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Abstract

We propose a new method that satisfies approx-
imate differential privacy for top-k selection
with unordered output in the unknown data do-
main setting, not relying on the full knowledge
of the domain universe. Our algorithm only
requires looking at the top-k̄ elements for any
given k̄ ≥ k, thus, enforcing the principle of
minimal privilege. Unlike previous methods,
our privacy parameter ε does not scale with k,
giving improved applicability for scenarios of
very large k. Moreover, our novel construction,
which combines the sparse vector technique and
stability efficiently, can be applied as a general
framework to any type of query, thus being of
independent interest. We extensively compare
our algorithm to previous work of top-k selec-
tion on the unknown domain, and show, both
analytically and on experiments, settings where
we outperform the current state-of-the-art.

1 INTRODUCTION

Many exploratory analyses involve selecting the top-k
most frequent elements in a dataset. For example, when
analyzing a dataset with users’ purchases, a company may
need to know the top-100 most popular products. Sim-
ilarly, in a given medical study, a researcher may need
to know the top-5 most common diseases from a dataset
of patients. One important aspect of these analyses is
that the top-k selection needs to be performed without
compromising the privacy of any participating user. It is
known that data mining may violate privacy [1], thus for
a given analysis that does not state privacy guarantees,
users may either not opt-in to participate or opt-out. Addi-
tionally, if one can infer users’ interests from the analysis’
results, auxiliary information may be used to link more
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data to these users [2], making the seemingly harmless
result possibly dangerous.

Currently, one of the most widely adopted formal defini-
tions for preserving privacy is Differential Privacy (DP)
[3]. It ensures that the result of an algorithm satisfying
DP will have very little impact if we add or remove any
user from the dataset used to generate the result. Many
companies have adopted differential privacy as a standard,
such as Google [4], Microsoft [5] and LinkedIn [6]. Our
goal is to design algorithms for differentially private top-k
selection that are practical enough to be easily coupled
with existing systems.

In security, there is a principle applicable to many differ-
ent problems called principle of minimal privilege, which
requires that a system only grants the access or permis-
sions that are strictly necessary to perform a certain task.
With this in mind, we design mechanisms in the unknown
domain setting, that is, we do not rely on knowing the
domain universe and do not assume any structure of the
data1. In this context, we only look at a small number of
elements to perform differentially private top-k selection,
while guaranteeing the privacy of the entire data. The
unknown domain setting was only recently explored by
[8], thus we differ substantially from most of the previous
works, such as Exponential Mechanism [9] and Report
Noisy Max [10], as they need some or complete knowl-
edge of the data domain.

In general, our algorithms consider elements in a dataset
with “importance” defined by their counts, and privately
asks for k elements with top/largest counts, looking only
at the top-k̄ for any given k̄ ≥ k. In this sense, we specifi-
cally work on the scenario where the output consists of a
set of elements, i.e. we consider selecting elements with-
out giving any specific order of importance between them.
Additionally, we only consider the restricted subset of
elements with the largest counts (k̄), irrespective of how

1In contrast, itemsets have interesting properties that can be
used to reduce the domain analyzed, e.g. see work from [7].



many elements exist in the domain and their counts. This
is a huge advantage from the privacy point of view consid-
ering that elements with small counts are often the targets
of a privacy breach. However, only looking at a subset
of elements that depends on the data being analyzed may
break privacy. For example, if the sorting that defines
the k̄ elements considered is highly dependent on a given
element that is strongly related to a user, then applying a
classical method like Exponential Mechanism may reveal
some information about this user, as the presence of such
user can considerably influence the results.

With this in mind, we propose a top-k selection method
with unordered output subject to approximate differential
privacy for unknown data domain, only needing access to
the true top-k̄ elements from the data for k̄ ≥ k. Having
observed that previous methods in the unknown domain
[8] typically work well on skewed datasets, we work over
properties of such input data by designing a mechanism
that leverages stability based on the difference of counts
of elements and is able to directly output a set of elements.
Our method combines traditional differential privacy tech-
niques in a novel way and compared to the most similar
previous work that is suitable for releasing general online
queries our construction gives more efficient results. For
this reason our overall framework and privacy analysis
are of independent interest.

More specifically, while previous approaches in the un-
known domain [8] worked in a peeling manner, select-
ing elements one at a time, leading to composition of
k iterations, we directly design our output as a set and
privately test many possible outcomes using a classical
technique that does not compose ε with the number of
tests, which forces our privacy budget ε to not degrade
as k increases. This property gives strong applicability to
scenarios of large domains and top-k selections with very
large k. Also, it is important to note that this fact does not
contradict previous work on bounds for top-k selection,
such as [11], as they work under weaker assumptions,
and we apply our methods over stronger data-dependent
properties to have successful private tests.

1.1 CONTRIBUTIONS

We propose a new differentially private top-k selection
algorithm for the unknown domain setting, that only looks
at the k̄ elements with largest counts for any given k̄ ≥ k.
The approach combines and improves on important tech-
niques from the literature, obtaining a privacy budget ε
independent of k, enforced by rigorous formal guarantees.

An improved novel combination of SVT [12] and Stability
[13] was designed to be integrated in our method, with a
detailed privacy analysis deriving the parameters needed

for optimal results. Our construction gives considerably
better parameters than the most similar previous work
from [14], being of independent interest, as it can be used
for general queries, not just for top-k selection.

