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Abstract
We consider a novel setting of zeroth order
non-convex optimization, where in addition to
querying the function value at a given point, we
can also duel two points and get the point with
the larger function value. We refer to this set-
ting as optimization with dueling-choice bandit-
s, since both direct queries and duels are avail-
able for optimization. We give the COMP-GP-
UCB algorithm based on GP-UCB (Srinivas
et al., 2009), where instead of directly querying
the point with the maximum Upper Confidence
Bound (UCB), we perform constrained opti-
mization and use comparisons to filter out sub-
optimal points. COMP-GP-UCB comes with
theoretical guarantee of O( Φ√

T
) on simple re-

gret where T is the number of direct queries
and Φ is an improved information gain stem-
ming from a comparison-based constraint set
that restricts the space for optimum search. In
contrast, in the plain direct query setting, Φ
depends on the entire domain. We discuss the-
oretical aspects and show experimental results
to demonstrate efficacy of our algorithm.

1 Introduction
Zeroth order non-convex optimization, also variously
known as continuous multi-armed bandit or black-box
optimization, is an important problem that naturally ap-
pears in various domains like dynamic pricing (Besbes
and Zeevi, 2009), reinforcement learning (Smart and Kael-
bling, 2000) and material science(Xue et al., 2016). With
an unknown black-box function f : X → R, zeroth order
optimization aims to find the optimal point of the func-
tion with as few queries to (a noisy version of) f(x) as
possible, with no gradient information directly available.
Although zeroth order convex optimization is general-
ly efficient (Jamieson et al., 2012), optimizing a non-
convex f under smoothness constraints requires the same
effort as estimating f almost everywhere, and usually
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leads to a query complexity exponential in d, where d is
the feature space dimensionality (Chen, 1988; Flaxman
et al., 2005; Ge et al., 2015; Wang et al., 2018). The pro-
hibitive cost for non-convex optimization has motivated
research on suitable assumptions, such as linear bandits
(Rusmevichientong and Tsitsiklis, 2010), convex approxi-
mations (Wang et al., 2018), and optimization based on
level sets (Malherbe et al., 2016; Wang et al., 2018). We
propose a complementary approach, where in addition to
direct queries to f , one can also compare two points in
feature space, and obtain the point with a larger f value.
Inspired by dueling bandits in the bandit domain (Yue
et al., 2012), we call our setting non-convex optimization
with dueling-choice bandits; we note that different than
dueling bandits, here direct queries and comparisons are
both available for optimizing f , and therefore duels are
available as an additional choice.

In many applications, comparisons can be available at a
cheaper price than direct queries. For example in prefer-
ence elicitation, the user can give scores on recommended
items, as well as (more easily) compare two items to
choose the preferred one. Similarly, for hyperparame-
ter search of information retrieval (IR) models, direct
queries typically involve collecting relevance scores from
paid workers, whereas comparisons can be obtained by
interleaving the ranking of two different models, and ob-
serving user click on the retrieval results (Radlinski et al.,
2008). Such comparisons usually come with less cost in
both time and money. As another example, in material
synthesis, we aim to optimize the desired properties of
materials by controlling the input parameters (tempera-
ture, pressure, etc.) (Faber et al., 2016; Xue et al., 2016).
While material synthesis is expensive, comparisons can
be carried out by asking material scientists.

Related Work. There is a vast literature on zeroth order
non-convex optimization (Bull, 2011; Chen, 1988; Flax-
man et al., 2005; Ge et al., 2015; Hazan et al., 2017; Wang
et al., 2018). We build our work on GP-UCB(Srinivas
et al., 2009), a method for optimizing unknown functions
under the Gaussian process (GP) assumption by optimiz-



ing the Upper Confidence Bound (UCB). Closest to our
setting is a line of recent research on multi-fidelity GP
optimization (Kandasamy et al., 2016, 2017; Sen et al.,
2018), which assumes that we can query the target func-
tions at multiple fidelities of different costs and precision-
s. We detail the relation and difference of our setting
with multi-fidelity optimization in Section 3.6. To briefly
describe it, our setting is harder since we cannot direct-
ly query the function on which comparisons are based.
Moreover, the multi-fidelity assumptions such as fidelities
being close in sup-norm do not hold for our setting since
any constant shift of the comparison function yields the
same comparisons. We instead consider an active trans-
fer learning setting where information from a function
that can be learned using comparisons is transferred ac-
tively to optimize the target function (refer to Section 2
for details).

