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Abstract

We study the problem of efficient exploration in
order to learn an accurate model of an environ-
ment, modeled as a Markov decision process
(MDP). Efficient exploration in this problem
requires the agent to identify the regions in
which estimating the model is more difficult
and then exploit this knowledge to collect more
samples there. In this paper, we formalize this
problem, introduce the first algorithm to learn
an ✏-accurate estimate of the dynamics, and
provide its sample complexity analysis. While
this algorithm enjoys strong guarantees in the
large-sample regime, it tends to have a poor
performance in early stages of exploration. To
address this issue, we propose an algorithm
that is based on maximum weighted entropy, a
heuristic that stems from common sense and
our theoretical analysis. The main idea here
is to cover the entire state-action space with
the weight proportional to the noise in the tran-
sitions. Using a number of simple domains
with heterogeneous noise in their transitions,
we show that our heuristic-based algorithm out-
performs both our original algorithm and the
maximum entropy algorithm in the small sam-
ple regime, while achieving similar asymptotic
performance as that of the original algorithm.

1 INTRODUCTION
In most decision problems, the agent is provided with a
goal that it tries to achieve by maximizing a reward signal.
In such problems, the agent explores the environment in
order to identify the high reward situations and reach the
goal faster and more efficiently. Although solving a prob-
lem (achieving a goal) is usually the ultimate objective,
it is sometimes equally important for an agent to under-
stand its environment without pursuing any goals. In such
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scenarios, no reward function is defined and the agent
explores the state-action space in order to discover what
is possible and how the environment works. We refer to
this scenario as reward-free or unsupervised exploration.
Several objectives have been studied in reward-free ex-
ploration, including discovering incrementally reachable
states (Lim and Auer, 2012), uniformly covering the state
space (Hazan et al., 2019), estimating state-dependent ran-
dom variables (Tarbouriech and Lazaric, 2019), a broad
class of objectives that are defined as functions of the state
visitation frequency induced by the agent’s behavior (Che-
ung, 2019a,b), and learning a model of the environment
that is suitable for computing near-optimal policies for
a given collection of reward functions (Jin et al., 2020).
A reward-free exploration algorithm is evaluated by the
amount of exploration it uses to learn its objective.

None of the works above, except (Jin et al., 2020), fo-
cuses on learning the dynamics of an environment mod-
eled as a Markov decision process (MDP). Even in (Jin
et al., 2020), the setting is the simpler finite-horizon MDP,
where many states are often irrelevant as they have no
impact in defining the optimal policy for any reward func-
tions. Although the problem of learning the dynamics
has not been rigorously studied in the reward-free explo-
ration setting, (Araya-López et al., 2011) proposed several
heuristics for this problem. Studying active exploration
for model estimation is also important in the theoretical
understanding of the simulation-to-real problem, where
the goal is to start with an inaccurate model (simulator)
of the environment and learn a better one with minimum
interaction with the world.

In this paper, we formalize the problem of reward-free
exploration where the objective is to estimate both a uni-
formly accurate (minimizing the maximum error) and an
average accurate (minimizing the average error) model of
the environment, i.e., the transition probability function
of the MDP. We identify the form of the model estimation
error for a given policy and show that it depends on how
often the policy visits noisy state-action pairs, i.e., those



whose transition probability has high variance. Since op-
timizing the model estimation error over the policies is
difficult, we upper bound it using Bernstein’s inequality
and obtain an objective function that relates the structure
of the MDP with the accuracy of a model estimated by a
certain state-action visitation (stationary distribution of
a policy). We build on (Tarbouriech and Lazaric, 2019)
and propose an algorithm that optimizes this objective
over stationary distributions and prove sample complexity
bounds for the accuracy (on average and in worst case) of
the estimated model. In particular, our analysis highlights
the intrinsic difficulty of the model estimation problem.

Our “exact” algorithm may be inefficient due to the spe-
cific form of the objective function we optimize and
it tends to perform well only in large sample regimes
(asymptotically). Furthermore, our theoretical guarantees
only hold under restrictive assumptions on the MDP (i.e.,
ergodicity). To alleviate these limitations, we replace the
objective function used by our algorithm with maximizing
weighted entropy, where the goal is to visit state-action
pairs weighted by the noise in their transitions. Although
this is a heuristic, it stems from our derived objective func-
tion and is more tailored to the model estimation problem
than the popular maximum entropy objective (Cheung,
2019a; Hazan et al., 2019) that uniformly covers the state
space. We derive an algorithm based on the maximum
weighted entropy heuristic, by modifying and extending
the algorithm in (Cheung, 2019a), and we prove regret
guarantees w.r.t. the stationary distribution maximizing
the weighted entropy.

The main contributions of this paper are: 1) We introduce
an objective function and use it to derive and analyze
an algorithm for accurate MDP model estimation in the
reward-free exploration setting. The algorithm extends
the one in (Tarbouriech and Lazaric, 2019) by remov-
ing the requirement of knowing the model. 2) When
we switch from our original objective function to the
maximum weighted entropy heuristic, we show how the
algorithm in (Cheung, 2019a) can be modified to handle
an unknown objective (since the weights, i.e., noise in
transitions are not known in advance).1 3) We show that
the algorithm based on the maximum weighted entropy
heuristic outperforms both our theoretically driven algo-
rithm and the maximum entropy algorithm in the small
sample regime, while achieving similar asymptotic per-
formance as that of our exact algorithm. Finally, 4) we
consider an undiscounted infinite-horizon setting, which
is more general than the finite horizon MDP setting con-
sidered in the recent work (Jin et al., 2020), where a large
portion of the states can be considered as irrelevant.

