
Popularity Agnostic Evaluation of Knowledge Graph Embeddings

Aisha Mohamed F Shameem A. Parambath F Zoi Kaoudi �∗ Ashraf Aboulnaga F

FQatar Computing Research Institute, HBKU �Technische Universität Berlin

Abstract

In this paper, we show that the distribution of
entities and relations in common knowledge
graphs is highly skewed, with some entities
and relations being much more popular than
the rest. We show that while knowledge graph
embedding models give state-of-the-art perfor-
mance in many relational learning tasks such
as link prediction, current evaluation metrics
like hits@k and mrr are biased towards pop-
ular entities and relations. We propose two
new evaluation metrics, strat-hits@k and
strat-mrr, which are unbiased estimators of
the true hits@k and mrr when the items fol-
low a power-law distribution. Our new metrics
are generalizations of hits@k and mrr that
take into account the popularity of the entities
and relations in the data, with a tuning param-
eter determining how much emphasis the met-
ric places on popular vs. unpopular items. Us-
ing our metrics, we run experiments on bench-
mark datasets to show that the performance of
embedding models degrades as the popularity
of the entities and relations decreases, and that
current reported results overestimate the per-
formance of these models by magnifying their
accuracy on popular items.

1 INTRODUCTION

Recently, a number of large-scale knowledge graphs like
DBpedia [1], YAGO [29], WordNet [17], Freebase [3],
and Google Knowledge Graph [25] have been created
and deployed in many real world applications includ-
ing search systems, virtual assistants, and question an-
swering. A knowledge graph is a dataset of general
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relational facts about entities in the world in the form
of (subject, relation, object) triples. Subjects and ob-
jects represent the set of real-world entities (nodes) in
the graph and each triple represents an edge of type
relation between the subject and the object. While
current knowledge graphs contain a huge amount of in-
formation with relatively high accuracy, they are still far
from complete. Relational learning models reason over
the rich semantic structure of knowledge graphs to add
missing correct facts to the graph and detect incorrect
facts to remove from it.

Embedding models for knowledge graphs have shown
state-of-the-art performance in relational learning tasks
such as link prediction (a.k.a. knowledge graph comple-
tion) and entity resolution [18, 24]. These models embed
the entities and relations in a latent subspace and then use
the embeddings to infer unobserved links between the
entities. To predict whether a missing triple (ei, rk, ej)
is true, a score function f((ei, rk, ej); . . . ) is calculated
based on the embeddings of the constituent entities and
relation. The score indicates the confidence of the model
that the entities ei and ej are related by rk [23]. The
main evaluation criteria for these models is: given a triple
with a missing subject or object entity, how well does the
model rank the correct missing entity compared to other
entities in the graph?

A fundamental problem with the current entity ranking
evaluation metrics is their bias towards popular entities
and relations. There is a popularity bias in knowledge
graphs (many facts about few popular entities and few
facts about most of the other long-tail entities) and the
evaluation metrics do not correct for this bias in the
data. The popularity bias in knowledge graphs can be
attributed to the fact that most of these graphs are au-
tomatically constructed in a best-effort way from online
sources that suffer from intrinsic biases (e.g., Wikipedia).
This bias towards popular entities and relations in the
web sources used in knowledge graph construction is re-
flected and amplified in the created knowledge graphs.



Current evaluation metrics like hits@k and mrr calcu-
late the accuracy of a model as follows:

1/|Test|
∑

(ei,rk,ej)∈Test

metric(ei, rk, ?) + metric(?, rk, ej)

2
(1)

That is, for every test triple (ei, rk, ej), how well does the
model predict the subject if it is missing and the object
if it is missing? This per-triple metric is averaged over
the entire test set. In Equation 1, the metric implicitly
scales the contribution of each entity or relation to the
overall accuracy of the model proportionally to its fre-
quency in the test data (popularity), since the summation
ranges over all test triples. Hence, such metrics provide
a biased estimation of the accuracy of the model since
they under-emphasize the value of predictions about the
unpopular, long-tail entities and relations. Using these
biased metrics can lead to the development of models
that perform well on popular entities and relations and
ignore the rest. This contradicts the principal motivation
for using embedding models, which is to propagate in-
formation through the structure of the graph to unfamil-
iar entities and relations and use this information to infer
new knowledge that cannot be easily extracted by on-line
text mining or inferred using simple graphical models.