Optimization with comparisons has been studied under
the framework of derivative-free optimization (Jamieson
et al., 2012; Kumagai, 2017) and continuous dueling ban-
dits (Ailon et al., 2014; Sui et al., 2017). Kumagai (Ku-
magai, 2017) obtains optimal regret rates for a convex f .
However to the best of our knowledge, no previous work
has theoretical guarantees on optimizing a non-convex f .
Also, these results cannot be applied when the compar-
isons are biased (i.e., a Condorcet winner on comparisons
might not be the best point for direct queries).

Finally, there is another line of research that combines
direct queries and comparisons for classification or regres-
sion problems (Kane et al., 2017; Xu et al., 2017, 2018).
Our methods differ from theirs because we focus on the
optimization setting, and only care about points near the
optimum. These methods make direct queries across the
whole feature space to learn the underlying function well,
which is unnecessary for optimization.

Our Contributions. We develop and evaluate a new algo-
rithm for non-convex optimization with dueling choices,
which we refer to as Comparison-based GP-UCB (COMP-
GP-UCB). Our theoretical and experimental results show
the strengths of our algorithm.

• When we can obtain comparisons based on the target
function f , we show that comparisons can be as
powerful as direct queries: COMP-GP-UCB can
achieve the same rate of convergence as its label-
only counterparts, while using only comparisons and
no direct queries. This solves the open problem
raised in Sui et al. (2017), to develop continuous
dueling bandit algorithms with no-regret guarantees.

• Next, we assume that comparisons are based on a
misspecified function fc, where fc approximates f .
COMP-GP-UCB in this case uses comparisons to
optimize a function fr which has the same optimizer
as fc, and then use direct queries to search in a s-

maller region for the optimum of the target function.
The regret rate of COMP-GP-UCB is then better
than the label-only counterparts, and it depends on
the difference between fc and f : the better the ap-
proximation, the lower the regret we can get from
COMP-GP-UCB. We further demonstrate a version
of the algorithm that adapts to this difference. Our al-
gorithm also extends multi-fidelity GP optimization
to the setting where information is transferred ac-
tively from a lower fidelity to a higher fidelity while
only assuming that the optimizer of the lower fideli-
ty (source function) is within a constant distance of
the optimizer of the higher fidelity (target function),
instead of the fidelities being close everywhere.

• In our experiments, we test COMP-GP-UCB on
multi-fidelity functions from previous literature and
show that it outperforms label-only algorithms and
existing multi-fidelity algorithms when comparisons
are cheaper than direct labels.

2 Background and Problem Setup

We aim to maximize a function f : X → R, where
X ⊆ [0, r]d is the feature space. In each iteration t of
optimization, we can query (expensive) direct queries
to f at a chosen point xt, and obtain y = f(xt) + ε,
ε ∈ [−η, η] and E[ε] = 0, with η > 0 a known constant1.

Comparison Probabilities. In addition to traditional di-
rect queries y, we can obtain (cheap) comparisons for a
pair of points (xt, x

′
t) ∈ X ×X . We assume that compar-

isons are based on a function fc which can be potentially
different from f (as described later in this section). A
common assumption in the literature is to use a link func-
tion to assume a distribution of the comparisons, i.e., we
assume Pr[x � x′] = σ(fc(x)− fc(x′)) for some func-
tion σ. Common link functions include logistic function
(BTL model(Bradley and Terry, 1952)), or Gaussian cdf
(Thurstone model (Thurstone, 1927)).

