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Abstract

The variational autoencoder is a well defined
deep generative model that utilizes an encoder-
decoder framework where an encoding neural
network outputs a non-deterministic code for
reconstructing an input. The encoder achieves
this by sampling from a distribution for every
input, instead of outputting a deterministic code
per input. The great advantage of this process
is that it allows the use of the network as a
generative model for sampling from the data
distribution beyond provided samples for train-
ing. We show in this work that utilizing batch
normalization as a source for non-determinism
suffices to turn deterministic autoencoders into
generative models on par with variational ones,
so long as we add a suitable entropic regular-
ization to the training objective.

1 INTRODUCTION

Modeling data with neural networks is often broken into
the broad classes of discrimination and generation. We
consider generation, which can be independent of related
goals like density estimation, as the task of generating
unseen samples from a data distribution, specifically by
neural networks, or simply deep generative models.

The variational autoencoder (Kingma and Welling, 2013)
(VAE) is a well-known subclass of deep generative mod-
els, in which we have two distinct networks - a decoder
and encoder. To generate data with the decoder, a sam-
pling step is introduced between the encoder and decoder.
This sampling step complicates the optimization of au-
toencoders. Since it is not possible to differentiate through
sampling, the reparametrization trick is often used. The
sampling distribution has to be optimized to approximate
a canonical distribution such as a Gaussian. The log-
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likelihood objective is also approximated. Hence, it would
be desirable to avoid the sampling step.

To that effect, Ghosh et al. (2019) proposed regularized
autoencoders (RAEs) where sampling is replaced by some
regularization, since stochasticity introduced by sampling
can be seen as a form of regularization. By avoiding
sampling, a deterministic autoencoder can be optimized
more simply. However, they introduce multiple candidate
regularizers, and picking the best one is not straightfor-
ward. Density estimation also becomes an additional task
as Ghosh et al. (2019) fit a density to the empirical latent
codes after the autoencoder has been optimized.

In this work, we introduce a batch normalization step
between the encoder and decoder and add a entropic reg-
ularizer on the batch norm layer. Batchnorm fixes some
moments (mean and variance) of the empirical code dis-
tribution while the entropic regularizer maximizes the
entropy of the empirical code distribution. Maximizing
the entropy of a distribution with certain fixed moments
induces Gibbs distributions of certain families (i.e., nor-
mal distribution for fixed mean and variance). Hence, we
naturally obtain a distribution that we can sample from
to obtain codes that can be decoded into realistic data.
The introduction of a batchnorm step with entropic reg-
ularization does not complicate the optimization of the
autoencoder which remains deterministic. Neither step
is sufficient in isolation and requires the other, and we
compare what happens when the entropic regularizer is
absent. Our work parallels RAEs in determinism and
regularization, though we differ in choice of regularizer
and motivation, as well as ease of isotropic sampling.

The paper is organized as follows. In Section 2, we
review background about variational autoencoders and
batch normalization. In Section 3, we propose entropic
autoencoders (EAEs) with batch normalization as a new
deterministic generative model. Section 4 discusses the
maximum entropy principle and how it promotes cer-
tain distributions over latent codes even without explicit



entropic regularization. Section 5 demonstrates the gener-
ative performance of EAEs on three benchmark datasets
(CELEBA, CIFAR-10 and MNIST). EAEs outperform
previous deterministic and variational autoencoders in
terms of FID scores. Section 6 concludes the paper with
suggestions for future work.