We compare our main algorithm to the current state-of-
the-art on the unknown domain of private selection, the
Limited Domain (LD) procedure [8], which is typically
useful for selection on skewed datasets. Although LD
gives an approximately ordered output, we emphasize
that it is still the current state-of-the-art also for our un-
ordered output scenario in the unknown domain. Thus we
include a formal utility analysis with a discussion of favor-
able settings of our work in comparison to LD. Moreover,
we perform an empirical evaluation on three real-world
datasets and various settings. Since most works on DP
top-k selection are solely theoretical – only a minority
having experiments – we consider this a relevant contri-
bution. The code for our methods, datasets used, and all
experimental trials are made publicly available.

1.2 RELATED WORK

Our work focus is on the trusted curator model of dif-
ferential privacy, where users trust a central data center,
responsible for executing private algorithms for any un-
trusted analyst. Our private computation does not require
looking at all of the existing elements in a dataset to pri-
vately select the top-k, therefore we differ from most of
the previous works on top-k selection in this model. Many
are specific to certain problems, like frequent itemset min-
ing [7], or require more domain knowledge, such as the
Exponential Mechanism [9] and Report Noisy Max [10].
Moreover, despite looking at only k̄ elements, we still
guarantee the privacy of the entire dataset.

Among the closely related works, [15] introduced the
Large Margin Mechanism (LMM), which does not de-
pend on the output domain range and seeks to return
the element with a maximum count under approximate
differential privacy. Nonetheless, LMM tests margin in-
crementally to choose a “safe” threshold and frequently
this process ends up running over the entire domain uni-
verse. This reduces LMM to the exponential mechanism
plus wasted additional computation efforts.

Recently, [8] proposed the Limited Domain (LD) proce-
dure for differentially private top-k selection over a large
domain universe. LD restricts the domain and only needs
access to the true top-k̄ elements from the data for any
chosen k̄ ≥ k. To avoid breaking privacy by only looking
at a subset of elements, LD introduces a ⊥ element that,
whenever gets picked, stops the algorithm from running
further. For top-k selection, LD will keep picking ele-
ments for at most k iterations or until ⊥ is picked. To the



best of our knowledge, LD is the only top-k differentially
private algorithm for the unknown domain setting that
never requires iterating over the entire domain.

However, LD uses a fixed probability formulation of ⊥
that is O(log(k̄/δ)), repeatedly considering worst-case
scenarios over the iterations, which decreases the chance
of selecting elements, in consequence diminishing out-
put’s utility. Moreover, the total privacy budget ε of LD
depends on O(

√
k), which also considerably increases

the probability of selecting ⊥, consequently decreasing
the utility of results.

Our work is based on the notion of distance to instability
[13] combined with the Sparse Vector Technique (SVT)
[12] for identifying the queries that lie above a certain
threshold. In our top-k selection, we care about privately
finding the indices of the top-i elements for the largest
i ≤ k. Since we do not know this maximum i, this
problem can be cast as multiple queries to search for the
desired i, to find the indices of top-i elements privately
based on the stability of query results. However, with
[13] only dealing with a single query and [12] returning
only the indications of above/below the threshold for the
queries (not the actual query results), it is non-trivial
to combine these techniques due to non-straightforward
interactions and new issues about privacy guarantees.

Previous work from [14] combined stability and SVT to
release at most m query answers in an online fashion.
Their algorithm AOQR uses SVT to only spend privacy
budget for the queries that are unstable, stopping after
a number of unstable queries is reached, and answering
potentially a large number of stable queries. Using such
setting for our selection problem would be wasteful, as
testing stability for several individual elements can lead
to many unstable results, easily reaching the upper limit.
Even using our insight that the stability can treat an entire
set of elements as one input, their algorithmAOQR is still
not useful. That is because we only need one stable query
result for an entire top-k selection and, more importantly,
as we discuss in Section 5, AOQR uses a simple noise
construction with suboptimal results. Thus, we design
a different improved method, better adjusting the noise
distributions, and unbounding the number of unstable
queries, to allow a limit of a single stable query with
an entire selection. Different from AOQR, this leads to
independence of k in the ε parameter of DP.

2 PRELIMINARIES

First we introduce essential concepts in differential pri-
vacy. After that we specifically highlight the two tech-
niques, Stability and Sparse Vector techniques, that will
be used as the main components in our solutions.

2.1 DIFFERENTIAL PRIVACY

Assume a dataset D with M elements and n users is de-
fined as D = {x1, ..., xn}, with xji being the ith element
of user j. Before defining differential privacy, we need to
define the concept of neighboring datasets.

Definition 2.1. Datasets D and D′ are neighbors if they
differ in the addition or removal of one user’s data.

Now we are ready to define differential privacy.

Definition 2.2 (Differential privacy, [3]). A randomized
mechanismM is (ε, δ)-differentially private if for neigh-
bors D and D′ and all outcome sets O ⊆ Range(M):

Pr[M(D) ∈ O] ≤ exp(ε) Pr[M(D′) ∈ O] + δ (1)

Specifically for selection problems, we now show one of
the most used algorithms available in the literature: the
Exponential Mechanism.

Definition 2.3 (Exponential Mechanism, [9]). On the
Exponential Mechanism EM(D, q, I), for all outputs
i ∈ I and a given quality score function q : U × I → R
we have:

Pr[EM(D, q, I) = i] ∝ exp(εq(D, i)
∆q

) (2)

where ∆q = supi∈I |q(D, i)− q(D′, i)| for all neighbor-
ing datasets D,D′ ∈ U .