Connecting comparisons and direct queries. To make
comparisons helpful for optimization, we also require that
fc is a good approximation of f . Here we differentiate
between two settings:

• Dueling-Choice Bandits with unbiased comparisons:
We assume comparison comes from the same func-
tion as the target function, i.e., fc = f or, more gen-
erally, that fc and f have the same optimizer (ζ = 0
as described below). This may be the case when
comparison and direct queries come from the same
agent, such as the preference elicitation example in
the introduction.

1Our methods can also be extended to the setting where
ε follows a sub-Gaussian distribution with parameter η. We
assume a bounded ε for simplicity here.



• Dueling-Choice Bandits with misspecified compar-
isons: We assume fc ≈ f . In many cases, compar-
isons are from a different source (e.g. experts) than
direct queries (e.g. experiments), and this can result
in a biased fc. To this end, we assume a bounded
difference near the optimum:

Assumption 1. Let f∗ = maxx f(x) and f∗c =
maxx fc(x). There exists a constants ζ such that for
any point x ∈ X we have |(f∗c − fc(x)) − (f∗ −
f(x))| ≤ ζ.

In words, when we get ε-close to the maximum of
f , we are at least (ε+ ζ)-close to the maximum of
fc, and vice versa. Under this assumption, we would
require both comparison and direct queries if we
want to achieve optimization error smaller than ζ.

We note that our results can be generalized to the
case where Assumption 1 only holds for x ∈ {x :
f∗ − f(x) ≤ τ} for some fixed constant τ .

Smoothness Assumptions. We assume that the target
function f lies in a reproducing kernel Hilbert space
(RKHS) Hκ induced by kernel κ, and that the RKHS
norm of f is bounded: ‖f‖κ ≤ B for a known constant
B. This assumption is also analyzed in (Chowdhury and
Gopalan, 2017; Srinivas et al., 2009) for traditional ban-
dits. We note that every function f ∈ Hκ has a finite
kernel norm. When κ is the linear kernel, ‖f‖κ ≤ B
induces that f is B-Lipschitz.

Budgets and Regrets. We analyze the problem of opti-
mizing f under a given cost budget Λ. Suppose a direct
query costs λl units of some resource and a compari-
son costs λc < λl. Also, let nΛ = d Λ

λc
e be the upper

bound on number of queries when we use all the budget
on comparisons, and nΛ = b Λ

λl
c be the corresponding

lower bound when we only use direct queries. Also let
qt = label if we make direct queries at iteration t, and
qt = comp otherwise. We analyze the simple regret under
budget Λ, defined as follows:

S(Λ) = min
t
rt (1)

= min
t

{
f∗ − f(xt) if qt = label,
min{f∗ − f(xt), f

∗ − f(x′t)}, if qt = comp.

In words, we calculate the minimum regret achieved by
either comparison or direct queries. We compute simple
regret over all direct queries; for comparisons, we adopt
the notion of weak regret employed in (Yue et al., 2012).
Here we choose simple regret because our target is to
optimize function f , and cumulative regret is typically
not relevant for our setting. Our method can also be easily
extended to the optimizer error setting, where the algo-
rithm gives an estimation of the optimum when it ends. In
analyzing the regret rates, we useO(·) to ignore constants,
and Õ(·) to ignore log terms in the regret bounds.

3 Algorithm and Analysis
We describe our COMP-GP-UCB algorithm in this sec-
tion. We first present the Gaussian process framework
on which our algorithm is based in Section 3.1. Then we
present the algorithm in Section 3.3, under the assumption
that ζ is known. This includes the unbiased comparison
case, where ζ = 0. We present our theoretical analysis
for COMP-GP-UCB in Section 3.4. Finally, we give an
extension to adapt to unknown ζ > 0 in Section 3.5.

3.1 The Gaussian Process Back End

We base our methods on Gaussian Process, with kernel
function κ. If f was sampled from the Gaussian process
GP(0, κ), and the direct queries were coming from f
plus a Gaussian noise, i.e., D = {(xi, yi)}ti=1 with yi =
f(xi) + ε, ε ∼ N (0, η2), then the posterior distribution
at f(x)|D would be a Gaussian N (µt(x), σt(x)) with

µt(x) = kT (K + η2It)
−1Y, (2)

σt(x) = κ(x, x)− kT (K + η2It)
−1k.