2 VARIATIONAL AUTOENCODER

The variational autoencoder (Kingma and Welling, 2013)
(VAE) consists of a decoder followed by an encoder. The
term autoencoder (Ng et al., 2011) is in general applied
to any model that is trained to reconstruct its inputs. For a
normal autoencoder, representing the decoder and encoder
asD; E respectively, for every inputx i we seek:

E(x i ) = zi ; D(zi ) = x̂ i � x i

Such a model is usually trained by minimizingjj x̂ i � x i jj2

over all x i in training set. In a variational autoencoder,
there is no �xed codewordzi for ax i . Instead, we have

zi = E(x i ) � N (E� (x i ); E� 2 (x i ))

The encoder network calculates means and variances via
E� ; E� 2 layers for every data instance, from which a code
is sampled. The loss function is of the form:

jjD (zi ) � x i jj2 + �D KL (N (E� (x i ); E� 2 (x i )) jjN (0; I ))

whereDKL denotes the Kullback-Leibler divergence and
zi denotes the sample from the distribution over codes.
Upon minimizing the oss function overx i 2 a training set,
we can generate samples as : generatezi � N (0; I ), and
outputD(zi ). The KL term makes the implicitly learnt
distribution of the encoder close to a spherical Gaussian.
Usually,zi is of a smaller dimensionality thanx i .

2.1 VARIATIONS ON VARIATIONAL
AUTOENCODERS

In practice, the above objective is not easy to optimize.
The original VAE formulation did not involve� , and sim-
ply set it to1. Later, it was discovered that this parameter
helps training the VAE correctly, giving rise to a class of
architectures termed� -VAE. (Higgins et al., 2017)

The primary problem with the VAE lies in the training
objective. We seek to minimize KL divergence for every
instancex i , which is often too strong. The result is termed
posterior collapse(He et al., 2019) where everyx i gen-
eratesE� (x i ) � 0; E� 2 (x i ) � 1. Here, the latent variable
zi begins to relate less and less tox i , because neither
�; � 2 depend on it. Attempts to �x this (Kim et al., 2018)
involve analyzing the mutual information betweenzi ; x i

pairs, resulting in architectures like InfoVAE (Zhao et al.,

2017), along with others such as� -VAE (Razavi et al.,
2019b). Posterior collapse is notable when the decoder
is especially `powerful', i.e. has great representational
power. Practically, this manifests in the decoder's depth
being increased, more deconvolutional channels, etc.

One VAE variation includes creating a deterministic archi-
tecture that minimizes an optimal transport based Wasser-
stein loss between the empirical data distribution and
decoded images from aggregate posterior. Such models
(Tolstikhin et al., 2017) work with the aggregate posterior
instead of outputting a distribution per sample, by opti-
mizing either the Maximum Mean Discrepancy (MMD)
metric with a Gaussian kernel (Gretton et al., 2012), or
using a GAN to minimize this optimal transport loss via
Kantorovich-Rubinstein duality. The GAN variant outper-
forms MMD, and WAE techniques are usually considered
as WAE-GAN for achieving state-of-the-art results.

2.2 BATCH NORMALIZATION

Normalization is often known in statistics as the procedure
of subtracting the mean of a dataset and dividing by the
standard deviation. This sets the sample mean to zero
and variance to one. In neural networks, normalization
for a minibatch (Ioffe and Szegedy, 2015) has become
ubiquitous since its introduction and is now a key part
of training all forms of deep generative models (Ioffe,
2017). Given a minibatch of inputsx i of dimensionsn
with � ij ; � ij as its mean, standard deviation at indexj
respectively, we will callBN as the operation that satis�es:

[BN(x i )] j =
x ij � � ij

� ij
(1)

Note that in practice, a batch normalization layer in a
neural network computes a function of formA � B with
A as an af�ne function, andB asBN. This is done during
training time using the empirical average of the minibatch,
and at test time using the overall averages. Many varia-
tions on this technique such as L1 normalization, instance
normalization, online adaptations, etc. exist (Wu et al.,
2018; Zhang et al., 2019; Chiley et al., 2019; Ulyanov
et al., 2016; Ba et al., 2016; Hoffer et al., 2018). The
mechanism by which this helps optimization was initially
termed as “internal covariate shift”, but later works chal-
lenge this perception (Santurkar et al., 2018; Yang et al.,
2019) and show it may have harmful effects (Galloway
et al., 2019).

