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Abstract

We propose the Generalized Policy Elimina-
tion (GPE) algorithm, an oracle-efficient con-
textual bandit (CB) algorithm inspired by the
Policy Elimination algorithm of Dudik et al.
[2011]. We prove the first regret optimal-
ity guarantee theorem for an oracle-efficient1

and CB algorithm competing against a non-
parametric class with infinite VC-dimension.
Specifically, we show that GPE is regret-
optimal (up to logarithmic factors) for policy
classes with integrable entropy.

For classes with larger entropy, we show that
the core techniques used to analyze GPE can
be used to design an ε-greedy algorithm with
regret bound matching that of the best algo-
rithms to date. We illustrate the applicability of
our algorithms and theorems with examples of
large nonparametric policy classes, for which
the relevant optimization oracles can be effi-
ciently implemented.

1 INTRODUCTION

In the contextual bandit (CB) feedback model, an agent
(the learner) sequentially observes a vector of covariates
(the context), chooses an action among finitely many op-
tions, then receives a reward associated to the context
and the chosen action. A CB algorithm is a procedure
carried out by the learner, whose goal is to maximize the

1So as to dispel any possible confusion early on, we mean a
CB algorithm is oracle-efficient if, over T rounds, the number
of calls to optimization oracles it makes is polynomial in T ,
rather than exponential in T . This is in that sense that oracle-
efficiency in meant in articles such as Dudik et al. [2011], Agar-
wal et al. [2014], Dudı́k et al. [2017]. We are not claiming that
our proposed methods are efficient in the sense that they would
have a reasonable runtime in practice.
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reward collected over time. Known as policies, functions
that map any context to an action or to a distribution over
actions play a key role in the CB literature. In particular,
the performance of a CB algorithm is typically measured
by the gap between the collected reward and the reward
that would have been collected had the best policy in a
certain class Π been exploited. This gap is the so-called
regret against policy class Π. The class Π is called the
comparison class.

The CB framework applies naturally to settings such as
online recommender systems, mobile health and clinical
trials, to name a few. Although the regret is defined rel-
ative to a given policy class, the goal in most settings
is arguably to maximize the (expected cumulative) re-
ward in an absolute sense. It is thus desirable to com-
pete against large nonparametric policy classes, which
are more likely to contain a policy close to the best mea-
surable policy.

The complexity of a nonparametric class of functions can
be measured by its covering numbers. The ε-covering
number N(ε,F , Lr(P )) of a class F is the number
of balls of radius ε > 0 in Lr(P ) norm (r ≥ 1)
needed to cover F . The ε-covering entropy is defined as
logN(ε,F , Lr(P )). Upper bounds on the covering en-
tropy are well known for many classes of functions. For
instance, the ε-covering entropy of a p-dimensional para-
metric class is O(p log(1/ε)) for all r ≥ 1. In contrast,
the ε-covering entropy of the class {f : [0, 1]d → R :
∀x, y, |f (bαc)(x) − f (bαc)(y)| ≤ M‖x − y‖α−bαc}2of
d-variate Hölder functions is O(ε−d/α) for r = ∞
(hence all r ≥ 1) [van der Vaart and Wellner, 1996,
Theorem 2.7.1]. Another popular measure of complex-
ity is the Vapnik-Chervonenkis (VC) dimension. Since
the ε-covering entropy of a class of VC dimension V is
O(rV log(1/ε)) for all r ≥ 1 [van der Vaart and Well-
ner, 1996, Theorem 2.6.7], the complexity of a class with
finite VC dimension is essentially the same as that of a

2bαc is the integer part; f (m) is the m-th derivative.



Figure 1: Exponent in regret upper bound (up to logarith-
mic factors) as a function of the exponent in the (supre-
mum norm) covering entropy. FK is the theoretical upper
bound of Foster and Krishnamurthy [2018]. Full info is
the bound achieved by Empirical Risk Minimizers under
full information feedback.

parametric class.

We will consider classes Π of policies with either a
polynomial or a logarithmic covering entropy, for which
logN(ε,Π, Lr(P )) is either O(ε−p) for some p > 0 or
O(log(1/ε)). The former are much bigger than the latter.

Efficient CB algorithms competing against classes of
functions with polynomial covering entropy have been
proposed [e.g. by Cesa-Bianchi et al., 2017, Foster and
Krishnamurthy, 2018]. However, these algorithm are not
regret-optimal in a minimax sense. In parallel, Dudik
et al. [2011], Agarwal et al. [2014] have proposed effi-
cient algorithms which are regret-optimal for finite pol-
icy classes, or for policy classes with finite VC dimen-
sion. Thus there seems to be a gap: as of today, no ef-
ficient algorithm has been proven to be regret-optimal
for comparison classes with polynomial entropy (or with
infinite VC dimension). In this article, we partially
bridge this gap. We provide the first efficient algorithm
to be regret-optimal (up to some logarithmic factors)
for comparison classes with integrable entropy (that is,
logN(ε,Π, Lr(P )) = O(ε−p) for p ∈ (0, 1)). Our main
algorithm, that we name Generalized Policy Elimination
(GPE) algorithm, is derived from the Policy Elimination
algorithm of Dudik et al. [2011].