Though the problem of long-tail entities and relations
is well-studied in many machine learning contexts (e.g.,
minority classes in classification and popularity bias
in recommendation systems), the traditional solutions
used to de-bias the evaluation metrics, such as micro-
averaging, do not directly apply to knowledge graph em-
beddings. The training instance in knowledge graph em-
beddings is the triple, which has three components: a
subject entity, an object entity, and a relation. In most
real knowledge graphs, popular entities do not co-occur
with popular relations in the same triple (e.g., it is possi-
ble for only the subject to be popular while the object and
relation are not popular). Hence, a triple cannot be char-
acterized in its entirety as popular or unpopular. Thus, a
simple re-weighting of triples cannot address popularity
bias in this context.

Another problem with traditional approaches to de-
biasing evaluation metrics is that these approaches quan-
tify the accuracy of a model by one number that
shows accuracy under a specific re-weighting (e.g., equal
weights to all items). An alternate, and better, approach
is to use a series of numbers (together making a trend
line) showing the accuracy of the model as the weight
is gradually shifted from the most popular items to-
wards the least popular items. The unpopular items in a
knowledge graph can be divided into two sub-categories:
(1) distant-tail items that occur in so few triples (some-
times one triple) that reliable predictions about them are

unexpected, and (2) long-tail items that occur in enough
triples that a good model can learn a meaningful embed-
ding of these items. Measuring accuracy via a trend line
would be helpful in discriminating between models that
do well on most items and perform poorly only on the
distant-tail items, and models that perform well only on
the most popular items and perform poorly on the long-
tail and distant-tail items, the majority of the items in the
knowledge graph. A good embedding model should per-
form well on popular and long-tail items.

Guided by these insights, we propose a new class of eval-
uation metrics, strat-hits@k and strat-mrr (strati-
fied Hits@k and stratified MRR), and use it to show that
state-of-the-art embedding models are biased towards
popular entities and relations. These metrics can expose
the popularity bias in the embedding models. Our met-
rics do not assume that popular entities co-occur with
popular relations in the same triples, and so can be used
with knowledge graphs with any level of correlation be-
tween entity and relation popularity. We use our met-
rics to show that the accuracy of embedding models de-
creases on triples representing facts about unpopular en-
tities or relations. This can be attributed to the train-
ing procedure of these models, since it iterates over all
the triples once every epoch regardless of the popularity
bias in the data. Popular items get more focus during
training. Hence, the popularity bias in the input knowl-
edge graphs makes the inference of new facts that include
unpopular entities and relations more challenging, even
though these facts are more valuable for enriching the
graph compared to facts about popular items. Note that,
while prior work has criticized the benchmark datasets
used for training and evaluation of knowledge graph em-
bedding [24, 30], no work has investigated the impact of
popularity bias on the evaluation metrics.

The contribution of this paper lies in highlighting a
common but previously unexplored problem that affects
knowledge graph embedding models and presenting a
novel metric to quantify the effect of this problem on ac-
curacy. We introduce the knowledge graph embedding
models that we use in Section 2. In Section 3, we em-
pirically show that in real knowledge graphs: (1) there
is a selectivity bias towards popular entities and rela-
tions, and (2) popular entities and relations are not cor-
related (i.e., do not co-occur in the same triple). We
then show that current evaluation metrics are mathemat-
ically biased towards popular entities and relations and
propose our new evaluation metrics to correct this bias
in Section 4. We present an experimental evaluation in
Section 5, showing that current evaluation of embedding
models over-estimates their accuracy; these models are
accurate only on popular entities and relations. We dis-
cuss related work in Section 6 and conclude in Section 7.