3 OUR CONTRIBUTIONS - THE
ENTROPIC AUTOENCODER

Instead of outputting a distribution as VAEs do, we seek
an approach that turns deterministic autoencoders into



generative models on par with VAEs. Now, if we had
a guarantee that, for a regular autoencoder that merely
seeks to minimize reconstruction error, the distribution
of all zi 's approached a spherical Gaussian, we could
carry out generation just as in the VAE model. We do
the following : we simply append a batch normalization
step (BN as above, i.e. no af�ne shift) to the end of the
encoder, and minimize the objective:

jj x̂ i � x i jj2 � �H (zi ); x̂ i = D(zi ); zi = E(x i ) (2)

whereH represents the entropy function and is taken
over a minibatch of thezi . We recall and use the fol-
lowing property : letX be a random variable obeying
E[X ] = 0 ; E [X 2] = 1 . Then, the maximum value of
H (X ) is obtained iffX � N (0; 1). We later show that
even when no entropic regularizer is applied, batch norm
alone can yield passable samples when a Gaussian is used
for generation purposes. However, for good performance,
the entropic regularizer is necessary.

3.1 EQUIVALENCE TO KL DIVERGENCE
MINIMIZATION

Our method of maximizing entropy minimizes the KL
divergence by a backdoor. Generally, minibatches are
too small to construct a meaningful sample distribution
that can be compared - inDKL - to the sought spherical
normal distribution without other constraints. However,
suppose that we have the following problem withX being
a random variable with some constraint functionsCk e.g.
on its moments:

maxH (X ); E [Ck (X )] = ck ; k = 1 ; 2; : : :

In particular let the two constraints beE[X ] =
0; E [X 2] = 1 as above. Consider a `proposal' distri-
butionQ that satis�esEQ [X ] = 0 ; EQ [X 2] = 1 and also
a maximum entropy distributionP that is the solution to
the optimization problem above. The cross entropy ofP
with respect toQ is

EQ [� logP(X )]

In our case,P is a Gaussian and� logP(X ) is a term of
the formaX 2 + bX + c. In expectation of this w.r.t.Q,
EQ [X ]; EQ [X 2] are already �xed. Thus for all proposal
distributionsQ, cross entropy ofP w.r.t. Q - written as
H (Q; P) obeys

H (Q; P) = H (Q) + DKL (QjjP)

Pushing upH (Q) thus directly reduces the KL divergence
to P, as the left hand side is a constant. Over a minibatch,

every proposalQ identically satis�es the two moment
conditions due to normalization. Unlike KL divergence,
involving estimating and integrating a conditional prob-
ability (both rapidly intractable in higher dimensions)
entropy estimation is easier, involves no conditional prob-
abilities, and forms the bedrock of estimating quantities
derived from entropy such as MI. Due to interest in the In-
formation Bottleneck method (Tishby et al., 2000) which
requires entropy estimation of hidden layers, we already
have a nonparametric entropy estimator of choice - the
Kozachenko Leonenko estimator (Kozachenko and Leo-
nenko, 1987), which also incurs low computational load
and has already been used for neural networks. This prin-
ciple of “cutting the middleman” builds on the fact that MI
based methods for neural networks often use Kraskov-like
estimators (Kraskov et al., 2004), a family of estimators
that break the MI term into H terms which are estimated
by the Kozachenko-Leonenko estimator. Instead, we di-
rectly work with the entropy.

3.2 A GENERIC NOTE ON THE
KOZACHENKO-LEONENKO ESTIMATOR

The Kozachenko-Leonenko estimator (Kozachenko and
Leonenko, 1987) operates as follows. LetN � 1 and
X 1; : : : ; X N +1 be i.i.d. samples from an unknown distri-
butionQ. Let eachX i 2 Rd.