1.1 PREVIOUS WORK

Many contributions have been made to the area of non-
parametric contextual bandits. Among others, one way to
classify them is according to whether they rely on some

version of the exponential weights algorithm, on opti-
mization oracles, or on a discretization of the covariates
space.

Exponential weights-based algorithms. The expo-
nential weights algorithm has a long history in adver-
sarial online learning, dating back to the seminal arti-
cles of Vovk [1990] and Littlestone and Warmuth [1994].
The Exp3 algorithm of Auer et al. [2002b] is the first in-
stance of exponential weigthts for the adversarial multi-
armed bandit problem. The Exp4 algorithm of Auer et al.
[2002a] extends it to the contextual bandit setting. Infi-
nite policy classes can be handled by running a version
of the Exp4 algorithm on an ε-cover of the policy class.
While the Exp4 algorithm enjoys optimal (in a minimax
sense) regret guarantees, it requires maintaining a set of
weights over all elements of the cover, and is thus in-
tractable for most nonparametric classes, because their
covering numbers typically grow exponentially in 1/ε.
Cesa-Bianchi et al. [2017] proposed the first cover-based
efficient online learning algorithm. Their algorithm re-
lies on a hierarchical cover obtained by the celebrated
chaining device of Dudley [1967]. It achieves the mini-
max regret under the full information feedback model but
not under the bandit feedback model, although it yields
rate improvements over past works for large nonpara-
metric policy classes. Cesa-Bianchi et al. [2017]’s regret
bounds are expressed in terms of an entropy integral. An
alternative approach to nonparametric adversarial online
learning is that of Chatterji et al. [2019], who proposed
an efficient exponential-weights algorithm for a repro-
ducing kernel Hilbert-space (RKHS) comparison class.
They characterized the regret in terms of the eigen-decay
of the kernel. They obtained optimal regret if the kernel
has exponential eigen-decay.

Oracle efficient algorithms. The first oracle-based
CB algorithm is the epoch-greedy algorithm of Langford
and Zhang [2008]. Epoch-greedy allows to turn any su-
pervised learning algorithm into a CB algorithm, making
it practical and efficient (in terms of the number of calls
to a supervised classification subroutine). Its regret can
be characterized in a straighforward manner as a func-
tion of the sample complexity of the supervised learning
algorithm, but is suboptimal. Dudik et al. [2011] intro-
duced RandomizedUCB, the first regret-optimal efficient
CB algorithm. Agarwal et al. [2014] improved on their
work by requiring fewer calls to the oracle. [Foster et al.,
2018] pointed out that the aforementioned algorithms
rely on cost-sensitive classification oracles, which are
in general intractable (even though for some relatively
natural classes there exist efficient algorithms). Foster
et al. [2018] proposed regret-optimal, regression oracles-
based algorithms, motivated by the fact that regression
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oracles can in general be implement efficiently. Another
way to make tractable these oracles is, in the case of cost-
sensitive classification oracles, to use surrogate losses, as
studied by Foster and Krishnamurthy [2018]. They gave
regret upper bounds (see Figure 1) and a nonconstructive
proof of the existence of an algorithm that achieves them.
They also proposed an epoch greedy-style algorithm that
achieves the best regret guarantees to date for entropy
logN(ε,Π) of order ε−p for some p > 2. The caveat
of the surrogate loss-based approach is that guarantees
are either in terms of so-called margin-based regret, or
can be expressed in terms of the usual regret, but under
the so-called realizability assumption. We refer the in-
terested reader to Foster and Krishnamurthy [2018] for
further details.

Covariate space discretization-based algorithms. A
third way to design nonparametric CB algorithms con-
sists in discretizing the context space into bins and run-
ning multi-armed bandit algorithms in each bin. This ap-
proach was pioneered by Rigollet and Zeevi [2010] and
extended by Perchet and Rigollet [2013]. They take a
relatively different perspective from the previously men-
tioned works, in the sense that the comparison class is
defined in an implicit fashion: they assume that the ex-
pected reward of each action is a smooth (Hölder) func-
tion of the context, and they compete against the policy
defined by the argmax over actions of the expected re-
ward. Their regret guarantees are optimal in a minimax
sense.

1.2 OUR CONTRIBUTIONS

Primary contribution. In this article, we introduce the
Generalized Policy Elimination algorithm, derived from
the Policy Elimination algorithm of Dudik et al. [2011].
GPE is an oracle-efficient algorithm, of which the regret
can be bounded in terms of the metric entropy of the pol-
icy class. In particular we show that if the entropy is in-
tegrable, then GPE has optimal regret, up to logarithmic
factors. The key enabler of our results is a new maximal
inequality for martingale processes (Theorem 5 in ap-
pendix C), inspired by [van de Geer, 2000, van Handel,
2011]. Although our regret upper bounds for GPE are
no longer optimal for policy classes with non-integrable
entropy, we show that we can use the same type of mar-
tingale process techniques to design an ε-greedy type al-
gorithm that matches the current best upper bounds.