2 PRELIMINARIES: KNOWLEDGE
GRAPH EMBEDDING MODELS

Let E = {e1, e2, . . . , eN} be the set of entities and
R = {r1, r2, . . . , rK} be the set of all relation types in
a knowledge graph. A triple is of the form (ei, rk, ej),
where ei ∈ E is the subject, ej ∈ E is the object, and
rk ∈ R is the relation between them. Let T = E×R×E
be the set of all possible triples. A knowledge graph
G ⊆ T is a subset of all possible triples with N =
|E| ≥ 2 entities, K = |R| ≥ 1 relations, and M = |G|
triples. G can be represented by a third-order binary
tensor Y ∈ {0, 1}N×N×K where the random variable
yijk = 1 iff (ei, rk, ej) ∈ G, where i, j, and k are the
positions of ei, ej , and rk in the tensor, respectively.

Given a knowledge graph G, link prediction is the prob-
lem of finding the probability that any triple t ∈ T exists
in the graph. By setting a threshold on the probability,
one can determine whether a triple is true or not (and
hence assign it a label from {−1, 1}). Link prediction is
equivalent to estimating the joint probability distribution
P (Y) of correctness of all triples in T given the set of
labeled observed triples D ⊆ E ×R× E × {−1, 1}. We
denote asD+ ⊆ D the set of positive labeled triples (true
triples) and D− ⊆ D the set of negative labeled triples
(false triples). It holds that D = D+ ∪D−. The positive
triples in D+ are a subset of the triples in G. Negative
triples are constructed by different heuristics as we dis-
cuss later.

Knowledge graph embedding models learn an embed-
ding of all entities and relations in the graph in a low-
dimensional space. These models predict the existence
of a triple t = (ei, rk, ej) via a scoring function f(t; Θ)
which represents the model’s confidence that t exists
given the model parameters Θ. Θ consists of the learned
latent representations of the entities ei, ej and relation
rk of t. We denote these representations as ei ∈ Rl,
ej ∈ Rl, and rk ∈ Rl, respectively, where l ∈ N is the
size of the model. Embedding models aim to represent
the semantics of each entity and relation in its latent rep-
resentation and to use this embedding to correctly predict
the scores of true and false triples. Below, we outline the
scoring functions of the four popular embedding models
that we consider in this paper.

TransE: TransE [4] is a translation-based model in-
spired by the Word2vec algorithm [16]. It represents
a relation as a translation operation on the entities and
uses a scoring function that measures the distance of
the two entities with respect to the relation of the triple:
fTransEt = −d(ei + rk, ej) where d(x, y) can be any
distance measure, e.g., L1 or L2 norm.

DistMult: DistMult [2] can be seen as a more com-
pact and less expressive variant of RESCAL, the first
factorization-based embedding model [20]. It adds a di-
agonality constraint on the relation matrix and can thus,
model only symmetric relations. Its scoring function is:
fDistMult
t = eTi diag(rk)ej .

HolE: Leveraging the idea of associative memory,
HolE [19] uses a circular correlation operation between
the two entities’ vectors in its scoring function: fHolEt =

rTk (ei?ej) where (ei?ej)k =
l∑
t=1

eitej((k+t−2 mod l)+1).

ComplEx: ComplEx [31] extends DistMult by using
complex numbers and the Hermitian dot product. Its
scoring function is: fCompIEt = Real(eTi diag(rk)ej)
where Real() is a function that returns the real part of a
complex number. ComplEx has been shown to be equiv-
alent to HolE.

3 POPULARITY BIAS IN
KNOWLEDGE GRAPHS

Most of the popular knowledge graphs (e.g. DBpe-
dia, Wikidata, and YAGO) are automatically constructed
from web sources like Wikipedia or by mining text doc-
uments using information extractors contributed by de-
velopers [1, 29]. These web sources are subject to pop-
ularity bias. This is attributed to the fact that popular
knowledge is readily available in many online sources
and more often completed by users of these platforms, as
compared to unpopular or rare knowledge. Hence, facts
about popular entities are easier to extract with high ac-
curacy compared to the same types of facts about unpop-
ular entities. Moreover, simple facts that describe simple
relations between entities, such as the type relation be-
tween each entity and its class, are available for more
entities compared to the more complex relations that de-
scribe complicated and meaningful interactions between
entities in the graph. For example, though Nollywood is
the second biggest movie industry in the world in terms
of the number of movies produced, second only to Bolly-
wood, Wikipedia contains information (both partial and
full) regarding only 83 Nollywood movies, whereas full
information regarding thousands of Hollywood movies
can be found in Wikipedia. Such data bias is inherited
and can be detected in almost all the commonly used
knowledge graphs. As argued by [6], the problem is am-
plified by the use of crowdsourcing in knowledge graph
construction.