For eachX i , de�ne Ri = min jjX i � X j jj2; j 6= i and
Yi = N (Ri )d. Let Bd be the volume of the unit ball in
Rd and
 the Euler-mascheroni constant� 0:577. The
Kozachenko Leonenko estimator works as follows:

H (Q) �
1

N + 1

N +1X

i =1

logYi + log Bd + 


Intuitively, having a high distance to the nearest training
example for each example pushes up the entropy via the
Yi term. Such “repulsion”-like nearest neighbour tech-
niques have been employed elsewhere for likelihood-free
techniques such as implicit maximum likelihood estima-
tion (Li et al., 2019; Li and Malik, 2018). In general, the
estimator is biased with known asymptotic orders (Delat-
tre and Fournier, 2017) - however, when the bias stays
relatively constant through training, optimization is unaf-
fected. The complexity of the estimator when utilizing
nearest neighbours per minibatch is quadratic in the size
of the batch, which is reasonable for small batches.

3.3 GENERALIZATION TO ANY GIBBS
DISTRIBUTION

A distribution that has the maximum entropy under con-
straintsCk as above is called theGibbs distribution of
the respective constraint set. When this distribution exists,



we have the result that there exist Lagrange multipliers
� k , such that if the maximum entropy distribution isP,
logP(X ) is of the form

P
� k Ck . For any candidate dis-

tribution Q, EQ [Ck (X )] is determined solely from the
constraints, and thus the cross-entropyEQ [� logP(X )]
is also determined. Our technique of pushing up the en-
tropy to reduce KL holds under this generalization. For
instance, pushing up the entropy forL 1 normalization
layers corresponds to inducing a Laplace distribution.

3.4 PARALLELS WITH THE CONSTANT
VARIANCE VAE

One variation on VAEs is the constant variance VAE
(Ghosh et al., 2019), where the termE� 2 is constant for
every instancex i . Writing Mutual Information as MI,
consider transmitting a code via the encoder that maxi-
mizesMI(X; Y ) whereX is the encoder's output andY
the input to the decoder. In the noiseless case,Y = X ,
and we work with MI(X; X ).

For a discrete random variableX , MI(X; X ) = H (X ).
If noiseless transmission was possible, the mutual infor-
mation would depend solely on entropy. However, using
continuous random variables, our analysis of the constant
variance autoencoder would for� 2 = 0 yield a MI of 1 ,
between the code emitted by the encoder and received by
the decoder. This at �rst glance appears ill-de�ned.

However, suppose that we are in the test conditions i.e.
the batch norm is using a �xed mean and variance and
independent of minibatch. Now, if the decoder receives
Y , MI(X; Y ) = H (X ) � H (X jY ). Since(X jY ) is a
Dirac distribution, it pushes the mutual information to1 .
If we ignore the in�nite mutual information introduced
by the deterministic mapping just as in the de�nition of
differential entropy, the only term remaining isH (X ),
maximizing which becomes equivalent to maximizing
MI. We propose our model as the zero-variance limit of
present constant variance VAE architectures, especially
when batch size is large enough to allow accurate estima-
tions of mean and variance.

3.5 COMPARISON TO PRIOR
DETERMINISTIC AUTOENCODERS

Our work is not the �rst to use a deterministic autoen-
coder as a generative one. Prior attempts in this regard
such as regularized autoencoders (RAEs) (Ghosh et al.,
2019) share the similarities of being deterministic and
regularized autoencoders, but do not leverage batch nor-
malization. Rather, these methods rely on taking the con-
stant variance autoencoder, and imposing a regularization
term on the architecture. This does not maintain the KL
property that we show arises via entropy maximization,

rather, it forms a latent space that has to be estimated
such as via a Gaussian mixture model (GMM) on top of
the regularization. The Gaussian latent space is thus lost,
and has to be estimated post-training. In contrast to the
varying regularization choices of RAEs, our method uses
the speci�c Max Entropy regularizer forcing a particular
latent structure. Compared to the prior Wasserstein au-
toencoder (WAE) (Tolstikhin et al., 2017), RAEs achieve
better empirical results, however we further improve on
these results while keeping the ability to sample from the
prior i.e. isotropic Gaussians. As such, we combine the
ability of WAE-like sampling with performance superior
to RAEs, delivering the best of both worlds. This compari-
son excludes the much larger bigWAE models (Tolstikhin
et al., 2017) which utilize ResNet encoder-decoder pairs.