1Interestingly, the algorithm in (Cheung, 2019a) cannot be
applied to the original model estimation problem, as the objec-
tive function violates the assumptions in (Cheung, 2019a).

2 PROBLEM FORMULATION

We consider a reward-free finite Markov decision pro-

cess (MDP) M := hS,A, pi, where S is the set of S
states, A is the set of A actions. Each state-action pair
(s, a) 2 S ⇥A is characterized by an unknown transition
probability distribution p(· | s, a) over next states. We
denote by ⇡ a stochastic non-stationary policy that maps a
history (s0, a0, s1, . . . , st) of states and actions observed
up to time t to a distribution over actions A. We also con-
sider stochastic stationary policies ⇡ : S ! �(A), which
map the current state st to a distribution over actions.

At a high-level, the objective of the agent is to estimate
as accurately as possible the unknown transition dynam-
ics. We refer to this objective as the model estimation

problem, or MODEST for short. More formally, the agent
interacts with the environment by following a possibly
non-stationary policy ⇡ and, after n time steps, it returns
an estimate bp⇡,n of the transition dynamics. We evaluate
the accuracy of bp⇡,n in terms of its `1-norm distance (i.e.,
total variation) w.r.t. the model p either on average or in
the worst-case over the state-action space:

E⇡,n :=
1

SA

X

(s,a)2S⇥A

kbp⇡,n(·|s, a)� p(·|s, a)k1, (1)

W⇡,n := max
(s,a)2S⇥A

kbp⇡,n(·|s, a)� p(·|s, a)k1. (2)

We say that an estimate bp⇡,n is (✏, �)-accurate in the sense
of E (resp. W) if P

�
E⇡,n✏

�
� 1��, i.e., it is ✏-accurate

with at least 1 � � probability (resp. W⇡,n). We then
measure the sample complexity of a policy ⇡ as follows.
Definition 1. Given an error ✏ > 0 and a confidence

level � 2 (0, 1), the MODEST sample complexity of an

agent executing a policy ⇡ is defined as

C
E
MODEST(⇡, ✏, �) := min

n
n � 1: P

�
E⇡,n✏

�
� 1� �

o
,

C
W
MODEST(⇡, ✏, �) := min

n
n � 1: P

�
W⇡,n✏

�
� 1� �

o
.

According to the definition above, the objective is to find
an algorithm that is able to return an (✏, �)-accurate model
with as little number of samples as possible, i.e., minimize
the sample complexity. While the definition above follows
a standard PAC-formulation, it is possible to consider the
case when a fixed budget n is provided in advance and
the agent should return an estimate which is as accurate
as possible with confidence 1� �. In the following, we
consider both settings.

Discussion. While both E⇡,n and W⇡,n effectively for-
malize the objective of accurate estimation of the dynam-
ics, they have specific advantages and disadvantages.

If W⇡,n is below ✏, it is possible to compute near-optimal
policies for any reward (e.g., Kearns and Singh, 2002).



Proposition 1. For any � 2 (0, 1) and reward function

r(s, a) 2 [0, 1], let b⇡ be the infinite-horizon �-discounted

optimal policy computed using the dynamics bp returned

after the MODEST phase. If bp is (✏, �)-accurate in the

sense of W , then b⇡ is guaranteed to be O(✏(1 � �)�2)-
optimal in the exact MDP with probability at least 1� �.

While this shows the advantage of targeting the worst-
case accuracy, the maximum over state-action pairs in
the formulation of W⇡,n makes it more challenging to
optimize than E⇡,n. Furthermore, consider the case where
one single state-action pair has a very noisy dynamics but
is overall uninteresting (e.g., the so-called noisy TV case),
then targeting the worst-case error may require the agent
to spend most of its time in estimating the dynamics of
that single state-action pair, instead of collecting infor-
mation about the rest of the MDP. A similar issue may
rise in large MDPs, where lowering the estimation error
uniformly over the whole state-action space may be pro-
hibitive and lead to extremely large sample complexity.

Alternative metrics other than `1 could be used to measure
the distance between bp⇡,n and p. For instance, given the
categorical nature of the transition distributions, a natural
choice is to use the KL-divergence. Nonetheless, it has
been shown that the KL-divergence is not a well-suited
metrics for active learning as it promotes strategies close
to uniform sampling (Shekhar et al., 2020). Furthermore,
other metrics may not provide any performance guaran-
tees such as Prop. 1.

One may wonder why we rely on Def. 1 to measure the
accuracy, instead of the closely related objective defined
in (Tarbouriech and Lazaric, 2019), where the expected

estimation error is used in place of its high-probability ver-
sion. A careful inspection of the analysis in (Tarbouriech
and Lazaric, 2019) shows that they critically rely on the
independence between the stochastic transitions in the
MDP and the randomness in the observations collected
in each state. This argument cannot be applied to our
case, where the observations of interest are the next state
s0 generated during transitions (s, a) to s0. This makes
transitions and observations intrinsically correlated and it
prevents us from using their analysis.

While minimizing the sample complexity CMODEST over
policies ⇡ is a well-posed objective, the dependency on
⇡ is implicit and the space of non-stationary policies is
combinatorial in states, actions and time, thus making it
impossible to directly optimize for CMODEST. In the next
section we refine the error definitions to derive an explicit
convex surrogate for stationary policies.