Here Y = (y1, ..., yt)
T , k = (κ(x, x1), ..., κ(x, xt))

T ,
and matrix K ∈ Rt×t is given by Kij = κ(xi, xj), and
It is the t× t identity matrix.

Remark. We note that the Gaussian noise and prior is
only assumed to derive updates to the mean and variance
in the algorithm, and we do not assume the actual feed-
backs follow a Gaussian model, nor the functions are
sampled from the Gaussian process. We only assume that
f have bounded norm in Hκ and that ε is bounded in
[−η, η], as stated in Section 2. This is the same as the
agnostic setting in GP-UCB (Chowdhury and Gopalan,
2017; Srinivas et al., 2009).

The Maximum Information Gain. As in previous work-
s on GP (Chowdhury and Gopalan, 2017; Kandasamy
et al., 2016), our results will depend on the maximum
information gain (Srinivas et al., 2009) between function
measurements and the function values, defined as below:
Definition 1. Suppose A ⊆ X is a subset of feature s-
pace, and Ã = {x1, ..., xn} ⊆ A is a finite subset of A.
Then the maximum information gain on A with n eval-
uations is defined as Φn(A) = maxÃ⊆A,|Ã|=n I(fÃ +

εÃ; fÃ), where fÃ = [f(x)]x∈Ã, εÃ ∼ N (0, η2I), and
I(X,Y ) = H(X)−H(X|Y ) is the mutual information.

When X ⊆ Rd is compact and convex, Srinivas et al.
(2009) shows that i) for linear kernel κ, Φn(X ) =
O(d log n); ii) for squared exponential (SE, or RBF) k-
ernel, Φn(X ) = O((log n)d+1); iii) For Matérn kernels
κ(x, x′) = 21−ν

Γ(ν) (
√

2νz
ρ )νBν(

√
2νz
ρ ), we have Φn(X ) =

O
(
n

d(d+1)
2ν+d(d+1) log n

)
.

Review of GP-UCB and IGP-UCB. Previous sequen-
tial optimization has adopted the upper confidence bound



(UCB) principle, where we maintain a high-confidence
upper bound φ : X → R for all x ∈ X , such that
f(x) ≤ φ(x) with high probability. Our algorithm builds
on UCB algorithms for GP, namely GP-UCB (Srinivas
et al., 2009) and IGP-UCB (Chowdhury and Gopalan,
2017) (the latter is an improvement of the former). In
time step t of optimization, IGP-UCB queries the point
that maximizes the confidence upper bound in the form
µ

(l)
t−1(x)+βtσ

(l)
t−1(x), where µ(l)

t−1, (σ
(l)
t−1)2 are the poste-

rior mean and variance function of the GP from step t−1,
and βt is a multiplier that increases with t. We describe
these algorithms in detail in Appendix.

3.2 The Borda Function fr
A straightforward way to incorporate comparisons into
optimization is to use them to compute a GP posterior of
either f or fc. However, we will face several difficulties.
Firstly, the posterior based on comparisons cannot be
analytically computed. Also, we cannot compute the joint
posterior based on both direct queries and comparisons,
since f and fc can be different. Lastly, comparisons might
not be truthful and can be inconsistent; i.e., human might
give contradicting comparisons like x1 � x2 � x3 � x1

(Zoghi et al., 2015).

We instead consider a different function directly related to
fc, defined as fr(x) = Pr[x � X], where X is randomly
chosen from X . In words, fr(x) is the probability that
x beats a random point X ∈ X . We refer to fr as the
Borda function, inspired by Borda scores in the dueling
bandits literature (Heckel et al., 2016; Zoghi et al., 2015).
An advantage of using fr is that we can obtain unbiased
estimates of fr(x) by comparing x to a random point in
X ∈ X .