Now we state the privacy guarantee obtained from using
the Exponential Mechanism.

Lemma 2.4 (Privacy of Exponential Mechanism, [9]).
The exponential mechanism is (2ε, 0)-differentially pri-
vate. Moreover, if the score function q is monotonic in the
dataset D, EM(D, q, I) is (ε, 0)-differentially private.

Finally, we note that using the exponential mechanism
k times, each time removing from the domain the previ-
ously selected elements, we get a result that is (kε, 0)-
differentially private, obtained by using simple privacy
composition from [3].

2.2 STABILITY IN DIFFERENTIAL PRIVACY

Here we introduce the concept of stability in differential
privacy, and give an algorithm from [13] that uses it for
general stable queries. For this purpose we will consider
a function f : U → R defined over the data universe U
to a given finite rangeR.

Definition 2.5 (Stability, [13]). A function f : U → R
is k-stable on input D ∈ U if adding or removing any k
users’ data from D does not change the value of f , that
is, f(D) = f(D′) for all D′ such that |D∆D′| ≤ k. We



say f is stable on D if it is (at least) 1-stable on D, and
unstable otherwise. Also note that if f is k-stable, it is
i-stable for any 1 ≤ i ≤ k.

In order to practically use stability in differentially private
mechanisms we now define distance to instability.

Definition 2.6 (Distance to instability, [13]). The dis-
tance to instability of a dataset D ∈ U with respect
to a function f , denoted by distf (D) : U → R, is
the number of users that must be added to or removed
from D to reach a dataset that is not stable, i.e. to
reach a dataset D′ that f(D) 6= f(D′). In other words,
distf (D) = argmax

k
[f(D) is k-stable].

Note that f is k-stable on D if and only if distf (D) ≥ k.

Using the definitions above, for any function f , Astab
(Algorithm 1) is a differentially private mechanism that
outputs f(D) whenever D is sufficiently stable.

Algorithm 1 Astab [13]: Private estimator for f via dis-
tance to instability
Astab(D, f, distf , T, ε)

d̂ist←− distf (D) + Lap(1/ε)

If d̂ist > T , then Output f(D) Else Output ⊥

Finally we show the privacy guarantee of Astab obtained
using a specific threshold for the distance to stability.

Theorem 2.7 (Theorem 3.2 from [14]). For threshold
T = ln(1/δ)/ε, Astab is (ε, δ)-differentially private.

Note that if f is unstable on D, i.e., distf (D) =
0, Algorithm 1 will output f(D) with probability
Pr[Lap(1/ε) > ln(1/δ)/ε], which is at most δ by the
tail property of Laplace distribution. This is the key result
related to the δ parameter of Theorem 2.7.

2.3 THE SPARSE VECTOR TECHNIQUE

Now we introduce another DP algorithm that we will later
use: the Sparse Vector Technique (SVT), described on
Algorithm 2 with privacy stated on Theorem 2.8. For SVT
we consider a sequence of queries evaluated on a database
D in comparison to a given threshold. The goal is to
release a bit vector indicating, for each query, whether or
not it lies above the threshold.

Theorem 2.8 (Theorem 2 from [12]). SVT is (ε1 + ε2,
0)-differentially private.

From Theorem 2.8 and algorithm’s description, we see
that the privacy of SVT degrades only with the number of
queries which actually lie above the threshold, represented
by the input c, rather than the total number of queries.

Algorithm 2 SVT [12]: Privately indicate if sensitivity-1
queries are above threshold
SVT (D, {q1, ..., qm}, T , ε1, ε2, c)

Let T̂ = T + Lap( 1
ε1/c

), ctr = 0

for each query qi do
Let νi = Lap( 2

ε2/c
)

If qi(D) + νi ≥ T̂ , then Output >; ctr = ctr + 1
Else Output ⊥
Abort if ctr ≥ c

end for

3 PRIVATE TOP-K SELECTION

Assume a dataset D with M elements and n users is
defined as D = {x1, ..., xn} with neighbors differing in
any one user’s data. For i ∈ {1, 2, ...,M}, xji denotes
the ith element of user xj , which can be either 0 or 1.
Let the function ci(D) =

∑n
j=1 xji be the sum of the

ith element of all the users on dataset D and c(D) the
corresponding vector defined by ci(D).

Top-k selection. In general, to select the top-k elements
in a dataset D means that we seek to privately select
and output k elements i1, ..., ik, with ij ∈ {1, 2, ...,M},
such that ci1(D), ..., cik(D) are as large as possible. Gen-
erally our mechanisms will receive as input only a his-
togram h(D) with the k̄ elements with largest counts, i.e.
h(D) = {ci1(D), ci2(D), ..., cik̄(D)} ∈ Nk̄, such that
ci1(D) ≥ ci2(D) ≥ ... ≥ cik̄(D) for ij ∈ {1, 2, ...,M}.
In this sense, we consider I : Z → Z to be a mapping
function, such that I(i) returns the original index of the
element with the ith largest count cI(i) = hi on D. For
example, I(1) is the index of the element with the largest
count, with value cI(1)(D), also represented as h1(D) on
the sorted histogram.