Comparison to previous work. Earlier works on
regret-optimal oracle-efficient algorithms [Dudik et al.,
2011, Agarwal et al., 2014, Foster et al., 2018, for in-
stance] have in common that the regret analysis holds for
a finite number of policies or for policy classes with finite

VC dimension. GPE is the first oracle-efficient algorithm
for which are proven regret optimality guarantees against
a truly nonparametric policy classes (that is, larger than
VC). We refer the reader to appendix A for additional
comparisons with previous articles.

Secondary contributions. In addition to the nonpara-
metric extension of policy elimination and analysis of ε-
greedy in terms of (bracketing) entropy3, we introduce
several ideas that, to the best of our knowledge, have not
appeared so far in the literature. In particular, we demon-
strate the possibility of doing what we call direct policy
optimization over a nonparametric policy class, that is of
directly finding a maximizer π̂ of π 7→ V̂(π) over some
nonparametric Π where V̂(π) estimates the value V(π)
of policy π. As far as we know, no example has been
given yet of a nonparametric class Π for which π̂ can
be efficiently computed, although some articles postu-
late the availability of π̂ [Luedtke and Chambaz, 2019,
Athey and Wager, 2017]. Here, we exhibit several rich
classes for which direct policy optimization can be ef-
ficiently implemented. Another secondary contribution
is the first formal regret bounds for the ε-greedy algo-
rithm, which follows from the same type of arguments as
in the analysis of GPE. We were relatively surprised to
see that unlike the epoch-greedy algorithm, the ε-greedy
algorithm has not been formally analyzed yet, to the best
of our knowledge. This may be due to the fact that do-
ing so requires martingale process theory, which has only
recently started to receive attention in the CB literature.

1.3 SETTING

For each m ≥ 1, denote [m]
.
= {1, . . . ,m}.

At time t ≥ 1, the learner observes context Wt ∈ W
.
=

[0, 1]d, chooses an action At ∈ [K], K ≥ 2, and re-
ceives the outcome/reward Yt ∈ {0, 1}. We suppose
that the contexts are i.i.d. and the rewards are condi-
tionally independent given actions and contexts, with
fixed conditional distributions across time points. We
denote Ot the triple (Wt, At, Yt), and P the distribu-
tion4 of the infinite sequenceO1, O2, . . . , Ot, . . . . More-
over, let Oref .

= (W ref , Aref , Y ref) be a random vari-
able such that W ref ∼ W1, Aref |W ref ∼ Unif([K]),
Y ref |Aref ,W ref ∼ Y1|A1,W1. We denote Ft the filtra-
tion induced by O1, . . . , Ot.

3We recall the definition of bracketing entropy further
down. Bracketing entropy in ‖ · ‖∞ norm is dominated by the
more widely-known metric entropy in ‖ · ‖∞ norm, so that our
results can be read with the latter in mind without much loss of
generality.

4P is partly a fact of nature, through the marginal distribu-
tion of context and the conditional distributions of reward given
context and action, and the result of the learner’s decisions.
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Generically denoted f or π, a policy is a mapping
from W × [K] to R+ such that, for all w ∈ W ,∑
a∈[K] f(a,w) = 1. Thus, a policy can be viewed as

mapping a context to a distribution over actions. We say
the learner is carrying out policy π at time t if, for all
a ∈ [K], w ∈ W , P [At = a|Wt = w] = π(a,w).
Owing to statistics terminology, we also call design the
policy carried out at a given time point. The value V(π)
of π writes as

V(π)
.
= EP

 ∑
a∈[K]

EP [Y |A = a,W ]π(a|W )

 .
For any two policies f and g, we denote

V (g, f)
.
= EP

 ∑
a∈[K]

f(a|W )

g(a|W )

 . (1)

We call V (g, f) the importance sampling (IS) ratio of f
and g. The IS ratio drives the variance of IS estimators
of V(f) had the data been collected under policy g.

2 GENERALIZED POLICY
ELIMINATION

Introduced by Dudik et al. [2011], the policy elimination
algorithm relies on the following key fact. Let gref be
the uniform distribution over actions used as a reference
design/policy:

∀(a,w) ∈ [K]×W, gref(a,w)
.
= K−1.

Proposition 1. Let δ > 0. For all compact and convex
set F of policies, there exists a policy g ∈ F such that

sup
f∈F

V (δgref + (1− δ)g, f) ≤ 2K. (2)

We refer to their article for a proof of this result. Propo-
sition 1 has an important consequence for exploration.
Suppose that at time t we have a set of candidate poli-
cies Ft, and that the designs g1, ..., gt satisfy (2) with
Ft substituted for F . We can then estimate the value of
candidate policies with error uniformly small over Ft.
This in turn has an important implication for exploita-
tion: we can eliminate from Ft all the policies that have
value below some well-chosen threshold, yielding a new
policy set Ft+1, and choose the next exploration policy
gt+1 in Ft+1. This reasoning suggested to Dudik et al.
[2011] their policy elimination algorithm: (1) initialize
the set of candidate policies to the entire policy class,
(2) choose an exploration policy that ensures small value
estimation error uniformly over candidate policies, (3)

eliminate low value policies, (4) repeat steps (2) and (3).
We present formally our version of the policy algorithm
as algorithm 1 below.