2.1 A Surrogate Convex Objective Function
We focus on model estimates defined as the empirical
frequency of transitions. After n steps, for any state-

action pair (s, a) and any next state s0, we define

bp⇡,n(s0|s, a) :=
T⇡,n(s, a, s0)

T+
⇡,n(s, a)

, (3)

where T⇡,n(s, a) :=
Pn

t=1 1(st,at)=(s,a) denotes the
(random) number of times action a was taken in state
s during the execution of policy ⇡ over n steps. Similarly,
we define T⇡,n(s, a, s0) :=

Pn
t=1 1(st,at,st+1)=(s,a,s0)

and we define x+ := max{x, 1}.

We introduce the notion of “noise” associated to each
state-action pair.

Definition 2. For each state-action pair (s, a), we define

the transitional noise at (s, a) as

V (s, a) :=
X

s02S

q
�2
p(s

0|s, a)/
p

S,

where �2
p(s

0
|s, a) is the variance of the transition from

(s, a) to s0, i.e., �2
p(s

0
|s, a) := p(s0|s, a)(1� p(s0|s, a)).

Denote by �(s, a) := kp(·|s, a)k0 the support of p(·|s, a),
as well as � := maxs,a �(s, a). From the Cauchy-
Schwarz inequality, we have

0  V (s, a) 
p
�(s, a)� 1/

p

S  1,

where the lower bound V (s, a) = 0 is achieved for all
(s, a) 2 S ⇥A when M is a deterministic MDP.

We connect the error functions to a term depending on the
transitional noise and the number of state-action visits.

Proposition 2. For any fixed n and any policy ⇡, with

probability at least 1� �/3,

E⇡,n 
4

SA
log

✓
6SAn

�

◆X

s,a

F(s, a;T⇡,n),

W⇡,n  4 log

✓
6SAn

�

◆
max
s,a

F(s, a;T⇡,n),

where

F(s, a;T ) :=
V (s, a)p
T (s, a) + 1

+
S

T (s, a) + 1
.

This upper bound provides a much more explicit depen-
dency between the behavior of ⇡, the structure of the
MDP, and the accuracy of the model estimation. In par-
ticular, it illustrates how rarely visited pairs with large
variance lead to larger estimation errors.

Convex reparametrization. Prop. 2 suggests that E⇡,n
(resp. W⇡,n) could be optimized by directly minimiz-
ing the average (resp. the maximum) of its upper-bound
F(s, a;T ). While the function F is convex in T , the



constraint that T⇡,n must be a valid state-action counter
renders the optimization problem of minimizing F(T⇡,n)
non-convex. To circumvent this issue, we introduce the
state-action stationary distribution �⇡ 2 �(S ⇥A) of a
stationary policy ⇡. Also known as an occupancy mea-
sure, �⇡(s, a) is the expected frequency with which action
a is executed in state s while following policy ⇡. Let ⇤(p)

be the set of state-action stationary distributions, i.e.,

⇤(p) :=
n
� 2 �(S ⇥A) : 8s 2 S,
X

b2A
�(s, b) =

X

(s0,a)2S⇥A

p(s|s0, a)�(s0, a)
o
.

We introduce a convenient function

Gn(s, a;�) :=
V (s, a)q
�(s, a) + 1

n

+
1
p
n

S

�(s, a) + 1
n

,

and its associated functions

L
E
n(�) :=

1

SA

X

s,a

Gn(s, a;�),

L
W
n (�) := max

s,a
Gn(s, a;�).

Let the empirical state-action frequency at any time t be
e�⇡,t(s, a) = T⇡,t(s, a)/t, then it is easy to see that

E⇡,n 
4
p
n
log

✓
6SAn

�

◆
L
E
n(e�⇡,n),

W⇡,n 
4
p
n
log

✓
6SAn

�

◆
L
W
n (e�⇡,n).

This suggests that we could directly minimize E⇡,n

(resp. W⇡,n) by optimizing the function L
E
n (resp. LW

n )
over � in the set of stationary distributions ⇤(p) as follows

min
�2⇤(p)

L
E
n(�), min

�2⇤(p)
L
W
n (�). (†)

These functions are convex in both the objective function
and the constraints and we denote by �E

†,n and �W
†,n their

solutions. Roughly speaking, the optimal distributions
should visit more often state-action pairs associated to a
larger transitional noise.

Beside Ln, we also use closely related functions obtained
as asymptotic relaxation for n ! 1 and define the opti-
mization problems

min
�2⇤(p)

L
E
1(�) :=

1

SA

X

s,a

V (s, a)p
�(s, a)

,

min
�2⇤(p)

L
W
1(�) := max

s,a

V (s, a)p
�(s, a)

.

(?)

We refer to �E
? and �W

? the corresponding optimal state-
action stationary distributions.

3 LEARNING TO OPTIMIZE MODEST

In this section, we build on (Berthet and Perchet, 2017;
Tarbouriech and Lazaric, 2019), introduce a learning al-
gorithm for the MODEST problem and prove its sample
complexity for both E and W error functions. As the
structure of the algorithm is the same for both cases, we
describe it in its general form.

3.1 Setting the Stage

Leveraging (†) to design an algorithm minimizing the
estimation error requires addressing two issues: 1) the
transitional noise V (s, a) in the objective function and
the transition dynamics p appearing in the constraint are
unknown, 2) despite L

E
n and L

W
n being convex, they are

both poorly conditioned and difficult to optimize.