To describe our mechanism, we start by connecting its
output, which will be a set with indices representing a
selection of elements, to the notion of stability on Defini-
tion 2.5. The idea is to privately use distance to instability,
as in Astab, to return a set of stable elements. To be able
to runAstab multiple times until we find one stable result,
we integrate multiple testings of distance to instability
into the SVT, to only pay ε privacy budget once for the
stable result, and not pay for the unstable testings. We will
see that only the δ part, inside a log term, will compose
when combining Astab and SVT.

First we relate our output functions with the notion of
stability from Definition 2.5. We define fj : U → R
as a function that returns the set of indices of the j ele-
ments with largest counts on a given dataset D ∈ U . In
this sense, the result is unordered, with R being the set
of all possible sets of elements containing zero or more



elements among the j elements with largest counts.

Now, please note that for a given j < M if we have
hj(D) − hj+1(D) − 1 > 0 then the set of elements on
position 1 ≤ i ≤ j of the sorted histogram is the same
on D and any neighbour D′ of D differing in one user’s
data. The reason being that any user can change any given
element’s count by only a value of one.

Therefore, if fj(D) returns a set S ∈ R of elements
on positions 1 to j of the sorted histogram such that
hj(D) − hj+1(D) − 1 > 0, then this means fj(D) is
1-stable. Following this idea, we get that such fj(D) has
the value hj(D) − hj+1(D) − 1 as the distance to in-
stability, according to Definition 2.6. Therefore, we can
define a query qj : U → R on a dataset D ∈ U to be the
distance to instability of the function fj(D), calculated
by hj(D)− hj+1(D)− 1.

With this in mind, for a given index j and histogram
h(D), we can test the distance to instability of fj(D),
represented as the query qj(D), using Algorithm 1. Since
this is a private test, we do not know the position j with
a large hj(D) − hj+1(D) that would lead to increased
chance of success. So we want to do multiple tests on
multiple positions, and once we find a stable result we
can stop. This scenario fits perfectly the use of the SVT
on Algorithm 2 with c = 1. Therefore, using the com-
bined algorithms mentioned above, we start testing the
distance to instability on position k̄ ≥ k and keep decreas-
ing/testing k̄ until we have one success.

Moreover if we have a stable result on position j > k
we can either use Top-k EM to get k elements out of
the j (paying εEM ) or return a random selection of k
elements without paying additional budget. Otherwise if
the stable result is on position j ≤ k, we just return the set
of elements from position 1 to j on the sorted histogram,
without any particular ordering.

Our method for privately computing the top-k elements,
TS, is fully described in Algorithm 3. Although TS
works for any p1 6= 1/3, we will usually set it to 0.37,
giving 37% of ε to ε1 and 63% to ε2. We give more budget
to ε2 because increasing it also increases the chances of
a success by decreasing T . The consequence in turn
is increasing the noise added to T and decreasing the
noise added to each query qi. Since noise varies and a
large threshold would be very hard to be above, focusing
on improving the fixed T instead of the noise tends to
improve results. Moreover the exact percentages we use
come from the guidelines of [12], which gives an optimal
privacy budget allocation between ε1 and ε2.

Also note TS was designed to be as flexible as possible,
dealing with k̄ ≥ k and adding a call to EM if desired.
Still we emphasize that the main ε is independent of k and

Algorithm 3 TS: Top Stable algorithm for top-k selec-
tion via distance to instability
TS(D, k, k̄, ε, p1, εEM , δ)

1: Let ε1 = p1ε, ε2 = (1− p1)ε and c = 2ε1/ε2

2: For δmax =
( 2δcq+δq−c(δcq+2δq)

4(1−c)
)
, let δq be the

argmax
δq

[
δmax

]
subject to δmax ≤ δ/k̄

3: Let T = ln(1/δq)/(ε2/2) and T̂ = T + Lap(1/ε1)
4: for i in [k̄, k̄ − 1, ..., 2, 1] do
5: Let fi(D) be the set of original indices of the

elements from position 1 to i on the sorted histogram
6: Let qi(D) = hi(D)− hi+1(D)− 1
7: out = Astab(D, fi, qi, T̂ , ε22 )
8: If out = ⊥, then Output ⊥
9: Else

10: If i > k, then Output result of Top-k EM
on fi(D) with privacy budget εEM

11: Else Output fi(D) in a random order
12: Halt # Ends execution after first success
13: end for

highlight that the most common use of TS may be setting
εEM = 0 and possibly k̄ = k. Finally, note we operate
on the unknown domain, like [8], as we only look at the
k̄ + 1 elements with largest counts. Before we show the
privacy guarantee of TS, we give a supporting lemma.

Lemma 3.1. For given parameters, εa, εb, δ, and c 6=
1 where c = εb/εa, Pr[Lap( 1

εa
) > log(1/δ)/εa +

Lap( 1
εb

)] is at most 2δc+δ−c(δc+2δ)
4(1−c) .