In general, for all VAE and RAE-like models, the
KL/Optimal Transport/Regularization terms compete
against reconstruction loss and having perfect Gaussian
latents is not always feasible, hence, EAEs, like RAEs,
bene�t from post-density estimation and GMM �tting.
The primary advantage they attain is notrequiring such
steps, and performing at a solid baseline without it.

4 THE MAXIMUM ENTROPY
PRINCIPLE AND
REGULARIZER-FREE LATENTS

We now turn to a general framework that motivates our
architecture and adds context. Given the possibility of
choosing a distributionQ 2 D that �ts some given dataset
X provided, what objective should we choose? One
choice is to pick:

Q = arg max
Q2D

E �X [LL Q (X )]

whereLL Q (X ) denotes the log likelihood of an instance
X andE �X indicates that the expectation is taken with the
empirical distribution �X from X , i.e. every pointX is
assigned a probability1

jX j . An alternative is to pick:

Q = arg max
Q2D

H (Q) (3)

subject toTi (Q) = Ti (X ) (4)

WhereH is the entropy ofQ, andTi (Q) are summary
statistics ofQ that match the summary statistics over the
dataset. For instance, if all we know is the mean and
variance ofX , the distributionQ with maximum entropy
that has the same mean and variance is Gaussian. This so-
called maximum entropy principle (Bashkirov, 2004) has
been used in reinforcement learning (Ziebart et al., 2008),
natural language processing (Berger et al., 1996), normal-
izing �ows (Loaiza-Ganem et al., 2017), and computer



vision (Skilling and Bryan, 1984) successfully. Maximum
entropy is in terms of optimization the convex dual prob-
lem of maximum likelihood, and takes a different route
of attacking the same objective.

4.1 THE MAXENT PRINCIPLE APPLIED TO
DETERMINISTIC AUTOENCODERS

Now, consider the propagation of an input through an
autoencoder. The autoencoder may be represented as:

X � D (E(X ))

whereD; E respectively represent the decoder and en-
coder halves. Observe that if we add a BatchNorm of
the formA � B with A as an af�ne shift,B asBN (as
de�ned in Equation 1) toE - the encoder - we try to �nd
a distributionZ afterB and beforeA, such that:

� E [Z ] = 0 ; E [Z 2] = 1

� B � E (X ) � Z , A � D (Z ) � X

Observe that there are two conditions that do not depend
on E; D: E [Z ] = 0 ; E [Z 2] = 1 . Consider two different
optimization problems:

� O, which asks to �nd the max entropy distribution
Q, i.e., with maxH (Q) overZ satisfyingEQ [Z ] =
0; EQ [Z 2] = 1 .

� O0, which asks to �ndD; E; A and a distribution
Q0 over Z such that we maximizeH (Q0), with
EQ 0[Z ] = 0 ; EQ 0[Z 2] = 1 ; B � E (X ) � Z; A �
D(Z ) � X; Z � Q0.

SinceO has fewer constraints,H (Q) � H (Q0). Fur-
thermore,H (Q) is known to be maximal iffQ is an
isotropic Gaussian overZ . What happens as the capac-
ity of D; E rises to the point of possibly representing
anything (e.g., by increasing depth)? The constraints
B � E (X ) � Z; A � D (Z ) � X; Z � Q0 effectively
vanish, since the functional ability to deformZ becomes
arbitrarily high. We can take the solution ofO, plug it into
O0, and �nd E; D; A that (almost) meet the constraints of
B �E (X ) � Z; A �D (Z ) � X; Z � Q0. If the algorithm
chooses the max entropy solution, the solution ofO0 - the
actual distribution after the BatchNorm layer - approaches
the maxent distribution, an isotropic Gaussian, when the
last three constraints inO affect the solution less.