Parameters estimation. After t steps, the algorithm
constructs estimate bpt as in Eq. (3) using the sam-
ples collected so far. Furthermore, it defines the em-
pirical variance of the transition from (s, a) to s0 as
b�2
t (s

0
|s, a) := bpt(s0|s, a)(1� bpt(s0|s, a)). Then we have

the following high-probability guarantees on bpt and an
upper-confidence bound on the transitional noise.
Lemma 1. Define Bt(s, a, s0) := {ep 2 �(S) :
|ep(s0|s, a)� bpt(s0|s, a)|  Bt(s, a, s0)} and

Bt(s, a, s
0) := 2

s
b�2
t (s

0|s, a)

T+
t (s, a)

`t +
6`t

T+
t (s, a)

,

where `t := log
⇣

6SAT+
t (s,a)
�

⌘
. Furthermore, let

bV +
t (s, a) :=

1
p
S

X

s02S

⇣q
b�2
t (s

0|s, a) +

s

2
`0t

T+
t (s, a)

⌘
,

where `0t = log
⇣

4S2A(T+
t (s,a))2

�

⌘
. Then with probability

at least 1� �, for any t > 0 and (s, a) 2 S ⇥A, we have

V (s, a)  bV +
t (s, a), p(·|s, a) 2 Bt(s, a).

This result allows us to build upper bounds on the error
functions and correctly manage the constraint set ⇤(p).

Smooth optimization. We first notice that both L
E
n and

L
W
n are built on Gn which may grow unbounded when

n grows to infinity and � tends to zero in state-action
pairs with non-zero transitional noise. Furthermore, the
function is smooth with coefficient scaling as n5/2, which
diverges as n ! +1. This means that optimizing Ln

functions may become increasingly more difficult for
large n. In order to avoid this issue we restrict the space
of �. For any ⌘ > 0 we introduce the restricted simplex

⇤(p)
⌘ := {� 2 ⇤(p)

| 8(s, a) 2 S ⇥A,�(s, a) � ⌘}.



Algorithm 1: FW-MODEST

1 Input: Constraint parameter ⌘ > 0, confidence � 2 (0, 1),
budget n, objective function Ln (either LE

n or LW
n ).

2 Initialization: Set t := 1, state-action counter
T0(s, a) := 0 and empirical frequency e�0(s, a) := 1

SA .
3 for episode k = 1, 2, . . . do
4 Set tk := t.
5 Compute the upper-confidence bound bV +

k to the
estimates of the transitional noise.

6 Compute the objective function Ln using bV +
k .

7 Compute the occupancy measure b�+
k+1 using (6).

8 Derive the policy e⇡+
k+1 using (7).

9 Execute e⇡+
k+1 for ⌧k steps.

10 Update the time index t and empirical frequency e�k+1.

On this set we have that Gn is now bounded and smooth
independently from n. Since L

E
n is just an average of

functions Gn, it directly inherits these properties.

Proposition 3. On the set ⇤(p)
⌘ the function L

E
n has a

smoothness constant scaling as 1/⌘3.

Unfortunately, the same guarantees do not hold for LW
n ,

as it is a non-smooth function of Gn. We thus modify L
W
n

using a LogSumExp (LSE) transformation. We briefly
recall its properties (see e.g., Beck, 2017).
Proposition 4. For any x 2 (R+)m, let LSE(x) :=
log
�Pm

i=1 exp(xi)
�
. Then the following properties hold:

1) LSE is convex and 1-smooth w.r.t. the `1-norm.

2) maxi2[m] xi  LSE(x)  maxi2[m] xi + log(m).

While the first property ensures convexity and smoothness,
the second statement shows that the bias introduced by the
transformation is logarithmic in the number of elements.
We define the LSE version of LW

n as

L
W
n (�) := log

⇣X

s,a

exp(Gn(s, a;�))
⌘
, (4)

which satisfies the following property by the chain rule
and Prop. 4.

Proposition 5. On the set ⇤(p)
⌘ the function L

W
n has a

smoothness constant scaling as 1/⌘5.

Comparing Prop. 5 to Prop. 3, we notice that beside being
biased, L

W
n is also less smooth than L

E
n and it is thus

possibly harder to optimize.

3.2 The Algorithm

We build on the estimation algorithm of (Tarbouriech and
Lazaric, 2019) and propose FW-MODEST (Alg. 1), which
proceeds through episodes k = 1, 2, . . . and applies a
Frank-Wolfe approach to minimize the model estimation

error. The algorithm receives as input the state-action
space, the parameter ⌘ used in defining the restricted space
⇤, the budget n, and the objective function Ln to optimize
(i.e., either LE

n or the smoothed L
W
n ).2 We first review

how Ln could be optimized by the Frank-Wolfe (FW)
algorithm in the exact case, when the transition dynamics
p and transitional noise V (s, a) are known. Let �0 be
the initial solution in ⇤(p)