Proof. First, for simplicity we denote δT = (δ)εb/εa =
δc and T = log(1/δ)/εa = log(1/δ) · εbεa /εb =

log(1/(δ)εb/εa)/εb = log(1/δT )/εb. This way, us-
ing simple tail properties of the Laplace distribution,
where X ' Lap(b) and t > 0 gives Pr[X < −tb] =
exp(−t)/2, we have:

Pr[Lap(1/εb) < −T ] ≤ δT
2

(3)

Now the probability we want to calculate becomes:

Pr[Lap(1/εa) > log(1/δ)/εa + Lap(1/εb)] =
Pr[Lap(1/εa) > T + Lap(1/εb)] =
Pr[Lap(1/εb) < Lap(1/εa)− T ]

Now we rewrite the above as the convolution of two
Laplace random variables. We will denote the density
of a Lap(1/εa) random variable as pa(·). We also sep-
arate the same integral expression into three different



intervals to simplify the proofs.∫ ∞
−∞

pa(x) · Pr[Lap(1/εb) < x− T ]dx =∫ 0

−∞
pa(x) · Pr[Lap(1/εb) < x− T ]dx+ (4)∫ T

0

pa(x) · Pr[Lap(1/εb) < x− T ]dx+ (5)∫ ∞
T

pa(x) · Pr[Lap(1/εb) < x− T ]dx (6)

Now we bound each of the terms 4, 5, and 6 separately.

For the term 4, we apply Equation 3 above and then use∫ 0

−∞ pa(x) = 1/2 for the Laplace distribution:∫ 0

−∞ pa(x) · Pr[Lap(1/εb) < x− T ]dx ≤
δT
2

∫ 0

−∞ pa(x)dx = δT
4

Similarly we obtain the bound for the term 6 as:∫∞
T
pa(x) · Pr[Lap(1/εb) < x− T ]dx ≤∫∞

T
pa(x)dx = exp(−εaT )/2 = δ

2

Finally for the term 5, we start by changing variable to
y = x− T , having y ≤ 0 for x ∈ [0, T ]. Looking only at
the probability part of the second term we then get:

Pr[Lap(1/εb) < x− T ] =
∫ x−T
−∞ p(y)dy = 1

2e
(x−T )εb

Substituting this result into the term 5 gives:∫ T
0
pa(x) · Pr[Lap(1/εb) < x− T ]dx =∫ T

0
pa(x) 1

2e
(x−T )εbdx

Now we write pa as the PDF of the Laplace distribution
without the absolute value since x ∈ [0, T ], for εb

εa
6= 1:∫ T

0
pa(x) · Pr[Lap(1/εb) < x− T ]dx =∫ T

0
εa
2 e
−xεa 1

2e
(x−T )εbdx = εa

4

(
e−εbT−e−εaT

εa−εb

)
Noting that e−εbT = δT and e−εaT = δ, above becomes:∫ T

0
pa(x) · Pr[Lap(1/εb) < x− T ]dx = εa

4

(
δT−δ
εa−εb

)
Putting together all three terms with δT = δc gives:∫∞
−∞ pa(x) · Pr[Lap(1/εb) < x− T ]dx ≤
δT
4 + δ

2 + εa
4

(
δT−δ
εa−εb

)
= δc

4 ·
(

2εa−εb
εa−εb

)
+ δ

4 ·
(
εa−2εb
εa−εb

)
Using εb = c · εa, with c 6= 1 as we used εb

εa
6= 1, and

rearranging terms gives the result of this lemma.

Theorem 3.2. TS on Algorithm 3 is (ε+ εEM , δ)-DP.

Proof. First, consider the group of queries is defined as
Q, then each qi ∈ Q on Line 6 calculates the distance
to instability of the corresponding function fi. Now, for
simplicity, we split our algorithm into three phases: First,

for every qi ∈ Q, TS either commits to > or outputs ⊥
based on the input dataset D. Next if it commits to >,
then it can use fi(D). Finally, with fi(D) we can either
apply Top-k EM or get a random sample of elements.

Thus we can consider three algorithms A1, A2 and A3,
where A1 outputs a sequence of ⊥ and >, corresponding
to the first phase above, A2 is invoked to output fi(D)
only for the queries qi(D) that A1 outputs >, and A3 is
only invoked to output a selection of elements from fi(D)
also for the queries qi(D) that A1 outputs >. Notice that
the combination of A1, A2 and A3 is equivalent to TS.

First, since A1 is just executing the SVT from Algo-
rithm 2, especially with c = 1, and we use ε1 +ε2 = ε, by
Theorem 2.8, it satisfies (ε, 0)-differential privacy. Next
we analyze the privacy of A2 based on the output of A1

with the use of Astab (Algorithm 1).

Consider any particular query qi ∈ Q. For any dataset
D′ s.t. |D∆D′| = 1, there are two possibilities: either
fi(D) = fi(D

′), or fi(D) 6= fi(D
′).

When fi(D) = fi(D
′), if A1 outputs ⊥, algorithm A2

is not invoked and hence the privacy guarantee is not
affected. Moreover, if A1 outputs >, then result is al-
ready differentially private, meaning Pr[A2(D, fi) =
s] = Pr[A2(D′, fi) = s] for any output set s ∈ R,
i.e. privacy budget is not affected.

Now when fi(D) 6= fi(D
′), it follows that fi(D) and

fi(D
′) are unstable, i.e. distfi(D) = distfi(D

′) = 0,
implying Pr[Astab(D, fi) = ⊥] = Pr[Astab(D′, fi) =
⊥] which only outputs > with Pr[Lap(1/(ε2/2)) >
log(1/δq)/(ε2/2) +Lap(1/ε1)]. Using Lemma 3.1 with
εa = ε2/2, εb = ε1 and δ = δq, we have that the prob-

ability above is at most δmax =
2δcq+δq−c(δcq+2δq)

4(1−c) for
c = 2ε1/ε2.