Table 1: Statistics of Benchmark Datasets

NUMBER OF TRIPLES ALL ALL MIX OF POPULAR
(train/validation/test) POPULAR UNPOPULAR AND UNPOPULAR

FB15K 483K / 50K / 59K 70K 45K 477K
WN18 141.4K / 5K / 5K 7.6K 26.6K 117K

YAGO3-10 1.079M / 5K / 5K 7K 120K 962K
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Figure 1: Frequency Distribution of Entities and Relations in the Triples of Benchmark Datasets

3.1 POPULARITY BIAS IN BENCHMARK
DATASETS

Researchers evaluate embedding models on small bench-
mark datasets that are constructed from the most fre-
quently occurring entities and relations in their original
knowledge graphs rather than the full knowledge graphs.
This is because representing huge real-world knowledge
graphs that contain hundreds of millions of entities and
tens of thousands of relations with an embedding di-
mensionality that can capture all the information in such
graphs is still computationally infeasible on commonly
available machines [21]. Three of the most popular
benchmark datasets are FB15K [4], extracted from Free-
Base, WN18 [4], extracted from WordNet, and YAGO3-
10 [7], extracted from YAGO. Each of these datasets is
divided into subsets for training, validation, and testing.
The statistics of these datasets are given in Table 1.

Figure 1 presents histogram plots for the frequency of

entities and relations for these three benchmark datasets.
While these datasets were constructed from the most
frequently occurring entities and relations, they clearly
still exhibit a skewed, power-law distribution even within
these most frequent entities and relations. The frequency
distribution of the entities is more skewed compared to
relations as the number of entities is much larger than
the number of relations in all the knowledge graphs.

3.2 ENTITY POPULARITY VS. RELATION
POPULARITY

Popularity bias, a.k.a. data imbalance, is a very common
problem that has traditionally been tackled in machine
learning by one of the following methods: artificially re-
sampling the dataset, adjusting the cost associated with
errors to be biased towards minority classes, or applying
feature selection to reduce the data imbalance [14]. Ap-
plying these methods to knowledge graphs is challeng-



ing due to the structural differences between tabular and
graph data. The training instance for knowledge graph
embedding models is the triple. Simply applying these
methods assumes that each triple can be characterized as
either popular or unpopular. However, this is not the case
since the popularity of the subject and object entities and
the relation in the same triple are not necessarily corre-
lated.

To illustrate this on the benchmark datasets, Table 1
splits the triples in the datasets based on the popular-
ity of their subject, object, and relation. We assume a
(90/10)% split where the most popular 10% of entities
and relations are considered popular and the rest are con-
sidered unpopular. The third column of the table shows
the number of triples in which the subject, predicate, and
relation are all popular. The fourth column shows the
number of triples in which the subject, predicate, and re-
lation are all unpopular. The last column of the table
shows the number of triples containing a mix of popular
and unpopular subject, object, and/or relation. The bulk
of the triples in all the datasets is in this last column.
This demonstrates that identifying popular or unpopular
subjects, objects, and relations is more meaningful than
identifying popular or unpopular triples. We tried dif-
ferent thresholds for popularity (e.g., 20% and 25%) and
the same phenomenon persists. Another measure of this
phenomenon is the correlation between the popularity of
the subjects and relations in the triples, and between the
popularity of the objects and relations. These correla-
tions are all close to zero. The highest in absolute value
is between objects and relations in YAGO3-10, at −0.3.

4 POPULARITY STRATIFIED
EVALUATION METRICS

The popularity bias in knowledge graphs can affect the
training process of knowledge graph embedding models
and can lead to models that perform well only on pop-
ular entities or relations. Therefore, the evaluation pro-
cess should take the popularity bias into account and use
an evaluation metric that considers both popular and un-
popular items. In this section, we define the stratified
hits@k and stratified mrr metrics, which generalize the
popular hits@k and mrr metrics by introducing popu-
larity weights on entities and relations.