In this section, we show that under an entropy condition,
and if we have access to a certain optimization oracle,
our GPE algorithm is efficient and beats existing regret
upper bounds in some nonparametric settings. Our con-
tribution here is chiefly to extend the regret analysis of
Dudik et al. [2011] to classes of functions characterized
by their metric entropy in L∞(P ) norm. This requires
us to prove a new chaining-based maximal inequality for
martingale processes (Theorem 6 in appendix C). On the
computational side, our algorithm relies on having access
to slightly more powerful oracles than that of Dudik et al.
[2011]. We present them in subsection 2.2 and give sev-
eral examples where these oracles can be implemented
efficiently.

We now formally state our GPE algorithm. Consider a
policy class F . For any policy f , any o = (w, a, y) ∈
W × [K] × {0, 1}, define the policy loss and its IS-
weighted counterpart

`(f)(o)
.
= f(a,w)(1− y),

`τ (f)(o)
.
=
gref(a,w)

gτ (a,w)
f(a,w)(1− y),

the corresponding risk R(f)
.
= E[`(f)(Oref)] =

EP [`τ (f)(Oτ )] and its empirical counterpart R̂t(f)
.
=

t−1
∑t
τ=1 `τ (f)(Oτ ).

Algorithm 1 Generalized Policy Elimination
Inputs: policy class F , ε > 0, sequences (δt)t≥1,
(xt)t≥1.
Initialize F1 as F .
for t ≥ 1 do

Find g̃t ∈ Ft such that, for all f ∈ Ft,

1

t− 1

t−1∑
τ=1

f(a|Wτ )

(δtgref + (1− δt)g̃t)(a|Wτ )
≤ 2K. (3)

Define gt = δtgref + (1− δt)g̃t.
Observe context Wt, sample action

At ∼ gt(·|Wt), collect reward Yt.
Define Ft+1 as{

f ∈ Ft : R̂t(f) ≤ min
f∈Ft

R̂t(f) + xt

}
. (4)

end for

2.1 REGRET ANALYSIS

Our regret analysis relies on the following assumption.
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Assumption 1 (Entropy condition). There exist c > 0,
p > 0 such that, for all ε > 0, logN(ε,F , L∞(P )) ≤
cε−p.

Defining Ft+1 ⊂ Ft as (4), the policy elimination step,
consists in removing from Ft all the policies that are
known to be suboptimal with high probability. The
threshold xt thus plays the role of the width of a uniform-
over-Ft confidence interval. Set ε > 0 arbitrarily.
We will show that the following choice of (δτ )τ≥1 and
(xτ )τ≥1 ensures that the confidence intervals hold with
probability 1 − 6ε, uniformly both in time and over the
successive Fτ ’s: for all τ ≥ 1, δτ

.
= τ−(1/2∧1/(2p)) and

xτ
.
= xτ (ε)

.
=
√
vτ (ε)

{
c1

τ
1
2
∧ 1

2p

+
c2 + c5

√
vτ (ε)√

τ

×

√
log

(
τ(τ + 1)

ε

)
+

1

τδτ

(
c3 + c7 log

(
τ(τ + 1)

ε

))}

— defined in appendix D, vτ (ε) is a high probability
upper bound on supf∈Fτ VarP (`τ (f)(Oτ )|Fτ−1).
It is constructed as follows. It can be shown
that the conditional variance of `τ (f)(Oτ )
given Fτ−1 is driven by the expected IS ratio
EP [

∑
a∈[K] f(a,W )/gτ (a,W )|Fτ−1]. Step 3 en-

sures that the empirical mean over past observations of
the IS ratio is no greater than 2K, uniformly over Fτ .
The gap (vτ (ε)− 2K) is a bound on the supremum over
Fτ of the deviation between empirical IS ratios and the
true IS ratios.

We now state our regret theorem for algorithm 1. Let
f∗

.
= arg minf∈F be the optimal policy in F .

Theorem 1 (High probability regret bound for policy
elimination). Consider algorithm 1. Suppose that As-
sumption 1 is met. Then, with probability at least 1− 7ε,
for all t ≥ 1,

t∑
τ=1

(V(f∗)− Yτ )

≤

√
t log

(
1

ε

)
+ 2

t∑
τ=1

xτ (ε) +

t∑
τ=1

δτ

=

O
(√

t
(
log( tε )

)3/2)
if p ∈ (0, 1)

O
(
t
p−1/2
p
(
log( tε )

)3/2)
if p > 1

.

The proof of Theorem 1, presented in appendix D, hinges
on the three following facts.

1. Controlling the supremum w.r.t. f ∈ Fτ of the em-
pirical estimate of the IS ratio (see (3) in the first
step of the loop in algorithm 1) allows to control the
supremum w.r.t. f of the true IS ratio V (gτ , f).

2. With the specification of (xt)t≥1 and (δt)t≥1

sketched above we can guarantee that, with prob-
ability at least 1− 3ε, f∗ ∈ Ft ⊂ . . . ⊂ F1.