It is easy to see that fr should have the same optimiz-
er as fc. We make the following assumption to ensure
usefulness of comparisons:

Assumption 2. Let f∗r = maxx fr(x) and f∗c =
maxx fc(x). There exists constants L1, L2 such that for
every x ∈ X we have 1

L1
(f∗c − fc(x)) ≤ f∗r − fr(x) ≤

L2(f∗c − fc(x)).

In other words, difference in fc will cause a difference
of similar scale in fr. This requires that the comparisons
induces a Borda function fr such that fr is close to fc at
its optimum, and that fr and fc has the same optimizer.
We note that this is a quite weak assumption, as we do
not restrict the result of comparing individual points x, x′

to comply with fc(x)− fc(x′), i.e., comparisons do not
need to be consistent. We can show that Assumption 2
holds under the link function setting, when σ is Lipschitz
continuous:

Proposition 1. Suppose comparisons follows a link func-
tion σ with a Lipschitz constant between [1/L1, L2], i.e.,
|σ(x)−σ(y)|
|x−y| ∈ [ 1

L1
, L2], ∀x, y ∈ R, then Assumption 2

holds.

We comment that common link functions such as BTL
(Bradley and Terry, 1952) and Thurstone (Thurstone,
1927) all have bounded Lipschitz functions if fc is bound-
ed.

Lastly, we note that Ailon et al. (2014) also compare x
to a random point X , and use the feedback to update the
function estimates. However, their method relies on a
linear link function σ(x) = 1+x

2 and cannot be applied
for BTL or Thurstone models.

Algorithm 1 COMP-GP-UCB

Input: Comparison bias ζ, comparison exploration
threshold γ, confidence δ

1: Set Dr
0 = Dl

0 = ∅, (µ
(r)
0 , σ

(r)
0 ) = (µ

(l)
0 , σ

(l)
0 ) =

(0, κ1/2), t← 0
2: repeat
3: Compute xt = arg maxx∈X µ

(r)
t−1(x) +

β
(r)
t σ

(r)
t−1(x)

4: QUERY(xt, comp)
5: until β(r)

t σ
(r)
t−1(xt) ≤ γ or budget exhausted

6: Let f̂r = µ
(r)
t−1(xt)− β(r)

t σ
(r)
t−1(xt)

7: while Budget not exhausted do
8: Let φ(r)

t (x) = µ
(r)
t−1(x)+β

(r)
t σ

(r)
t−1(x)−f̂r+L2ζ

9: Compute xt = arg max
x∈X :φ

(r)
t (x)≥0

µ
(l)
t−1(x) +

βtσ
(l)
t−1(x)

10: if β
(r)
t (xt)σ

(r)
t−1(xt) ≥ γ then

QUERY(xt, comp)
11: else QUERY(xt, label)
12: end if
13: t← t+ 1
14: end while

15: procedure QUERY(query point xt, query type qt)
16: if qt = comp then
17: Sample x′ randomly from X and query to

compare (xt, x
′), obtain zt

18: Update Dc
t ← Dc

t−1 ∪ {(xt, zt)}, Dl
t ←

Dl
t−1

19: Perform Bayesian update for µ(r)
t , σ

(r)
t based

on Dc
t with yt = zt following (2)

20: else
21: Query direct labels for xt and obtain yt
22: Update Dl

t ← Dl
t−1 ∪ {(xt, yt)}, Dc

t ←
Dc
t−1

23: Perform Bayesian update for µ(l)
t , σ

(l)
t based

on Dl
t following (2)

24: end if
25: end procedure



3.3 Optimization with Known ζ

When ζ is known and given, COMP-GP-UCB is formal-
ly described in Algorithm 1. Our algorithm works both
for unbiased comparisons (ζ = 0) and misspecified com-
parisons (ζ > 0). COMP-GP-UCB is an anytime algo-
rithm, meaning that it does not need to know the total
budget Λ before it begins. For any input ζ ≥ 0, the high-
level idea is to constrain the search region for f using
comparisons to the set H := {x : fr(x) ≥ f∗r − L2ζ}
where f∗r = maxx fr(x). H is guaranteed to contain
the optimizer f under our assumptions; To see this, let
x∗ be any optimizer of f , and we have f∗r − fr(x∗) ≤
L2(f∗c −fc(x∗)) ≤ L2(f∗−f(x∗)+ζ) = L2ζ. The first
inequality follows from Assumption 2 and the second one
follows from Assumption 1. It is easy to see that H is
much smaller than X if comparisons are mostly correct
(i.e., ζ is small); therefore we can explore more efficiently
by restricting the search onH.