A common approach used in the literature to reduce
the popularity bias in recommendation systems is to re-
weight the recommendations based on the popularity of
the item [27]. In knowledge graphs, as popularity bias
can happen in entities and in relations, we need to re-
weight both entities and relations. We assume that the
probability that a triple (ei, rk, ej) appears in a knowl-

edge graph depends on the popularity of the constituent
entities and relation. Furthermore, we assume that the
probabilities of entities and relations occurring in the
graph are independent of each other. We define the pop-
ularity of an entity or relation x by the number of times
it appears in the graph either as a subject, an object,
or a relation. Let N(x) be the popularity of x in the
complete knowledge graph. In practical settings, N(x)
cannot be computed due to many missing edges in the
observed knowledge graph. The empirical probability
of observing a triple containing x is p̂(x) = N̂(x)/N(x)

where N̂(x) is the number of times x appears in the ob-
served knowledge graph.

From the empirical evidence provided in Figure 1, we
can see that the entities and relations follow a power-law
distribution. In case of power-law distributed variables,
we can say that p̂(x) ∝ [N(x)]α where α ∈ <+ is the tail
index. A smaller value of α indicates that the distribu-
tion contains more extreme values with a very heavy tail
(many unpopular items) and a larger value of α indicates
a weak tail with few unpopular items. The probability of
entity or relation x being observed is:

p̂(x) = c[N(x)]α (scale invariance of power law)

= c[
N̂(x)

p̂(x)
]α (using the definition of p̂)

[p̂(x)]α+1 = c[N̂(x)]α (re-arranging the terms)

p̂(x) ∝[N̂(x)]β (scale invariance; β = α/α+1) (2)

The two most common evaluation metrics used in the
knowledge graph literature are: hits@k and mrr. For
a triple (ei, rk, ej), hits@k(ei, rk, ej) =

1[ej ∈ top-k(ei, r, ∗)] + 1[ei ∈ top-k(∗, r, ej)]
2

(3)

where 1 is the indicator function, top-k(ei, rk, ∗) is the
set of top k ranked entities for the relation rk with ei as
the subject entity, and top-k(∗, rk, ej) is the similar set
with ej as the object entity. The mean reciprocal rank for
the same triple mrr(ei, rk, ej) =

1

2

(
1

rank(ej)in(ei, rk, ∗)
+

1

rank(ei)in(∗, rk, ej)

)
(4)

where rank(ej)in(ei, rk, ∗) is the rank of ej in the set
of ranked predictions for the relation rk with ei as the
subject entity, and conversely for rank(ei)in(∗, rk, ej).

For a given relation r, we define hitsr@k and mrrr for
relation r, which gives equal weight to all pairs of entities



as:

hitsr@k =
1

|E(r)|
∑

(ei,ej)∈E(r)

hits@k(ei, r, ej)

mrrr =
1

|E(r)|
∑

(ei,ej)∈E(r)

mrr(ei, r, ej)

(5)

where E(r) is the set of corresponding entity pairs that
occur with r in the test data. The overall hits@k or mrr
score for the dataset is defined as:

metric =

∑
r∈R metricr × |E(r)|∑

r∈R|E(r)| (6)

where metric is hits@k or mrr.

As pointed out earlier, a common and well established
approach for de-biasing the popularity in the estimated
quantity is to re-weight the predictions [11, 27]. Modify-
ing Equation 5 to take into account the weight of the en-
tities, we define the stratified metrics as strat-hits@kr
and strat-mrrr for relation r as follows:

strat-
metricr

=
1

|E(r)|
∑

(ei,ej)∈E(r)

strat-
metric

(ei, r, ej) (7)

where strat-hits@k(ei, rk, ej) =

wej1[ej ∈ top-k(ei, r, ∗)] + wei1[ei ∈ top-k(∗, r, ej)]
wei + wej

(8)
and strat-mrr(ei, rk, ej) =

1

wei + wej

(
wej

rank(ej)in(ei,rk,∗)
+

wei
rank(ei)in(∗,rk,ej)

)
(9)

where wei and wej are the weights of entities ei and ej ,
respectively.