⌘ , then FW proceeds through
iterations by computing

�k+1 = arg min
�2⇤(p)

hrLn(�k),�i, (5)

which is then used to update the candidate solution as
�k+1 = �k + �k(�k+1 � �k). Whenever the learning
rate �k is properly tuned, the overall process is guaran-
teed to converge to optimal value Ln(�†,n) at the rate
O(⌘/k) (Jaggi, 2013), where ⌘ is the smoothness of
the function (see Prop. 3 and 5). FW-MODEST integrates
the Frank-Wolfe scheme into a learning loop, in which
the solution constructed by the agent at the beginning of
episode k is the empirical frequency of visits e�k, and the
optimization in (5) is replaced by an estimated version
where the upper bound V +

k (s, a) from Lem. 1 is used
in place of the transitional noise V (s, a). Moreover, the
confidence interval Bk over the transition dynamics is
used to characterize the constraint ⇤(p), thus leading to
the optimization3

b�+
k+1 = argmin

ep2Bk,�2⇤(ep)
hr bL+

n,k(
e�k),�i, (6)

where bL+
n,k is Ln with V replaced by bV +

k in the formu-
lation of Gn. The optimization in (6) can be seen as the
problem of solving an MDP with an optimistic choice
of the dynamics within the confidence set Bk and where
the reward is set to �r bL+

n,k(
e�k), i.e., state-action pairs

with larger (negative) gradient have larger reward. This
directly leads to solutions that try to increase the accuracy
in state-action pairs where the current estimation of the
model is likely to have a larger error. Notice that the
output of the optimization is the distribution b�+

k+1, which
cannot be directly used to update the solution �k as in
FW, since the empirical frequency can only be updated by
executing a policy collecting new samples. Thus, b�+

k+1 is
used to define a policy ⇡+

k+1 as

e⇡+
k+1(a|s) :=

b�+
k+1(s, a)P

b2A
b�+
k+1(s, b)

, (7)

which is then executed for ⌧k steps until the end of the
current episode. The samples collected throughout the
episode are then used to compute the new frequency e�k+1.

2In the following we use Ln for the generic function the
algorithm is required to optimize.

3The argmin extracts only the solution �.



The extended LP problem. While the overall structure
of FW-MODEST is similar to the estimation algorithm
in (Tarbouriech and Lazaric, 2019), the crucial differ-
ence is that the true dynamics p is unknown and (6) can-
not be directly solved as an LP. In fact, while for any
fixed ep the set ⇤(ep) only poses linear constraints and op-
timizing over � coincides with the standard dual LP to
solve MDPs (Puterman, 2014), in our case we have to
list all possible values of ep in Bk. We thus propose to
rewrite (6) as an extended LP problem by considering the
state - action - next-state occupancy measure q(s, a, s0),
defined as q(s, a, s0) := p(s0|s, a)�(s, a).4 We recall
from Lem. 1 that at any episode k, we have an estimate
bpk such that, w.h.p., for any (s, a, s0) 2 S ⇥ A ⇥ S,
|bpk(s0|s, a) � p(s0|s, a)|  Bk(s, a, s0). For notational
convenience, we define rk(s, a) := �r bL+

n,k(
e�k)(s, a).

We then introduce the extended LP associated to (6) for-
mulated over the variables q as

max
q2�(S⇥A⇥S)

X

s,a,s0

rk(s, a)q(s, a, s
0)

s.t. 8j 2 S,

X

a,s

q(j, a, s)�
X

s,a

q(s, a, j) = 0,

q(s, a, j)� (bpk(j|s, a) +Bk(s, a, j))
X

s0

q(s, a, s0)  0,

� q(s, a, j) + (bpk(j|s, a)�Bk(s, a, j))
X

s0

q(s, a, s0)  0,

X

s0

q(s, a, s0) � ⌘.

Crucially, the reparametrization in q enables to efficiently
solve the problem as a “standard” LP. Let qk+1 be the
solution of the problem above, then the state-action
distribution can be easily recovered as b�+

k+1(s, a) :=P
s0 qk+1(s, a, s0), and the corresponding policy is com-

puted as in (7).

3.3 Sample Complexity

In order to derive the sample complexity of FW-MODEST,
we build on the analysis in (Tarbouriech and Lazaric,
2019) and show that the algorithm controls the regret w.r.t.
the optimal solution of the problem minLn(�), i.e.,

Rn := Ln(e�n)� Ln(�†,n), (8)

where, similar to the previous section, Ln can be either
L
E
n or L

W
n , �†,n is the corresponding optimal solution

and e�n is the empirical frequency of visits after n steps.
We require ⌘ and the MDP to satisfy the two following
assumptions.5

4This construction resembles the extended LP used for loop-
free stochastic shortest path problems in (Rosenberg and Man-
sour, 2019).

5Refer to (Tarbouriech and Lazaric, 2019) for more details
about the assumptions.

Assumption 1. The parameter ⌘ is such that

�†,n 2 arg min
�2⇤(p)

⌘

Ln(�), �? 2 arg min
�2⇤(p)

⌘

L1(�),

i.e., the optimal solutions in the restricted set ⇤ coincide

with the unrestricted solutions for both Ln and L1.

Assumption 2. The MDP M is ergodic. We denote

by �min := min⇡ �⇡
ps

the smallest pseudo-spectral

gap (Paulin, 2015) over all stationary policies ⇡ and

we assume �min > 0.

We are now ready to derive the model estimation error
and sample complexity of FW-MODEST. By extending
the analysis from (Tarbouriech and Lazaric, 2019) to un-
known transition model and integrating the regret analysis
into our estimation error problem, we obtain the following
(see App. A for the proof and the explicit dependencies).
Theorem 1. If FW-MODEST is run with a budget n and

the length of the episodes is set to ⌧k = 3k2 � 3k + 1,

then under Asm. 1 and 2, w.p. 1 � � and depending on

the optimization function Ln given as input, we have that

E⇡,n = eO
✓
L
E
1(�E

? )
p
n

+
⇥E

n5/6

◆
,

W⇡,n = eO
✓
L
W
1(�W

? ) + log(SA)
p
n

+
⇥W

n5/6

◆
,

where ⇥E
(resp. ⇥W

) scales polynomially with MDP con-

stants S, A, and ��1
min, and with algorithmic dependent

constants log(1/�) and ⌘�1
when optimizing E (resp. W).