4.2 NATURAL EMERGENCE OF GAUSSIAN
LATENTS IN DEEP NARROWLY
BOTTLENECKED AUTOENCODERS

We make an interesting prediction: if we increase the
depths ofE; D and constrainE to output a codeZ obeying

E[Z ] = 0 ; E [Z 2] = 1 , the distribution ofZ should - even
without an entropic regularizer - tend to go to a spherical
Gaussian as depth increases relative to the bottleneck. In
practical terms, this will manifest in less regularization
being required at higher depths or narrower bottlenecks.
This phenomenon also occurs in posterior collapse for
VAEs and we should verify that our latent space stays
meaningful under such conditions.

Under the information bottleneck principle, for a neural
network with outputY from input X , we seek a hid-
den layer representation forZ that maximizesMI(Z; Y )
while loweringMI(X; Z ). For an autoencoder,Y � X .
SinceZ is fully determined fromX in a deterministic
autoencoder, increasingH (Z ) increasesMI(Z; X ) if we
ignore the1 term that arises due toH (Y jX ) asY ap-
proaches a deterministic function ofX as before in our
CV-VAE discussion. IncreasingH (Z ) will be justi�ed iff
it gives rise to better reconstruction, i.e. makingZ more
entropic (informative) lowers the reconstruction loss.

Such increases are likelier whenZ is of low dimensional-
ity and struggles to summarizeX . We predict the follow-
ing: a deep, narrowly bottlenecked autoencoder with a
batch normalized code, will, even without regularization,
approach spherical Gaussian-like latent spaces. We show
this in the datasets of interest, where narrow enough bot-
tlenecks can yield samples evenwithout regularization, a
behaviour also anticipated in (Ghosh et al., 2019).

5 EMPIRICAL EXPERIMENTS

5.1 BASELINE ARCHITECTURES WITH
ENTROPIC REGULARIZATION

We begin by generating images based on our architecture
on 3 standard datasets, namely MNIST (LeCun et al.,
2010), CIFAR-10 (Krizhevsky et al., 2014) and CelebA
(Liu et al., 2018). We use convolutional channels of
[128; 256; 512; 1024] in the encoder half and deconvo-
lutional channels of[512; 256]for MNIST and CIFAR-10
and[512; 256; 128] for CelebA, starting from a channel
size of 1024 in the decoder half. For kernels we use
4 � 4 for CIFAR-10 and MNIST, and5 � 5 for CelebA
with strides of2 for all layers except the terminal de-
coder layer. Each layer utilizes a subsequent batchnorm
layer and ReLU activations, and the hidden bottleneck
layer immediately after the encoder has a batch norm
without af�ne shift. These architectures, preprocessing
of datasets, etc. match exactly the previous architectures
that we benchmark against (Ghosh et al., 2019; Tolstikhin
et al., 2017).

For optimization, we utilize the ADAM optimizer. The
minibatch size is set to100, to match (Ghosh et al., 2019)



with an entropic regularization based on the Kozachenko
Leonenko estimator (Kozachenko and Leonenko, 1987).
In general, larger batch sizes yielded better FID scores
but harmed speed of optimization. In terms of latent
dimensionality, we use16 for MNIST, 128 for CIFAR-
10 and64 for CelebA. At most100epochs are used for
MNIST and CIFAR-10 and at most70 for CelebA.

In Figure 1, we present qualitative results on the MNIST
dataset. We do not report the Frechet Inception Distance
(FID) (Heusel et al., 2017), a commonly used metric for
gauging image quality, since it uses the Inception network,
which is not calibrated on grayscale handwritten digits.
In Figure 1, we show the quality of the generated images
for two different regularization weights� in Eq. 2 (0.05
and 1.0 respectively) and in the same �gure illustrate the
quality of reconstructed digits.