3. If f∗ ∈ Ft then we can prove that, with probability
at least 1− 5ε, for all τ ∈ [t],

R(g̃τ )−R(f∗) ≤ 2xτ (ε).

This in turn yields a high probability bound on the
cumulative regret of algorithm 1.

2.2 AN EFFICIENT ALGORITHM FOR THE
EXPLORATION POLICY SEARCH STEP

We show that the exploration policy search step can be
performed in O(poly(t)) calls to two optimization ora-
cles that we define below. The explicit algorithm and
proof of the claim are presented in appendix F.

Definition 1 (Linearly Constrained Least-Squares Ora-
cle). We call Linearly Constrained Least-Squares Ora-
cle (LCLSO) over F a routine that, for any t ≥ 1, q ≥ 1,
vector w ∈ RKt, sequence of vectors W1, ...,Wt ∈ W ,
set of vectors u1, ..., uq ∈ RKt, and scalars b1, ..., bq ,
returns, if there exists one, a solution to

min
f∈F

∑
a∈[K]
τ∈[t]

(w(a, τ)− f(a,Wτ ))2 subject to

∀m ∈ [q],
∑
a∈[K]
τ∈[t]

um(a, τ)f(a,Wτ ) ≤ bτ .

Definition 2 (Linearly Constrained Cost-Sensitive Clas-
sification Oracle). We call Linearly Constrained Cost-
Sensitive Classification Oracle (LCCSCO) over F a rou-
tine that, for any t ≥ 1, q ≥ 1, vector C ∈ (R+)Kt, set
of vectors W1, ...,Wt ∈ W , set of vectors u1, ..., uq ∈
RKt, and set of scalars b1, ..., bq ∈ R returns, if there
exists one, a solution to

min
f∈F

∑
a∈[K]
τ∈[t]

C(a, τ)f(a,Wτ ) subject to

∀m ∈ [q],
∑
a∈[K]
τ∈[t]

um(a, τ)f(a,Wτ ) ≤ bτ .

The following theorem is our main result on the compu-
tational tractability of the policy search step.

Theorem 2 (Computational cost of exploration policy
search). For every t ≥ 1, exploration policy search at
time t can be performed in O((Kt)2 log t) calls to both
LCLSO and LCCSCO.
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The proof of Theorem 2 builds upon the analysis of
Dudik et al. [2011]. Like them, we use the famed el-
lipsoid algorithm as the core component. The general
idea is as follows. We show that the exploration policy
search step (3) boils down to finding a point w ∈ RKt
that belongs to a certain convex set U , and to identifying
a g̃t ∈ Ft such that

∑
a,τ (f(a,Wτ ) − w(a, τ))2 ≤ ∆

for a certain ∆ > 0. In section F.1, we identify U and ∆.
In section F.2, we demonstrate how to find a point in U
with the ellipsoid algorithm.

3 FINITE SAMPLE GUARANTEES
FOR ε-GREEDY

In this section, we give regret guarantees for two vari-
ants of the ε-greedy algorithm competing against a pol-
icy class characterized by bracketing entropy, denoted
thereon logN[ ], and defined in the appendix5. Corre-
sponding to two choices of an input argument φ, the two
variants of algorithm 2 differ in whether they optimize
w.r.t. the policy either an estimate of its value or an esti-
mate of its hinge loss-based risk.

We formalize this as follows. We consider a class F0

of real-valued functions over W and derive from it two
classes F Id and Fhinge defined as

F Id .
=
{

(a,w) 7→ fa(w) : f1, . . . , fK ∈ F0,

∀w ∈ W, (f1(w), ..., fK(w)) ∈ ∆(K)
}
, (5)

where ∆(K) is the K-dimensional probability simplex,
and

Fhinge .
=
{

(a,w) 7→ fa(w) : f1, . . . fK ∈ F0,

∀w ∈ W,
∑
a∈[K]fa(w) = 0

}
. (6)

Let φId be the identity mapping and φhinge be the hinge
mapping x 7→ max(0, 1 + x), both over R. Following
exisiting terminology [Foster and Krishnamurthy, 2018,
for instance], an element of F is called a regressor. Each
regressor f is mapped to a policy π through a policy map-
ping, either π̃Id if f ∈ F Id or π̃hinge if f ∈ Fhinge

where, for all (a,w) ∈ [K]×W ,

π̃Id(f)(a,w) = f(a,w),

π̃hinge(f)(a,w) = 1{a = arg max
a′∈[K]

f(a′, w)}.

For φ set either to φId or φhinge, for any f : [K]×W →
R, for every o = (w, a, y) ∈ W × [K]×{0, 1} and each
τ ≥ 1, define

`φ(f)(o)
.
= φ(f(a,w))(1− y),

5It is known that logN(ε,F , Lr(P )) is smaller than
logN[ ](2ε,F , Lr(P )) for all ε > 0.

`φτ (f)
.
=
gref(a,w)

gτ (a,w)
φ(f(a,w))(1− y),

the corresponding φ-risk Rφ(f)
.
= E[`φ(f)(Oref)] =

EP [`φτ (f)(Oτ )] and its empirical counterpart R̂t(f)
.
=

t−1
∑t
τ=1 `

φ
τ (f)(Oτ ). Finally, the risk of any policy π

is defined as R(π)
.
= Rφ(π) with φ = φId and the

hinge-risk of any regressor f ∈ Fhinge is defined as
Rhinge(f)

.
= Rφ(f) with φ = φhinge.