Finally, we define strat-hits and strat-mrr for the
entire dataset as:

strat-metric = a
∑
r

wr × strat-metricr (10)

where wr is the weight of relation r and a is a nor-
malization factor. Following [26], we assume wr ∝
s(r) and wei ∝ s(ei) where s(x) = 1

p̂(x) ∝ 1
[N̂(x)]β

and the weights are normalized such that the final
strat-metric score ∈ [0, 1]. Note that there are sepa-
rate β parameters for entities and relations, respectively,
βe and βr. With the normalization constant, our final
equation takes the form:

strat-metric =

∑
r∈R w

r × strat-metricr∑
r∈R w

r
(11)

We note that hits@k applied to a single triple is ex-
actly the same as the recall metric used in informa-
tion retrieval. Following the expected utility maximiza-
tion based definition of recall [22], one can see that

strat-recall [26] and strat-hits are proportional
to the true positive rate and thus equivalent. Since
strat-recall on the observed data provides a nearly
unbiased estimate of the true recall [26], we can argue
that strat-hits@k is an unbiased estimate of hits@k.

Macro-averaging vs. Micro-averaging: In the classi-
fication literature, the macro-average evaluation metric
gives equal weight to each class when computing the
classification accuracy, whereas the micro-average gives
equal weight to each instance or classification decision.
Thus, micro-average is a measure of the classifier’s over-
all performance on the most frequently occurring classes
while macro-average gives a sense of the model’s perfor-
mance by giving equal weight to each class. The com-
monly used hits@k and mrr metrics can be viewed as
micro-average metrics of the performance of the model
with respect to relations and are dominated by the most
popular relations. A macro-average would find the aver-
age of hitsr@k or mrrr for all the relations giving equal
weight to the relations regardless of their popularity. A
large difference between the two metrics indicates a large
popularity bias.

Effect of the Hyperparameters βe and βr: The hy-
perparameter β we have defined in strat-hits@k con-
trols the weighting factor for entities and relations. When
β = −1, the weight of each item is proportional to the
frequency of that item. Thus, the metric is biased towards
popular items. As we increase β, we shift the focus more
towards unpopular items. For β ∈ [−1, 0), the weight of
each item is proportional to the frequency of that item
where higher β values downgrade all the weights and
hence decrease the variance between popular and unpop-
ular items. A value β = 0 gives equal weight to the
items. For β ∈ (0, 1], the weight of each item is in-
versely proportional to its frequency and higher beta val-
ues increase the variance between popular and unpopular
weights. Plotting the curve of strat-hits@k vs. β us-
ing an equally separated range of values of β gives valu-
able insights into the performance of a model. For exam-
ple, models that perform well on popular and moderately
unpopular items will be differentiated from models that
perform well only on very popular items.

A very useful feature of these evaluation metrics is that
they can be used to focus on popularity bias in either
entities or relations by fixing one of the β values at 0 and
varying the other one. To evaluate of the susceptibility of
a model to popularity bias in, say, entities, we fix βr at 0
and vary βe from −1 to 1.

Notice that some specific values of β result in commonly
used biased performance metrics, as stated in the follow-
ing two lemmas.



Lemma 1 For βr = −1 and βe = 0, strat-hits@k
calculates the commonly used micro-averaged hits@k
and strat-mrr calculates the commonly used micro-
averaged mrr .

Lemma 2 For βe = βr = 0, strat-hits@k calculates
the macro-averaged hits@k and strat-mrr calculates
the macro-averaged mrr.

5 EXPERIMENTAL EVALUATION

In this section we use our strat-hits@k and
strat-mrr metrics to experimentally evaluate the im-
pact of popularity bias on the performance of state-of-
the-art knowledge graph embedding models.

Datasets: We use two popular link prediction bench-
marks: FB15K and YAGO3-10 (Table 1). FB15K is a
subset of Freebase [3], a knowledge graph that contains
general information about the world, and YAGO3-10 is
a subset of YAGO3 [15], a knowledge graph constructed
from Wikipedia. YAGO3-10 was constructed from enti-
ties that have at least 10 relations each. We choose these
two datasets as they are big enough and contain enough
relations and entities to adequately evaluate the effect of
popularity bias on model accuracy.