COMP-GP-UCB takes as input ζ , a parameter γ to control
exploration on comparisons, and a confidence level δ.
We keep track of posteriors (µ(l), σ(l)), (µ(r), σ(r)) for
f and fr respectively, and construct confidence intervals
µ

(l)
t−1(x)±βtσ(l)

t−1(x), µ(r)
t−1(x)±β(r)

t σ
(r)
t−1(x). Since fr is

unknown, to approximateH, the algorithm adopts a two-
phase approach: In the first phase (Step 2-5), we optimize
fr using comparison queries until β(r)

t σ
(r)
t−1(xt) ≤ γ, i.e.,

the queried point has confidence of at least γ. At the end
of the first phase, we compute f̂r as a lower bound for
f∗r . Next, we start the second phase exploring f (Step
7-14). We select the query point xt based on a filtering
φ

(r)
t (x) ≥ 0; the filtering approximates the constraint set
H by combining the current UCB of fr and the LCB f̂r
from the first phase. Then the algorithm optimizes the
UCB of f under the constraint of φ(r)

t (x) ≥ 0. While
doing this, we check the UCB of fr at the maximizer
xt and if we are not confident about fr(xt), we query a
comparison, or otherwise we make a direct query as in
GP-UCB.

The query process is described in the procedure QUERY.
For direct queries, we query xt directly, and update the
posterior of f according to (2); for comparisons, we com-
pare xt with a random point x′, and use the result as
feedback to update posterior of fr. We note that this
comparison result is an unbiased estimate of fr(xt).

The Two-Phase Approach. Both phases are critical for
the algorithm to succeed. The first phase is important
in two ways: Firstly, it helps to get a low regret in the
unbiased comparisons setting, and in the initial stages
of the algorithm when only comparison queries are used
for the biased (misspecified comparison) setting. Also,
it gives a lower bound f̂r ≤ f∗r of the optimum of fr at
Step 6 which will be used to approximate the constraint
setH. Then we use the second phase to obtain low regret

in the biased comparison case.

Choice of φ(r)
t . The choice of φ(r)

t is critical for the
algorithm to succeed. We want that the region S = {x :

φ
(r)
t (x) ≥ 0} is not too small or too large: we need that

every maximizer x∗ of f is in S, while also excluding as
many points as possible using the information from fr. To
achieve the former, we have added L2ζ to the confidence
interval to account for the difference in fc and f . To
achieve the latter, we need both a good UCB of fr and a
good LCB of f∗r = max fr(x). The good UCB is ensured
by the check at Step 10; we only make direct queries when
we are confident enough about fr(xt). The good LCB is
ensured by the first phase, where we compute f̂r; without
the first phase f̂r can be arbitrarily bad and it will lead
to suboptimal direct queries. In the proof we show that
when φ(r)

t (x) ≥ 0 and β(r)
t (x)σ

(r)
t−1(x) ≥ γ, x belongs to

an approximation ofH. So the two constraints combined
ensure that we use direct queries to exploreH.

3.4 Theoretical Analysis

We now present our theoretical results. We defer full
proofs to the appendix due to space constraints. We first
analyze the unbiased comparison case. In this case, we
have ζ = 0, and we only need comparisons to achieve low
regret. Therefore we run COMP-GP-UCB with ζ = γ =
0; in this case, the algorithm only executes the first phase,
and only uses comparisons to optimize fr. We obtain the
following guarantee.