We can now present the ε-greedy algorithm.

Algorithm 2 ε-greedy.
Input: convex surrogate φ, regressor class F , policy
mapping π̃, sequence (δt)t≥1.
Initialize π̂0 as gref

for t ≥ 1 do
Define policy as mixture between gref and π̂t−1:

gt = δtgref + (1− δt)π̂t−1

Observe context Wt, sample action At ∼
gt(·|Wt), collect reward Yt.

Compute optimal empirical regressor

f̂t = arg min
f∈F

1

t

t∑
τ=1

`φτ (f)(Oτ ). (7)

Compute optimal policy estimator π̂t = π̃(f̂t).
end for

We consider two instantiations of the algorithm:
one corresponding to (φId,F Id, π̃Id) and called di-
rect policy optimization, the other corresponding to
(φhinge,Fhinge, π̃hinge) and called hinge-risk optimiza-
tion.

Regret decomposition. Denote π∗Π the optimal policy
in Π

.
= π̃(F) and π∗ any6 optimal measurable policy.

The key idea in the regret analysis of the ε-greedy algo-
rithm is the following elementary decomposition (details
in appendix E): Yt −R(π∗) =

Yt − EP [Yt|Ft−1]︸ ︷︷ ︸
reward noise

+ δt(R(gref)−R(π∗))︸ ︷︷ ︸
exploration cost

+ (1− δt) (R(π̂t−1)−R(π∗))︸ ︷︷ ︸
exploitation cost

. (8)

Control of the exploitation cost. In the direct policy
optimization case, we can give exploitation cost guaran-
tees under no assumption other than an entropy condition

6There may exist more than one.
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on F . In the hinge-risk optimization case, we need a so-
called realizability assumption. Denote RK=0

.
= {x ∈

RK :
∑
a∈[K] xa = 0}.

Assumption 2 (Hinge-realizability). Let

f∗
.
= arg min
f :[K]×W→RK=0

Rhinge(f)

be the minimizer over all measurable regressors of the
hinge-risk. We say that a regressor class Fhinge satis-
fies the hinge-realizability assumption for the hinge-risk
if f∗ ∈ Fhinge.

Imported from the theory of classification calibration,
Assumption 2 allows us to bound the risk of a policy
R(π̃hinge(f)) in terms of the hinge-risk of the regres-
sor f . The proof relies on the following result:

Lemma 1 (Hinge-calibration). Consider a regressor
class Fhinge. Let

π∗ ∈ arg min
π:[K]×W→∆(K)

R(π)

be an optimal measurable policy. It holds that R(π∗) =
R(π̃hinge(f∗)) and, for all f ∈ Fhinge,

R(π̃hinge(f))−R(π∗) ≤ Rhinge(f)−Rhinge(f∗).

We refer the reader to Bartlett et al. [2006], Ávila Pires
and Szepesvári [2016] for proofs, respectively when
K = 2 and when K ≥ 2. Under Assumption 2,
Lemma 1 teaches us that we can bound the exploita-
tion cost in terms of the excess hinge-risk Rhinge(f) −
minf ′∈Fhinge Rhinge(f ′), a quantity that we can bound
by standard arguments from the theory of empirical risk
minimization. The fondamental building block of our
exploitation cost analysis is therefore the following finite
sample deviation bound for the empirical φ-risk mini-
mizer.

Theorem 3 (φ-risk exponential deviation bound for the
ε-greedy algorithm). Let φ and F be either φId and F Id

or φhinge and Fhinge. Suppose that g1, . . . , gt is a se-
quence of policies such that, for all τ ∈ [t], gτ is Fτ−1-
measurable. Suppose that there exist B, δ > 0 such that

sup
f1,f2∈F

sup
a∈[K],w∈W

|φ(f1(a,w))− φ(f2(a,w))| ≤ B,

min
τ∈[t]

g(Aτ ,Wτ ) ≥ δ a.s.

Define f∗F
.
= arg minf∈F R

φ(f), the F-specific optimal
regressor of the φ-risk, and let f̂t be the empirical φ-risk
minimizer (7). Then, for all x > 0 and α ∈ (0, B),

P

[
Rφ(f̂t)−Rφ(f∗F ) ≥ Ht

(
α, δ,B2K/δ,B

)

+ 160B
√
Kx/δt+ 3B/δtx

]
≤ 2e−x,

with Ht(α, δ, v, B)
.
= α+ 160

√
v/t

×
∫ B

α/2

√
log(1 +N[ ](ε,F , L2(P ))dε+

3B

δt
log 2.

As a direct corollary, we can express rates of conver-
gence for the φ-risk in terms of the bracketing entropy
rate.

Corollary 1. Suppose that log(1+N[ ](ε,F , L2(P ))) =
O(ε−p) for some p ∈ (0, 1). Then

Rφ(f̂t)−Rφ(f∗F ) = OP

(
(δt)−( 1

2∧
1
p )
)
.