Experimental Setup: We evaluate the four embed-
ding models described in Section 2: TransE, DistMult,
HolE, and ComplEx. These embedding models contain
translational and factorization based models and have
shown competitive performance on most of the rela-
tional learning tasks. We use the implementation pro-
vided by AmpliGraph [5], an open source Python library
that uses TensorFlow to implement knowledge graph
embeddings, the loss functions, and optimizers com-
monly used to optimize them. We minimize the reg-
ularized logistic loss as described in [24], which has
been shown to improve results significantly compared
to the pair-wise ranking loss [13, 31]. We use the
Adam optimizer as it requires substantially fewer itera-
tions to converge compared to Adagrad [10]. We per-
formed a grid search over the hyperparameters to max-
imize the filtered mean reciprocal rank (MRR) on the
validation data. The grid search was done over the fol-
lowing range of hyperparameters: embedding size d ∈
{150, 200, 300, 350, 400}, batch size ∈ {50, 64, 100},
learning rate ∈ {0.001, 0.0005, 0.0001, 0.00005}, and
number of negative examples η ∈ {10, 20, 30, 50}. We
trained all models up to 2000 epochs.

Generation of Negative Examples: We use the stan-
dard approach for generating negative examples pro-
posed in [4]: Let D+ be the set of positive training ex-

amples in the dataset. For each triple (s, p, o) in D+, we
generate η negative triples by replacing the subject s or
the object o with a random entity and filter the correct
triples from these generated examples. Thus, the set of
negative examples D− contains the triples:

{(s′, p, o)| s′ ∈ E ∧ s′ 6= s ∧ (s, p, o) ∈ D+} ∪
{(s, p, o′)| o′ ∈ E ∧ o′ 6= o ∧ (s, p, o) ∈ D+}

The training set is D = D+ ∪ D−. Following the link
prediction literature, we randomly sample a different set
of negative examples of size η × N from D− in each
epoch during training.

Evaluation Protocol: Following previous works on
knowledge graph embedding models, we use the link
prediction task for evaluation. For each true triple
(ei, rk, ej) in the test dataset, we replace ei and ej with
each entity e ∈ E and score both the true and the
corrupted triples using the model. Then we sort the
triples by the value of their scores with higher scores
ranked first. We compute the stratified mrr and strati-
fied hits@k for k ∈ {1, 3, 10} according to the equa-
tions described in Section 4. To show the effect of pop-
ularity bias on the accuracy of the model, we report
the stratified metrics for gradually increasing values of
β ∈ [−1.0, 1.0] for both the entities and the relations.

Results: Figures 2 and 3 show the strat-hits@k of
the four knowledge graph embedding models on FB15K
and YAGO3-10, respectively, while varying the β hyper-
parameters that control the bias towards popular entities
and relations. In sub-figures (a)–(c), we fix the weight
of all relations to 1 by setting βr = 0. We then plot
strat-hits@k by varying βe. The leftmost point in
each figure, with βe = −1, focuses on popular entities.
As we move towards the right and increase βe, we shift
the focus of the metric towards less popular entities. We
observe from the plots that the performance of all embed-
ding models degrades as βe increases. This means that
knowledge graph embedding models derive their accu-
racy from doing well on popular entities while ignoring
less popular ones. However, the less popular entities are
often the more interesting ones in a link prediction task.
Our strat-hits@k metric exposes this deficiency and
provides a simple way to decide how much to focus on
popular entities vs. less popular ones.

In sub-figures (d)–(f) we fix the weight of all entities to
1 by setting βe = 0. We then plot strat-hits@k by
varying βr. Recall from Lemma 1 that the leftmost point
on each figure, with βr = −1, corresponds to the micro-
averaged hits@k, which is the metric used in all knowl-
edge graph embedding papers. The accuracy at this point
is derived from performance on the popular relations. As
we increase βr, all knowledge graph embedding models
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(b) strat-hits@3, βr = 0
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(c) strat-hits@1, βr = 0
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Figure 2: strat-hits@k of Knowledge Graph Embedding Models on FB15K

except ComplEx on FB15K suffer a degradation in per-
formance. ComplEx performs better for unpopular rela-
tions. As before, we see that these state-of-the-art knowl-
edge graph embedding models derive their accuracy in
FB15K from doing well only on popular items. On
YAGO3-10, the performance of the models degrades as
the focus on popularity decreases, then it improves again.
This means that the accuracy of the models is high on the
very popular and the very unpopular relations and lower
in the middle. This is rarely the desired performance
of knowledge graph embedding models, since the most
valuable predictions are the ones in the middle. However,
we suspect that this behavior is specific to YAGO3-10 be-
cause it contains a small number of relations: YAGO3-10
contains only 37 relations, hardly representative of large
real-world knowledge graphs. With more relations, the
trend would likely be similar to FB15K.