Theorem 2. Suppose Assumption 2 holds, and fc = f .
Let β(r)

t = 2B +
√

2 (Φt−1(X ) + 1 + log(1/δ)). There
exists a constant C dependent on d, κ such that COMP-
GP-UCB with ζ = γ = 0 has a simple regret bounded by

S(Λ) ≤ C
(
B +

√
(ΦnΛ(X ) + log(1/δ))

)√ΦnΛ
(X )

nΛ
.

(3)

Remark. IGP-UCB (Chowdhury and Gopalan, 2017) in
the label-only setting has regret of form

SIGP-UCB(Λ) ≤ (4)

C

(
B +

√(
ΦnΛ

(X ) + log(1/δ)
))√ΦnΛ

(X )

nΛ

,

where nΛ = b Λ
λl
c. This is the same form as (3), but with

nΛ replaced with nΛ. Recall that nΛ is the number of
queries when we use all the budget on comparisons, and
nΛ is the number for using all budget on direct queries.
In other words, COMP-GP-UCB has the same rate as
IGP-UCB as if direct queries are as cheap as compar-
isons. When comparisons are much cheaper than direct
queries, COMP-GP-UCB leads to a great advantage by



significantly reducing the number of direct queries need-
ed.

We then analyze COMP-GP-UCB in the misspecified
comparison setting(ζ > 0). In this setting, comparisons
act as a filter on X to reduce the search region for direct
queries. When fc approximates f well (i.e., a small ζ),
the set H = {x : fr(x) ≥ f∗r − L2ζ} is much smaller
than the feature space X . Therefore by using comparison-
s, we wish to replace the Φn0

(X ) term in (4) by Φn0
(H),

effectively exploring a smaller region. We show that
COMP-GP-UCB can have a similar behavior by explor-
ing on a slightly larger set dependent on γ, defined as
Hγ = {x ∈ X : fr(x) ≥ f∗r − L2ζ − 4γ}. The follow-
ing theorem characterizes the regret of COMP-GP-UCB
under the misspecified comparison setting.
Theorem 3. Suppose Assumptions 2 and 1 hold, and ζ
is known. Let β(r)

t be the same as in Theorem 2, and
βt = 2B +

√
2 (Φt−1(Hγ) + 1 + log(1/δ)). There ex-

ists constants Λ0, C dependent on ζ, γ,B, d, κ such that
if when Λ ≥ Λ0 we have S(Λ) ≤ min{S1, S2}, where

S1 = 2L1γ + ζ+

C
(
B +

√
(ΦnΛ

(X ) + log(1/δ))
)√ΦnΛ

(X )

nΛ
,

S2 = C

(
B +

√(
ΦnΛ

(Hγ) + log(1/δ)
))√ΦnΛ

(Hγ)

nΛ

.

We discuss about the bounds and setup of parameters
before coming to the proof of Theorem 3.

Remarks. The regret bound in Theorem 3 enjoys best of
both worlds from comparisons and direct queries. The
first bound has the same form as in Theorem 2 but with
another 2L1γ + ζ term. This comes from the first phase
of COMP-GP-UCB, and the extra term comes from the
fact that fc 6= f . In the second phase, the algorithm
achieves the second bound S2, which is the rate of using
nΛ direct queries to explore Hγ . Compared with (4),
the second bound has the same rate on nΛ, but with a
reduced search region Hγ and a startup budget Λ0 for
comparisons to work. When fc is a good approximation
to f , Hγ is much smaller than X and will lead to a
great improvement in the number of direct queries needed.

Setup of parameters. 1. Setting γ: γ acts as a threshold
for exploring comparisons in both phases of COMP-GP-
UCB. A small γ will lead to a small Hγ and therefore
better regret rates; but it will also make the algorithm
spend more time on comparisons before moving to direct
queries, i.e., a large Λ0. One plausible choice for γ is to
set γ = 1

L2
ζ, and this will makeHγ ≈ H.