Therefore, for our parameters, we conclude that A2 is
only invoked to output fi(D) with probability at most δi.
Since we do not know how many queries correspond to
fi(D) 6= fi(D

′), we bound this quantity by their total,
which is k̄ since we have k̄ queries. Therefore, by simple
composition, A2 is only invoked to output fi(D) with
probability at most δ = δmax · k̄. Since on Line 2 of
Algorithm 3 we get the maximum δq that satisfies δmax ·
k̄ ≤ δ, this implies it satisfies (0, δ)-differential privacy.

Finally, A3 is just simple use of Top-k EM, which adds
up (εEM , 0)-differential privacy to the overall mechanism.
This results in TS being (ε+ εEM , δ)-DP.

4 UTILITY ANALYSIS

In this section, we give a general utility bound on out-
putting k elements, similar to previous work on the un-



known domain. Additionally, we compare our utility with
the current state-of-the-art on a specific setting where we
obtain guarantees of improved results.

Theorem 4.1. With 3/2 < c < 2 and assuming a 0 <
δq < 1 that gives δmax = δ/k̄, TS outputs k elements
with probability at least 1 − β, if for any given i such
that k ≤ i ≤ k̄ we have hi − hi+1 ≥ 1 + (log(k̄/δ) +
log(1/β))/(ε/4).

Proof. Refer to TS for notations. We first claim δ/k̄ ≤
δq. For δmax = δ/k̄, from Line 2 of Algorithm 3, we

have δ/k̄ =
2δcq+δq−c(δcq+2δq)

4(1−c) =
c(δcq+2δq)−2δcq−δq

4(c−1) =
(c−2)δcq+(2c−1)δq

4(c−1) . With 1.5 < c < 2 we have (c−2) < 0

and 2c−1
4(c−1) < 1, therefore: δ/k̄ =

(c−2)δcq+(2c−1)δq
4(c−1) <

(2c−1)δq
4(c−1) < δq . This proves the claim.

Given that we have δq > δ/k̄ or 1/δq < k̄/δ, and c < 2
implies ε2/2 > ε/4, during the proof we will use hi −
hi+1 ≥ 1 + (log(1/δq) + log(1/β)/(ε2/2), which is
smaller than 1 + (log(k̄/δ) + log(1/β)/(ε/4). Therefore
if TS outputs k elements for the former requirement it
also outputs for the latter. Also for simplicity we write
qi = hi − hi+1 − 1.

The probability that TS outputs k elements comes
from the stability test, i.e. Pr[qi + Lap(1/(ε2/2)) >
log(1/δq)/(ε2/2) + Lap(1/ε1)]. Then here with qi ≥
(log(1/δq) + log(1/β)/(ε2/2), the probability can be
rewritten as:

Pr[qi + Lap( 1
ε2/2

) > log(1/δq)/(ε2/2) + Lap( 1
ε1

)] ≥
Pr[(log(1/δq) + log(1/β)/(ε2/2) + Lap( 1

ε2/2
) >

log(1/δq)/(ε2/2) + Lap( 1
ε1

)] =

Pr[(log(1/β)/(ε2/2) + Lap( 1
ε2/2

) > Lap( 1
ε1

)] =

1− Pr[log(1/β)/(ε2/2) + Lap( 1
ε2/2

) < Lap( 1
ε1

)] =

1− Pr[Lap( 1
ε1

) > log(1/β)/(ε2/2) + Lap( 1
ε2/2

)] =

1− Pr[Lap( 1
ε2/2

) > log(1/β)/(ε2/2) + Lap( 1
ε1

)]

where the last step is due to the symmetry of the Laplace
distribution. Using Lemma 3.1 with εa = ε2/2, εb =
ε1 and δ = β, we have that the probability above
Pr[Lap( 1

ε2/2
) > log(1/β)/(ε2/2)+Lap( 1

ε1
)] is at most

2(β)c+β−c((β)c+2(β))
4(1−c) for c = 2ε1/ε2. With 1.5 < c < 2

we have (c− 2) < 0 and 2c−1
4(c−1) < 1, thus we simplify:

Pr[Lap( 1
ε2/2

) > log(1/β)/(ε2/2) + Lap( 1
ε1

)] ≤
2(β)c+β−c((β)c+2(β))

4(1−c) = (c−2)(β)c+(2c−1)(β)
4(c−1) ≤

(2c−1)(β)
4(c−1) ≤ β.

Thus, probability of satisfying this lemma is 1− β.

A similar utility guarantee was given by [8] for their Lim-

ited Domain (LD) algorithm also on the unknown domain,
which we compare to now.

Theorem 4.2. For k̄ = k ≥ 2, the minimum gap hk −
hk+1 needed to output k elements with probability at
least 1 − β is smaller for TS when compared to LD if
4 · log(k/(δ · β)) <

√
k/2 · log(k2/(δ · β)).

Proof. Lemma 8.1 on [8] states that LD returns k el-
ements with probability 1 − β if hk − hk̄+1 ≥ 1 +
(log(k̄/δ) + log(k/β))/εiter, where εiter is the budget
per iteration. Using k̄ = k for LD and i = k for TS
according to Theorem 4.1, gives a distance requirement
for TS: hk − hk+1 ≥ 1 + 4 · log(k/(δ · β))/ε and for
LD: hk − hk+1 ≥ 1 + log(k2/(δ · β))/εiter.