Figure 4 shows the strat-mrr on the same two datasets.
Sub-figures (a) and (c) fix βr = 0 and vary the βe on
FB15K and YAGO3-10, respectively. Sub-figures (b)
and (d) fix βe = 0 and vary βr on FB15K and YAGO3-
10, respectively. The results show the same trends as the
strat-hits@k figures, which confirms the popularity
bias in knowledge graph embeddings and the ability of
our metrics to consistently capture it.

This clear bias in embedding models can be explained
by the training procedure of these models. During train-

ing, the popular entities and relations have more back-
ground and context information available in the training
data and get more focus during optimization. Also, The
popular entities and relations occur in more triples and
get updated more frequently. Hence, the model infers
new facts about them with higher accuracy while unpop-
ular entities and relations get overlooked.

6 RELATED WORK

Recently, multiple works have discussed the inherent bi-
ases in knowledge graphs and their impact on relational
learning tasks. Janowicz et al. [9] argue that cultural,
geographical, and statistical biases in knowledge graphs
can arise from the source of the data, its ontology, or the
reasoning and rule learning systems used to enrich the
graphs. Demartini [6] argues that collaborative crowd-
sourcing methods adopted in knowledge graph creation
introduce the implicit biases of the contributors into the
knowledge graph. Stepanova et al. [28] state that in rule
mining systems, the popularity bias might lead to the ex-
traction of erroneous biased rules. Li et al. [12] propose
new evidence-collecting techniques to improve knowl-
edge verification for long-tail entities that are not sup-
ported by enough information in the graph. Guo et al. [8]
argue that triple-level learning in knowledge graph em-
beddings gives limited attention to long-tail entities, and
thus their embeddings suffer from low expressiveness.
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(a) strat-hits@10, βr = 0
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(b) strat-hits@3, βr = 0
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(c) strat-hits@1, βr = 0
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(d) strat-hits@10, βe = 0
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(e) strat-hits@3, βe = 0
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(f) strat-hits@1, βe = 0

Figure 3: strat-hits@k of Knowledge Graph Embedding Models on YAGO3-10
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(c) YAGO3-10, βr = 0
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Figure 4: strat-mrr of Knowledge Graph Embedding Models on FB15K and YAGO3-10

They propose using path-level embeddings to improve
performance on entity alignment and knowledge graph
completion especially on long-tail entities but they do not
quantify this improvement. Our work is the first to dis-
cuss bias in the evaluation metrics. Our proposed metrics
offer unbiased estimations of accuracy and encourage de-
velopment of unbiased embedding models.

7 CONCLUSION

In this paper, we study the effect of popularity bias on
the performance of knowledge graph embedding mod-
els. We observe that knowledge graphs have a skewed
popularity distribution for entities and relations, and the
popularity of entities and relations is not necessarily cor-
related. We note that this popularity bias can have a detri-

mental effect on the training of knowledge graph embed-
ding models and is not captured by current evaluation
metrics. We propose the stratified Hits@k and stratified
MRR metrics, which evaluate the accuracy of models on
both popular and unpopular items, and have tuning pa-
rameters β that control the focus on popular vs. unpop-
ular items. Using these metrics, we demonstrate that re-
cent knowledge graph embedding models are indeed bi-
ased towards popular items, and we quantify this bias.
Thus, we provide useful evaluation metrics that subsume
the currently used ones and enable better understanding
of the accuracy of embedding models on the long tail
of the frequency distribution. Our future work is to use
our novel evaluation metrics as a starting point for devel-
oping knowledge graph embedding models that do not
suffer from popularity bias.
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