From this result we immediately obtain the sample com-

plexity of FW-MODEST

C
E(✏, �) = ⌦

✓
L
E
1(�E

? )
2

✏2
+

⇥E

✏6/5

◆
,

C
W(✏, �) = ⌦

 �
L
W
1(�W

? ) + log(SA)
�2

✏2
+

⇥W

✏6/5

!
.

Model estimation performance. The previous result
shows that FW-MODEST successfully targets the model es-
timation problem with provable guarantees. In particular,
the model estimation errors above display a leading error
term scaling as eO(n�1/2) and a lower-order term scaling
as eO(n�5/6). Under Asm. 2, any stochastic policy ⇡ with
non-zero probability to execute any action is guaranteed
to reach all states with a non-zero probability. As a result,
the associated model estimation error would decrease as
eO(n�1/2) as well, since T⇡,n(s, a) grows linearly with n
in all state-action pairs. Nonetheless, the linear growth
could be very small as it depends on the smallest proba-
bility of reaching any state by following ⇡. As a result,
despite the fact that ⇡ may achieve the same rate, FW-
MODEST actually performs much better. In particular, a



trivial strategy like the uniform policy ⇡unif yields a main-
order term decreasing in L1(�⇡unif)/n

1/2, whereas the
term L1(�?)/n1/2 achieved in Thm. 1 is an upper bound
to the smallest error that can be achieved for the specific
MDP at hand by definition of �? (this gap between the uni-
form policy and FW-MODEST is experimentally displayed
in Sect. 5). As such, Thm. 1 shows that FW-MODEST

is able to adapt to the current problem and decrease the
model estimation error at the best possible rate, up to an
additive error (the lower-order term), which is decreasing
to zero at the faster rate eO(n�5/6).

Limitations. Despite its capability of tracking the perfor-
mance of the best state-action distribution, FW-MODEST

and its analysis suffer from several limitations. Asm. 2
poses significant constraints both on the choice of ⌘ and
the ergodic nature of the MDP. Moreover, the lower-order
terms in Thm. 1 depend inversely on the parameter ⌘ (via
the optimization properties of E and W , see App. A Ø),
which implicitly worsens the dependency on the state-
action size, to the extent that the second term may effec-
tively dominate the overall error even for moderately big
values of n. This drawback is even stronger in the case of
W . In fact, as shown in Prop. 4, the function L

W
n is biased

by log(SA), which is then reflected into the final accu-
racy of FW-MODEST. While it is possible to change the
definition of L

W
1 to reduce the bias, this would lead to a

less smooth function, which would make the constants in
the lower-order term even larger. We also notice that as �
appears in the denominator of all functions L, optimizing
L often becomes numerically unstable for large state-
action space, where mins,a �(s, a)  1/SA. Finally, the
episode length choice in Thm. 1 is often conservative in
practice, where shorter episodes usually perform better.

While it remains an open question whether it is possible to
achieve better results for the MODEST problem, in the next
section we introduce a heuristic objective function that
allows more efficient learning with looser assumptions.

4 WEIGHTED MAXENT

We introduce a heuristic objective function for model
estimation and we propose a variant of the algorithm
in (Cheung, 2019a) for which we prove regret guarantees.

4.1 Maximum Weighted Entropy

A good exploration strategy to traverse the environment
is to maximize the entropy of the empirical state fre-
quency: this consists in the MAXENT algorithm intro-
duced in (Hazan et al., 2019). Yet this strategy aims at
generating a uniform coverage of the state space. While
it may be beneficial to perform the MAXENT strategy in
some settings, this is undesirable for the MODEST objec-
tive. First, the state-action space should be considered

instead of only the state space. Second and crucially,
whenever there is a discrepancy in the transitional noise,
each state-action pair should not be visited uniformly as
often. Indeed, the convex relaxation in Sect. 2 emphasizes
that in order to minimize the model estimation error the
agent should aim at visiting each state-action pair (s, a)
proportionally to its transitional noise V (s, a). A way to
do this is to consider a weighted entropy objective func-
tion, with the weight of each state-action pair depending
on its transitional noise.

Definition 3. For any non-negative weight function w :
S ⇥ A ! R+

, the weighted entropy Hw is defined on

�(S ⇥A) as follows:

Hw(�) := �

X

(s,a)2S⇥A

w(s, a)�(s, a) log(�(s, a)).

To gain insight on Hw, we can argue that w(s, a) rep-
resents the value or utility of each outcome (s, a) (see
e.g., Guiaşu, 1971). Hence, the learner is encouraged to
allocate importance on information regarding (s, a) pro-
portionally to the weight w(s, a). This can be translated
in biasing exploration towards region of the state-action
space with high weights w(s, a). Similar to (Hazan et al.,
2019), we also introduce a smoothed version of Hw and
show its properties.

Lemma 2. For any arbitrary set of non-negative weights

w — for which we define W := maxs,a w(s, a) — and

for any smoothing parameter µ > 0, we introduce the

following smoothed proxy

Hw,µ(�) :=
X

s,a

w(s, a)�(s, a) log

✓
1

�(s, a) + µ

◆
.

The function Hw,µ satisfies the following properties:

1. [rHw,µ(�)]s,a = �w(s, a)
⇣
log(�(s, a) + µ) + �(s,a)

�(s,a)+µ

⌘
.

