this problem – the fact that a solution often has small
dimension, with the same number of non-zero variables
as constraints – to accelerate the search for a solution,
and limit the overhead of calls to an external solver.

6 CONCLUSION

Our experimental results show that the approach intro-
duced in this paper outperforms the previous state-of-
the-art pruning subroutine for vector sets, especially for
problems with larger state sets. By incrementally gen-
erating variables and constraints, the size of the linear
programs that must be solved in order to prune a vector
set can be substantially reduced, which in turn improves
the performance of exact value iteration for POMDPs.

The pruning subroutine considered in this paper
is also used by exact algorithms for decentralized
POMDPs (Hansen et al., 2004), by algorithms for multi-
objective MDPs (Roijers et al., 2018), and by algo-
rithms for related high-dimensional convex hull prob-
lems (Zhang, 2010; Dula and Helgason, 1996), and so
the technique is very general. In addition, other ex-
act algorithms for POMDPs solve similar linear pro-
grams that limit scalability, including the Witness algo-
rithm (Kaelbling et al., 1998) and bounded policy itera-
tion (Poupart and Boutilier, 2004; Bernstein et al., 2005).
Hansen (2008) shows how to improve the performance
of bounded policy iteration by incrementally generating
the variables in the linear programs it solves, and incre-
mentally generating both variables and constraints, as de-
scribed in this paper, may improve performance further.

Acknowledgements

Partial support for this research was provided by
National Science Foundation Award IIS:RI #1718384.

References
Bernstein, D., Hansen, E., and Zilberstein, S. (2005).

Bounded policy iteration for decentralized POMDPs.
In Proc. of the 19th International Joint Conference on
Artificial Intelligence (IJCAI-05), pages 52–57.

Cassandra, A. (1998). Exact and Approximate Algo-
rithms for Partially Observable Markov Decision Pro-
cesses. PhD thesis, Brown University.

Cassandra, A., Littman, M., and Zhang, N. (1997). Incre-
mental pruning: A simple, fast, exact method for par-
tially observable Markov decision processes. In Proc.
of the 13th Conference on Uncertainty in Artificial In-
telligence (UAI-97), pages 54–61.

Dula, J. and Helgason, R. (1996). A new procedure for
identifying the frame of the convex hull of a finite col-
lection of points in multidimensional space. European
Journal of Operational Research, 92:352–367.

Dutech, A. and Scherrer, B. (2013). Partially observ-
able Markov decision processes. In Markov Decision
Processes in Artificial Intelligence, chapter 7, pages
185–228. John Wiley & Sons, Ltd.

Hansen, E. (2008). Sparse stochastic finite-state con-
trollers for POMDPs. In Proc. of the 24th Confer-
ence on Uncertainty in Artificial Intelligence (UAI-
08), pages 256–263. AUAI Press.

Hansen, E., Bernstein, D., and Zilberstein, S.
(2004). Dynamic programming for partially observ-
able stochastic games. In Proc. of the 19th National
Conference on Artificial Intelligence (AAAI-04), pages
709–715.

Kaelbling, L., Littman, M., and Cassandra, A. (1998).
Planning and acting in partially observable stochastic
domains. Artificial Intelligence, 101:99–134.

Littman, M., Cassandra, A., and Kaelbling, L. (1995).
Efficient dynamic-programming updates in partially
observable Markov decision processes. Technical Re-
port CS-95-19, Brown University.

Poupart, P. and Boutilier, C. (2004). Bounded finite state
controllers. In Advances in Neural Information Pro-
cessing Systems 16: Proceedings of the 2003 Confer-
ence, Vancouver, Canada. MIT Press.

Roijers, D., Walraven, E., and Spaan, M. (2018). Boot-
strapping LPs in value iteration for multi-objective and
partially observable MDPs. In Proc. of the 28th In-
ternational Conference on Automated Planning and
Scheduling, pages 218–226. The AAAI Press.

Smallwood, R. and Sondik, E. (1973). The optimal con-
trol of partially observable Markov processes over a
finite horizon. Operations Research, 21:1071–1088.

Smith, T. and Simmons, R. (2004). Heuristic search
value iteration for POMDPs. In Proc. of the 20th Con-
ference on Uncertainty in Artificial Intelligence (UAI-
04), pages 520–527.

Spaan, M. (2012). Partially observable Markov decision
processes. In Wiering, M. and van Otterlo, M., editors,
Reinforcement Learning: State of the Art, pages 387–
414. Springer Verlag.

Walraven, E. (2019). Planning under Uncertainty in
Constrained and Partially Observable Environments.
PhD thesis, Delft University of Technology, Nether-
lands.

Walraven, E. and Spaan, M. (2017). Accelerated vec-
tor pruning for optimal POMDP solvers. In Proc. of
the 31st Conference on Artificial Intelligence (AAAI
2017), pages 3672–3678.

White, C. (1991). A survey of solution techniques for the
partially observed Markov decision process. Annals of
Operations Research, 32:215–230.

Zhang, H. (2010). Partially observable Markov decision
processes: A geometric technique and analysis. Oper-
ations Research, 58(1):214–228.