Control of the regret. The cumulative reward noise∑t
τ=1(Yτ − EP [Yτ |Fτ−1]) can be bounded by the

Azuma-Hoeffding inequality. From (16) and Corol-
lary 1, δt controls the trade off between the exploration
and exploitation costs. We must therefore choose a δt
that minimizes the total of these two which, from the
above, scales as O(δt + (tδt)

−( 1
2∧

1
p )). The optimal

choice is δt ∝ t−( 1
3∧

1
p+1 ). The following theorem for-

malizes the regret guarantees under the form of a high-
probability bound.

Theorem 4 (High probability regret bound for
ε-greedy.). Suppose that the bracketing entropy of the
regressor class F satisfies log(1 + N[ ](ε,F , L2(P )) =

O(ε−p) for some p > 0. Set δt = t−( 1
3∨

p
p+1 ) for all

t ≥ 1. Suppose that

• either φ = φId, F is of the form F Id, π̃ = π̃Id,

• or φ = φhinge, F is of the form Fhinge, π̃ = π̃hinge,
and F satisfies Assumption 2.

Then, with probability 1− ε,

t∑
τ=1

(V(π∗)− Yτ ) ≤
√
t log(2/ε)

+ t
p
p+1

√
log(2t(t+ 1)/ε).

4 EXAMPLES OF POLICY CLASSES

4.1 A NONPARAMETRIC ADDITIVE MODEL

We say that a(ε) = Õ(b(ε)) if there exists c > 0 such
that a(ε) = O(b(ε) logc(1/ε)). We present a policy class
that has entropy Õ(ε−1), and over which the two opti-
mization oracles presented in Definitions 1 and 2 reduce

7



to linear programs. Let D([0, 1]) be the set of càdlàg
functions and let the variation norm ‖ · ‖v be given, for
all h ∈ D([0, 1]), by

‖h‖v
.
= sup
m≥2

sup
x1,...,xm

m−1∑
i=1

|h(xi+1)− h(xi)|

where the right-hand side supremum is over the subdivi-
sions of [0, 1], that is over {(x1, . . . , xm) : 0 ≤ x1 ≤
. . . ≤ xm ≤ 1}. Set C,M > 0 then introduce

H .
= {h ∈ D([0, 1]) : ‖h‖v ≤M}

and the additive nonparametric additive model derived
from it by setting F0

.
=

{
(a,w) 7→

d∑
l=1

αa,lhl(wl) : |αa,l| ≤ C, ha,l ∈ H
}
.

Let F = F Id derived from F0 as in (5).

The following lemma formally bounds the entropy of the
policy class.
Lemma 2. There exists ε0 ∈ (0, 1) such that, for all
ε ∈ (0, ε0),

logN[ ](ε,F , ‖ · ‖∞) ≤K logN[ ](ε,F0, ‖ · ‖∞)

≤Kc0ε−1 log(1/ε).

for some c0 > 0 depending on (C, d,M).

We now state a result that shows that LCLSO and LCC-
SCO reduce to linear programs over F . We first need to
state a definition.
Definition 3 (Grid induced by a set of points). Consider
d subdivisions of [0, 1] of the form

0 =w1,1 ≤ w1,2 ≤ . . . ≤ w1,q1 = 1,

...

0 =wd,1 ≤ w1,2 ≤ . . . ≤ wd,qd = 1.

The rectangular grid induced by these d subdivisions
is the set of points (w1,i1 , w2,i2 , . . . , wi,id) with i1 ∈
[q1], ..., id ∈ [qd]. We call a rectangular grid any rectan-
gular grid induced by some set of d subdivisions of [0, 1].

Consider a set of points w1, . . . , wn ∈ [0, 1]d. A minimal
grid induced by w1, . . . wn is any rectangular grid that
contains w1, . . . wn and that is of minimal cardinality.
We denote byG(w1, . . . , wn) a minimal rectangular grid
induced by w1, . . . wn chosen arbitrarily.
Lemma 3. Let w0 = 0, w1, . . . , wt ∈ [0, 1]d. For all
l ∈ [d], let H̃l,t

.
= H̃l,t(w0,l, . . . , wt,l)

.
=

{
x 7→

t∑
τ=0

βτ1{x ≥ wτ,l} : βτ ∈ R,
t∑

τ=0

|βτ | ≤M
}

and F̃0,t
.
=

{
(a,w) 7→

d∑
l=1

αa,lh̃a,l(wl) : |αa,l| ≤ B, h̃a,l ∈ Hl,t
}
.