2. For any µ 
1
e �

1
SA , we have [rHw,µ(�)]s,a � 0.

3. Hw,µ is concave in �, as well as W log
⇣

1
µ

⌘
-Lipschitz

continuous and
2W
µ -smooth.

4. We have |Hw(�)�Hw,µ(�)|  µSAW .

In light of the intuition gained by inspecting the definition
of Ln, in the following we set the weights w(s, a) :=
V (s, a)/

p
SL, with L := log(SA/�), so as to encourage

visiting state-action pairs with large transitional noise. We
notice that, unlike the smooth versions of E and W , Hw,µ

has a much smaller smoothness constant and its bias can
be easily controlled by the choice of µ. Moreover, the
state-action distribution � does not appear in the denom-
inator as in Ln. All these factors suggest that learning
how to optimize Hw,µ may be much simpler than directly
targeting the model estimation error.



Algorithm 2: WEIGHTED-MAXENT w/ TOC-UCRL2
1 Input: Smoothing parameter µ, confidence � 2 (0, 1).
2 Initialization: Set t := 1, state-action counter

T0(s, a) := 0 and empirical frequency e�0(s, a) := 1
SA .

3 Compute gradient threshold Q := 2 log
⇣

1
µ

⌘
.

4 for episode k = 1, 2, . . . do
5 Set tk := t.
6 Compute the upper-confidence bound bV +

k to the
estimates of the transitional noise.

7 Compute the weighted entropy bH+
k from (10).

8 Compute a near-optimal policy
b⇡+
k+1 := EVI(r bH+

k (
e�k),Bk,

1p
tk
).

9 Initialize ⌫k(s, a) := 0, � := 0 and ✓
ref
k := eH+

k (e�tk ).
10 while �  Q and ⌫k(s, a) < Tk(s, a) do
11 Execute action at = b⇡+

k+1(st), observe the next
state st+1.

12 Compute gradient ✓t+1 := r bH+
k (

e�t).
13 Update � += k✓t+1 � ✓

ref
k k2.

14 Update ⌫k(st, at) += 1,
e�t+1 := t

t+1
e�t + 1

t+11st,at , and t += 1.

15 Set Tk+1(s, a) := Tk(s, a) + ⌫k(s, a), update e�k+1.

4.2 Learning to Optimize the Weighted Entropy

We seek to design a learning algorithm maximizing Hw.
Since Hw,µ is concave, Lipschitz continuous and smooth
in �, the algorithm of (Cheung, 2019a) could have been
readily applied to maximize it if the function was known.
The key difference here is that the weights are unknown.
We thus generalize the algorithm of (Cheung, 2019a) to
handle this case. The resulting algorithm is outlined in
Alg. 2. In it, EVI(r,B, ") denotes the standard extended
value iteration scheme for reward function r, confidence
region B around the transition probabilities, and accuracy
" (see (Cheung, 2019a) for more details).

Following the terminology of (Cheung, 2019a), in our
setting the vectorial outcome at any state-action pair (s, a)
is the standard basis vector for (s, a) in RS⇥A (i.e., 1s,a).
The objective is to minimize the regret

R
Ent
n := min

�2⇤(p)
Hw(�)�Hw(e�t), (9)

where ⇤(p) is the space of state-action strationary distribu-
tions and e�t is the empirical frequency of visits returned
by the algorithm after t steps. Notice that unlike in Sect. 2
and 3, the optimum is computed over � in the unrestricted
set of stationary distribution (i.e., no ⌘ lower bound), thus
making this regret more general and challenging than (8).

We extend the scope of TOC-UCRL2 (Cheung, 2019a) to
handle function Hw,µ. For any time step t, let us define

bH+
t (�) :=

X

s,a

bV +
t (s, a)
p
SL

�(s, a) log

✓
1

�(s, a) + µ

◆
. (10)

Then we can derive a bound similar to Lem. 1.

Lemma 3. With probability at least 1 � �, at any time

step t, we have component-wise

rH(e�t)  r bH+
t (e�t)  rH(e�t) + u(t, �),

where the deviation u(t, �) satisfies

[u(t, �)]s,a = O

✓s
log(SAt

� )

Tt(s, a)

◆
.

We now show how a simple extension of the algorithm of
(Cheung, 2019a) can cope with the setting of unknown
weights. At the beginning of each episode k, instead
of feeding as reward the true, unknown current gradi-
ent, we simply feed an upper confidence bound of it, i.e.,
r bH+

k (
e�k), where the optimistic objective function bH+

k
— which depends on the smoothing parameter µ — is de-
fined as in (10). Initially, for small values of t, the weights
are very similar, thus the algorithm targets a uniform ex-
ploration over the state-action space, that is, the original
MAXENT objective. As more samples are collected, the es-
timation of the weights becomes more and more accurate,
thus the exploration is gradually skewed towards regions
of the state-action space with high transitional noise.

It is possible to extend the analysis of TOC-UCRL2 to this
case and obtain a similar regret bound. As in (Cheung,
2019a), the only assumption we need is that the MDP M
is communicating, a weaker requirement than Asm. 2.

Assumption 3. The MDP M is communicating, with

diameter D := maxs 6=s0 min⇡ E[⌧⇡(s ! s0)] < +1.

Then we can prove the following result.

Theorem 2. If WEIGHTED-MAXENT is run with a budget

n and the smoothing parameter set to µ = 1
n1/3S2/3 , then

under Asm. 3, with overwhelming probability, we have

R
Ent
n = eO

 
DS1/3

n1/3
+

D
p
�SA

p
n

!
. (11)

While they target different objectives, it is interesting to
do a qualitative comparison between Thm. 2 and Thm. 1.
We first extract from the error bound in Thm. 1 that FW-
MODEST has a regret scaling as ⇥/n1/3 w.r.t. LE

1(�E
? ).