We move on to qualitative results for CelebA. We present
a collage of generated samples in Figure 2. CIFAR-10
samples are presented in Figure 3. We also seek to com-
pare, thoroughly, to the RAE architecture. For this, we
present quantitative results in terms of FID scores in Ta-
ble 1 (larger version in supplement). We show results
when sampling latent codes from an isotropic Gaussian
as well as from densities �tted to the empirical distribu-
tion of latent codes after the AE has been optimized. We
consider isotropic Gaussians and Gaussian mixture mod-
els (GMMs). In all cases, we improve on RAE-variant
architectures proposed previously (Ghosh et al., 2019).
We refer to our architecture as theentropic autoencoder
(EAE). There is a tradeoff between Gaussian latent spaces
and reconstruction loss, and results always improve with
ex-post density estimation due to prior-posterior mis-
match.

DETAILS ON PREVIOUS TECHNIQUES

In the consequent tables and �gures, VAE/AE have their
standard meanings. AE-L2 refers to an autoencoder with
only reconstruction loss and L2 regularization, 2SVAE
to the Two-Stage VAE as per (Dai and Wipf, 2019),
WAE to the Wasserstein Autoencoder as per (Tolstikhin
et al., 2017), RAE to the Regularized Auto-encoder as per
(Ghosh et al., 2019), with RAE-L2 referring to such with
a L2 penalty, RAE-GP to such with a Gradient Penalty,
RAE-SN to such with spectral normalization. We use
spectral normalization in our EAE models for CelebA,
and L2 regularization for CIFAR-10.

QUALITATIVE COMPARISON TO PREVIOUS
TECHNIQUES

While Table 1 captures the quantitative performance of
our method, we seek to provide a qualitative comparison

as well. This is done in Figure 4. We compare to all
RAE variants, as well as 2SVAE, WAE, CV-VAE and the
standard VAE and AE as in Table 1. Results for CIFAR-10
and MNIST appear in the supplementary material.

5.2 GAUSSIAN LATENTS WITHOUT
ENTROPIC REGULARIZATION

A surprising result emerges as we make the latent space
dimensionality lower while ensuring a complex enough
decoder and encoder. Though we discussed this process
earlier in the context of depth, our architectures are convo-
lutional and a better heuristic proxy is the number of chan-
nels while keeping the depth constant. We note that all
our encoders share a power of2 framework, i.e. channels
double every layer from128. Keeping this doubling struc-
ture, we investigate the effect of width on the latent space
with no entropic regularizer. We set the channels to dou-
ble from64, i.e. 64; 128; 256; 512and correspondingly
in the decoder for MNIST. Figure 5 shows the samples
with the latent dimension being set to8, and the result
when we take corresponding samples from an isotropic
Gaussian when the number of latents is32.

There is a large, visually evident drop in sample qual-
ity by going from a narrow autoencoder to a wide one
for generation, when no constraints on the latent space
are employed. To con�rm the analysis, we provide the
result for16 dimensions in the �gure as well, which is
intermediate in quality.

The aforesaid effect is not restricted to MNIST. We per-
form a similar study on CelebA taking the latent space
from 48 to 128, and the results in Figures 6 and 7 show a
corresponding change in sample quality. Of course, the re-
sults with48 dimensional unregularized latents are worse
than our regularized,64 dimensional sample collage in
Figure 2, but they retain facial quality without artifacts.
FID scores (provided in caption) also follow this trend.

In our formulation of the MaxEnt principle, we considered
more complex maps (e.g., deeper or wider networks with
possibly more channels) able to induce more arbitrary
deformations between a latent space and the target space.
A narrower bottleneck incentivizes Gaussianization - with
a stronger bottleneck, each latent carries more informa-
tion, with higher entropy in codesZ , as discussed in our
parallels with Information Bottleneck-like methods.

We present a similar analysis between CIFAR-10 AEs
without regularization. Unlike previous cases, CIFAR-10
samples suffer from the issue that visual quality is less
evident to the human eye. These �gures are presented
in Figures 8 and 9. The approximate FID difference
between these two images is roughly13points (� 100vs
� 87). While FID scores are not meaningful for MNIST,
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