Let (ua,τ )a∈[K],τ∈[t] be a vector in RKt. Let f̃∗ be a
solution to the following optimization problem (P2):

max
f̃∈F̃0,t

∑
a∈[K]

t∑
τ=1

ua,τ f̃(a,Wτ )

s.t. ∀a ∈ [K], ∀w ∈ G(w0, . . . , wt), f̃(a,w) ≥ 0,(9)

∀w ∈ G(w0, . . . , wt),
∑
a∈[K]

f̃(a,w) = 1. (10)

Then, f̃ is a solution to the following optimization prob-
lem (P1):

max
f∈F0

∑
a∈[K]

t∑
τ=1

ua,τf(a,Wτ )

s.t. ∀a ∈ [K],∀w ∈ [0, 1]d, f(a,w) ≥ 0, (11)

∀w ∈ [0, 1]d,
∑
a∈[K]

f(a,w) = 1. (12)

4.2 CÀDLÀG POLICIES WITH BOUNDED
SECTIONAL VARIATION NORM

The class of d-variate càdlàg functions with bounded
sectional variation norm is a nonparametric func-
tion class with bracketing entropy bounded by
O(ε−1 log(1/ε)2(d−1)), over which empirical risk
minimization takes the form of a LASSO problem. It has
received attention recently in the nonparametric statistics
literature [van der Laan, 2016, Fang et al., 2019, Bibaut
and van der Laan, 2019]. Empirical risk minimizers
over this class of functions have been termed Highly
Adaptive Lasso estimators by van der Laan [2016]. The
experimental study of Benkeser and van der Laan [2016]
suggests that Highly Adaptive Lasso estimators are
competitive against supervised learning algorithms such
as Gradient Boosting Machines and Random Forests.

Sectional variation norm. For a function f :
[0, 1]d → R, and a non-empty subset s of [d], we call
the s-section of f and denote fs the restriction of f to
{x ∈ [0, 1]d : ∀i ∈ s, xi = 0}. The sectional variation
norm (svn) is defined based on the notion of Vitali vari-
ation. Defining the notion of Vitali variation in full gen-
erality requires introducing additional concepts. We thus
relegate the full definition to appendix H, and present it
in a particular case. The Vitali variation of an m-times
continuously differentiable function g : [0, 1]m → R is
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defined as

V (m)(g)
.
=

∫
[0,1]m

∣∣∣∣ ∂mg

∂x1 . . . ∂xm

∣∣∣∣.
For arbitrary real-valued càdlàg functions g on [0, 1]m

(non necessarily m times continuously differentiable),
the Vitali variation V (m)(g) is defined in appendix H.
The svn of a function f : [0, 1]d → R is defined as

‖f‖v
.
= |f(0)|+

∑
∅6=s⊂[d]

V (|s|)(fs),

that is the sum of its absolute value at the origin and the
sum of the Vitali variation of its sections. Let D([0, 1]d)
be the class of càdlàg functions with domain [0, 1]d and,
for some M > 0, let

F0
.
=
{
f ∈ D([0, 1]d) : ‖f‖v ≤M

}
(13)

be the class of càdlàg functions with svn smaller thanM .

Entropy bound. The following result is taken from
[Bibaut and van der Laan, 2019].

Lemma 4. Consider F0 defined in (13). Let P be a
probability distribution over [0, 1]d such that ‖ · ‖P,2 ≤
c0‖ · ‖µ,2, with µ the Lebesgue measure and c0 > 0.
Then there exist c1 > 0, ε0 ∈ (0, 1) such that, for all
ε ∈ (0, ε0) and all distributions P over [0, 1]d,

logN[ ](ε,F0, L2(P )) ≤ c1Mε−1 log(M/ε)2d−1.

Representation of ERM. We show that empirical risk
minimization (ERM) reduces to linear programming in
both our direct policy and hinge-risk optimization set-
tings.

Lemma 5 (Representation of the ERM in the direct
policy optimization setting). Consider a class of poli-
cies of the form F Id (5) derived from F0 (13). Let
φ = φhinge. Suppose we have observed (W1, A1, Y1),
. . . , (Wt, At, Yt) and let W̃1, . . . , W̃m be the elements of
G(W1, . . . ,Wt).

Let (βaj )a∈[K],j∈[m] be a solution to

min
β∈RKm

t∑
τ=1

∑
a∈[K]

{
1{Aτ = a}
gτ (Aτ ,Wτ )

(1− Yτ )

×
m∑
j=1

βaj 1{Wτ ≥ W̃j}
}

s.t. ∀l ∈ [m],
∑
a∈[K]

m∑
j=1

βaj 1{W̃l ≥ W̃j} = 1,

∀l ∈ [m],∀a ∈ [K],

m∑
j=1

βaj 1{W̃l ≥ W̃j} ≥ 0,

∀a ∈ [K],

m∑
j=1

|βaj | ≤M.

(14)

Then f : (a,w) 7→
∑m
j=1 β

a
j 1{w ≥ W̃j} is a solution to

minf∈FId

∑t
τ=1 `

φ
τ (f)(Oτ ).

We present a similar result for the hinge-risk setting in
appendix H. It is relatively easy to prove with the same
techniques that ERM over Fhinge also reduces to linear
programming when F0 is an RKHS.

5 CONCLUSION

We present the first efficient CB algorithm that is regret-
optimal against policy classes with polynomial entropy.
We acknowledge that our algorithm might not be practi-
cal. It inherits some of the caveats of PE: (1) the prob-
ability of the regret bound is a pre-specified parameter,
(2) if the algorithm eliminates the best policy, it never
recovers.

We conjecture that regret optimality could be proven for
classes with non-integrable entropy. The role of integra-
bility is purely technical and due to our proof techniques.
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