While the rate is the same as in (11), the difference is
that the constants are much better for the weighted MAX-
ENT case. In fact, it scales linearly with the diameter D



and sublinearly with the size of the state-action space,
instead of high-order polynomial dependencies on con-
stants such as the constraint parameter ⌘ and the MDP
parameter �min, which are likely to be very small in
any practical application. As a result, we expect the
weighted MAXENT version of TOC-UCRL2 to approach
the performance of the optimal weighted entropy solu-
tion argmin�2⇤(p) Hw(�) faster than FW-MODEST ap-
proaches the performance of �?.

While we do not have an explicit link between the model
estimation error and the weighted entropy, we notice an
important connection between L

E
1 and Hw in the un-

constrained case (i.e., when ⇤ is reduced to the sim-
plex over the state-action space with no constraint from
the MDP). In this case, the solution to min� Hw(�) is
�WEIGHTED-MAXENT
? (s, a) / exp(↵V (s, a)), with ↵ a suit-

able constant, which shows that the optimal distribution
has a direct connection with the transitional noise V (s, a).
This exactly matches the intuition that a good distribution
to minimize L

E
1 should spend more time on states with

larger noise. This connection is further confirmed in the
numerical simulations we report in Sect. 5.

One may wonder why Alg. 2 cannot be applied to tar-
get the MODEST problem directly. In fact, Alg. 2 can
be applied to any Lipschitz function (i.e., function with
bounded gradient) and in the restricted set ⇤(p)

⌘ , the func-
tion Ln used in FW-MODEST has indeed a bounded Lips-
chitz constant. Nonetheless, the regret analysis in Thm. 2
adapted from (Cheung, 2019a) requires evaluating the ob-
jective function at every step t, which in our case means
evaluating Ln at the empirical frequency e�t. Unfortu-
nately, e�t is a random quantity and it may not belong to
⇤(p)
⌘ at each step. This justifies the ergodicity assump-

tion and the per-episode analysis of FW-MODEST, where
episodes are long enough so that the ergodicity of the
MDP guarantees that each state-action pair is visited
enough and Ln is evaluated only in the restricted set,
where it is well-behaved.

5 NUMERICAL SIMULATIONS

We illustrate how the proposed algorithms are able to
effectively adapt to the characteristics of the environ-
ment. We consider two domains (NoisyRiverSwim and
Wheel-of-Fortune) with high level of stochasticity, i.e.,
V :=

P
s,a V (s, a)/(SA) is large, and the transitional

noise is heterogeneously spread across the state-action

space, i.e., �(V ) :=
q

1
SA

P
s,a

�
V (s, a)� V

�2
is large.

Refer to App. C for details and additional experiments.

Optimal solution. We start evaluating the error E⇡?,n

associated to the optimal distribution �? computed for
MAXENT (Cheung, 2019a), WEIGHTED-MAXENT (Alg. 2)

Wheel(5) NoisyRiverSwim(12)
MAXENT 1.0045 · 10�3 0.4197 · 10�2

WEIGHTED-MAXENT 0.5091 · 10�3 0.2862 · 10�2

FW-MODEST 0.5091 · 10�3 0.2851 · 10�2

Table 1: Error E⇡?,n for n = 2 · 106. We selected ⌘ =
0.0001 for FW-MODEST and µ = 0 for the others.
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Figure 1: Model estimation error E⇡,n for NoisyRiver-
Swim(12) and Wheel(5) (averaged over 20 runs).

and FW-MODEST (Alg. 1). For each (s, a) and algorithm
A, we estimate the transition kernel bpA⇡?,n(s

0
|s, a) by gen-

erating k = n · �A
? (s, a) _ 1 samples from p(·|s, a) (see

App. C for �A
? ). We select n = 2 · 106 to simulate

the asymptotic behavior of the algorithms. As shown
in Tab. 1, WEIGHTED-MAXENT and FW-MODEST recover
almost identical policies, leading to very similar estima-
tion errors. As expected, MAXENT is outperformed by the
proposed algorithms at the task of model estimation.

Learning. Now that we have shown that WEIGHTED-
MAXENT and FW-MODEST have a similar asymptotic per-
formance, we can focus on the learning process. We first
consider NoisyRiverSwim(12). Fig. 1 (left) shows that
MAXENT and uniform policy have a similar behavior in
this domain. Both approaches are outperformed by FW-
MODEST and WEIGHTED-MAXENT. Despite having the
same optimal solution, WEIGHTED-MAXENT performs bet-
ter than FW-MODEST. As suggested by the qualitative
comparison between Thm. 1 and Thm. 2, the gap is due
to the different learning process. We found WEIGHTED-
MAXENT to be more numerically stable and more sample
efficient than FW-MODEST. We observe a similar behav-
ior in the Wheel-of-Fortune, see Fig. 1 (right). In all our
experiments, WEIGHTED-MAXENT has outperformed the
other algorithms.

6 CONCLUSION
We studied the problem of reward-free exploration for
model estimation and designed FW-MODEST, the first
algorithm for this problem with sample complexity
guarantees. We also introduced a heuristic algorithm
(WEIGHTED-MAXENT) which requires much less restric-
tive assumptions and achieves better performance than
FW-MODEST and MAXENT in our numerical simulations.
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