Since the εiter for LD is the budget per iteration, we need
to consider the composition of k iterations. From LD’s
privacy guarantee, we have that ε ≥ εiter ·

√
k/2, which

gives for LD: hk−hk+1 ≥ 1+
√
k/2 · log(k2/(δ ·β))/ε.

This shows better results for TS whenever
4 · log(k/(δ · β)) <

√
k/2 · log(k2/(δ · β)).

Thus, from Theorem 4.2 it is easy to see, for example,
that TS outperforms LD for k > 32. In theory there is
always a constant kc that for any k > kc we have TS
outperforming LD, but in practice that depends heavily
on the dataset and can be a lot larger than 32. One of
the reasons is that on Theorem 4.2 we used k̄ = k, even
though the utility statement on LD is for the distance
between the kth largest elements and the (k̄+ 1)th largest
element. This forces algorithms to only return elements
among the true top-k but is a requirement more related to
TS than LD. Additionally, the utility bound for LD can be
considered very loose, and it can give better results than
TS for some values of k > 32. Additionally, Theorem 4.2
is not restrictive for all values of k, which means that for
small values of k TS can still outperform LD depending
on the value of the gap hk − hk+1.

5 PRIVATE GENERAL QUERIES

As stated before, AOQR of [14] also uses a combination
of stability and SVT. However we emphasize that our
construction is essentially very different and with better
use of privacy budget. For this reason here we discuss
the main differences and give a general version of both
AOQR and TS, to be used with any kind of query, even
on online setting, not restricted to top-k selection.

First, see that AOQR was designed to release at most m
query answers, bounding the number of unstable queries
and releasing up to m stable. On the other hand TS
bounds the stable queries to release one stable and discard



all the unstable it finds. As explained before, already by
design AOQR is improper for our top-k selection.

The most essential difference appears when we see that
AOQR has to consider the absolute value on the noise
added to the threshold in order to guarantee differential
privacy, which considerably decreases its utility by only
increasing the noisy threshold. Keeping the noise added
to the threshold without the absolute value does not guar-
antee the δ part of DP, as their Lemma 3.4 does not hold
anymore. More discussion on the Supplementary File.

To improve the noise construction, we added a novel
privacy analysis on our Theorem 3.2 using Lemma 3.1.
The result tailors our parameters to guarantee DP, with-
out needing to use the absolute value on the noise of the
threshold. Such privacy analysis is of independent inter-
est, and we can also apply it to AOQR for general online
queries in their application setting. Therefore, for com-
pletion we give a general improved version of AOQR and
also a generic version of TS, to be used with any kind of
query. Due to space constraints we defer the pseudocode
to the Supplementary Material.

6 EXPERIMENTS

For the experimental evaluation, we directly compare
our proposed method, TS, with the Limited Domain
(LD) procedure from [8] on three different public datasets.
Complete code is publicly available2.

Datasets Our datasets are location-based check-ins,
Gowalla[16], BrightKite[16] and Foursquare[17]. We
process the data such that each user gives at most one sin-
gle count value of 1 when he has visited a certain location,
even if the user visits the location many times. Our goal
is to select top-k most visited locations. Table 1 shows
dataset details.

Table 1: Overview of datasets. Number of users, elements,
elements of count 1 and 50/99/100 (max) perc. of counts.

Dataset Users Elements Perc. Percentile
of 1 50th 99th 100th

Gowalla 107,092 1,280,968 49% 2 24 2931
BrightKite 51,406 772,966 87% 1 7 3204
Foursquare 2,293 100,191 60% 1 28 1274

Comparison Metrics For evaluation, we consider two
comparison metrics. The first is P , for Proportion of true
top-k, defined as the number of true top-k elements re-
turned divided by k. The other is S , for Relative Sum, as
the sum of the counts of the elements selected divided by

2https://github.com/ricardocarvalhods/
diff-priv-top-k-stability

the sum of the counts of the true top-k elements. Both P
and S are in the range of [0, 1] with the value 1 represent-
ing the true top-k elements being returned. A larger value
means a closer approximation to the true top-k elements.

Settings For each given number of users n, showed on
Table 1, we use the privacy parameters δ = 1/n and try
three different values of ε: 0.4 (small), 0.8 (medium) and
1.0 (large). A value of ε < 0.5 may be considered too
small, but we note that this is the most common setting in
a private top-k selection, as this task is often one step of a
bigger analysis, thus needing to work with reduced ε.

Initially, we show the results for k equal to 3 (small), 10
(medium) and 50 (large). TS uses p1 = 0.37, as dis-
cussed by [12]. Moreover, we note that the comparison
between TS and LD is multifaceted, without a global best,
therefore, even though TS allows a broad choice of pa-
rameters, we opt to simplify and fix εEM = 0 and k̄ = k
for a scenario of unordered output. Note that although LD
gives ordered output, it still is the best option to compare
with for unknown domain even without needing order.
For LD we compose k + 1 iterations, and consider the
extra iteration for selecting k̄ from [k, ..., 5k] using their
optimization method. On each individual setting we run
2, 000 trials. After overall results we also add discussion
on settings where TS outperforms LD and otherwise.

6.1 OVERALL RESULTS

Here we show the results for the settings described, where
on Table 2 we compare TS and LD regarding P , and on
Table 3 with respect to S .

Table 2: Comparison of TS and LD using P .

Gowalla BrightKite Foursquare
ε Alg. k: 3 10 50 k: 3 10 50 k: 3 10 50

0.4 TS 0.98 1.00 0.20 1.00 0.77 0.14 1.00 0.64 0.11
LD 0.79 0.76 0.24 1.00 0.47 0.10 0.67 0.64 0.13

0.8 TS 1.00 1.00 0.40 1.00 0.80 0.16 1.00 0.90 0.18
LD 1.00 0.90 0.38 1.00 0.79 0.25 0.72 0.85 0.23

1 TS 1.00 1.00 0.45 1.00 0.80 0.18 1.00 0.90 0.18
LD 1.00 0.90 0.45 1.00 0.88 0.28 0.86 0.98 0.25

Table 3: Comparison of TS and LD using S .

Gowalla BrightKite Foursquare
ε Alg. k: 3 10 50 k: 3 10 50 k: 3 10 50

0.4 TS 0.98 1.00 0.39 1.00 0.86 0.38 1.00 0.75 0.28
LD 0.81 0.80 0.44 1.00 0.67 0.32 0.70 0.78 0.32

0.8 TS 1.00 1.00 0.59 1.00 0.89 0.42 1.00 0.94 0.39
LD 1.00 0.92 0.56 1.00 0.88 0.51 0.75 0.91 0.46

1.0 TS 1.00 1.00 0.63 1.00 0.89 0.44 1.00 0.94 0.40
LD 1.00 0.92 0.63 1.00 0.94 0.56 0.87 0.97 0.50

Overall, for the specific settings we used, we see TS with

https://github.com/ricardocarvalhods/diff-priv-top-k-stability
https://github.com/ricardocarvalhods/diff-priv-top-k-stability


better utility more times than LD. However, that is no
assurance of consistently better results. To further investi-
gate how the two methods compare we dive into some of
the settings evaluated, to detail our improvements.

6.2 DISCUSSION AND ADDITIONAL RESULTS

Generally, as the utility of most mechanisms in DP can
considerably vary for different ε, k and data distribution,
for a thorough evaluation, we detail some of the settings
used on this section for 1 ≤ k ≤ 100, describing the
overall behaviour in cases where our method, compared to
LD, is consistently better, consistently worse, or performs
better on a given range of k. We also add results and
discussion for settings with very large k.

(a) Stable range (b) Consistently better

(c) Consistently worse (d) Very large k

Figure 1: Additional in depth results

Stable range Since our method relies on stability, which
may only happen in certain regions of a histogram, TS of-
ten shows behaviour of improved utility when k is below
some upper limit. As an example, for the setting where we
used ε = 0.8, the Gowalla dataset shows improved results
of S when k ≤ 60, as we can observe on Figure 1a.

More specifically, if we define the “stable range” interval
as 1 ≤ k ≤ 60 and “bad range” for k > 60, on average
we get the metrics P and S as showed on Table 4. We
see, for example, that on the “stable range” TS shows an
improvement of 7% on P compared to LD.

Consistently better Different settings can also result
in TS giving consistently better results than LD, almost
independent of k. For example, on the setting where we
used ε = 0.4, BrightKite dataset shows improved results
almost always, i.e. for almost all values of k, as we can
observe on Figure 1b, which plots S for 1 ≤ k ≤ 100.

More specifically, only on a few cases TS is worse than

Table 4: Average P and S on stable or bad ranges.

Algorithm Stable Range Bad Range
P S P S

TS 0.67 0.78 0.24 0.44
LD 0.60 0.73 0.27 0.47

LD, e.g. for k = 30, TS gives S of 0.49 and LD of 0.52.
On the other hand there are cases of great improvements,
e.g. for k = 8, TS gives S of 0.98 and LD of 0.66.

Consistently worse Finally, we cannot affirm TS al-
ways outperforms LD, thus we show settings where TS
gets consistently worse results. For example, on the set-
ting where we used ε = 1.0, the Foursquare dataset shows
LD outperforming TS for almost all values of k. This can
observed on Figure 1c, where we plot S for 1 ≤ k ≤ 100.

Looking in more depth, we have only on a few cases
where TS becomes better than LD, e.g. for k = 9 we
have that TS gives S of 1.00 and LD of 0.80. Consider-
ably more frequent are the cases that LD is better, e.g. for
k = 32, LD gives S of 0.66 while TS shows 0.51.

Very large k It is important to notice that, as stated on
the utility analysis, there is always a constant kc such that
for any k ≥ kc we have TS outperforming LD. We can
intuitively understand this fact from the property that the
ε of TS does not degrade with k. With this in mind, we
show as an example in Figure 1d the result of the case
above where TS was consistently worse than LD. In fact,
when we reach k ≥ 200 we have TS outperforming LD.

7 CONCLUSION

We have proposed a new method for selecting the top-k
elements on unknown data domain with unordered out-
put, only looking at the k̄ elements with the largest counts.
Unlike previous work, our proposed method’s privacy
budget ε does not depend on k. We have designed a novel
construction combining the Sparse Vector Technique and
Stability, with rigorous formal guarantees, giving a frame-
work that can be applied to general queries and is of inde-
pendent interest. We have provided theoretical guarantees
and utility analysis, in addition to extensive empirical evi-
dence on multiple real-life datasets, showing the specific
settings that our proposed method outperforms the current
state-of-the-art on the unknown domain.
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