2. Setting βt: The setup for βt in Theorem 3 requires
knowing Φt(Hγ) before algorithm starts and this is unre-
alistic to set up. However, in practice the default choice

for βt is often very loose and hand-tuned values are used
instead (e.g., Kandasamy et. al(Kandasamy et al., 2016)
uses βt = 0.2d log(2t)). In this sense this setup for βt
does not affect its practical use. For theoretical purposes,
we can also set βt = β

(r)
t ; this leads to a regret rate of

Õ

(
(B+
√

ΦnΛ
(X ))
√

ΦnΛ
(Hγ)

√
nΛ

)
, slightly larger than the

current rate but still smaller than GP-UCB.

Proof Sketch. We prove Theorem 3 and Theorem 2 fol-
lows as a corollary. For the first bound, if we have left
phase 1 and entered phase 2, let T0 be the time that we
leave phase 1. By routine calculation we can show

S(Λ) ≤ f∗ − f(xT0) ≤ L1(f∗r − fr(xT0)) ≤ 2L1γ + ζ.
(5)

On the other hand, if we do not finish phase 1 (e.g., when
ζ = γ = 0), we can follow the proof of IGP-UCB
(Chowdhury and Gopalan, 2017) and show that

S(Λ) ≤ Cβ(r)
nΛ

√
ΦnΛ

(Hγ)

nΛ
+ ζ. (6)

Combining (5) and (6) we get the first bound S1.

Now we show the second bound S2. Suppose the algorith-
m makes n queries. For any set A ⊆ X , let T rn(A) be the
number of comparison queries into A when the algorithm
has made n queries, and T ln(A) be the number of direct
queries. We have

n = T rn(X ) + T ln(Hγ) + T ln(Hγ).

For the first term, we show that there exists a constant Cκ
such that T rn(X ) ≤ Cκ

(
β(r)
n

γ

)p+2

, where p = d for SE
kernel and p = 2d for Matérn kernel. For the second term,
we show that our algorithm makes sure that T ln(Hγ) = 0,
i.e., it always query in Hγ when it uses direct queries.
These two results combined can show that we allocate
at least nΛ/2 direct queries to explore Hγ . The second
bound S2 then follows by bounding the regret similar to
IGP-UCB.

3.5 COMP-GP-UCB with Unknown ζ

In practice, we cannot know ζ in general, and it is even
hard to verify whether ‖fc − f‖∞ ≤ ζ holds for a given
ζ. On the other hand, we can often know an upper bound
ζmax such that ζ ≤ ζmax. For example, if we know both
f and fc are bounded in [−B∞, B∞] we naturally have
‖fc − f‖∞ ≤ 2B∞. However, Algorithm 1 is not useful
if we set ζ = 2B∞, because that will lead to a constraint
setH = {x : fr(x) ≥ f∗r − 2L2B∞} that can be as large
as X and we have to explore the whole feature space with
direct queries. We develop a slightly different method in



Algorithm 2 COMP-GP-UCB for unknown ζ

Input: Threshold γ, comparison bias starting point ζ0,
bias upper bound ζmax, budget Λ

1: Set Dr
0 = Dl

0 = ∅, (µ
(r)
0 , σ

(r)
0 ) = (µ

(l)
0 , σ

(l)
0 ) =

(0, κ1/2), t← 0, k ← 0, Nl ← 0
2: repeat
3: Compute xt = arg maxx∈X µ

(r)
t−1(x) +

β
(r)
t σ

(r)
t−1(x)

4: QUERY(xt, comp)
5: until β(r)

t σ
(r)
t−1(xt) ≤ γ

6: Let f̂r = µ
(r)
t−1(xt)− β(r)

t σ
(r)
t−1(xt)

7: while ζk ≤ ζmax do
8: Let φ(r)

t (x) = µ
(r)
t−1(x) + β

(r)
t σ

(r)
t−1(x) − f̂r +

2L2ζk
9: Compute xt = arg max

x∈X :φ
(r)
t (x)≥0

µ
(l)
t−1(x) +

βtσ
(l)
t−1(x)

10: if β
(r)
t (xt)σ

(r)
t−1(xt) ≥ γ then

QUERY(xt, comp)
11: else
12: QUERY(xt, label)
13: Nl ← Nl + 1
14: end if
15: if Nl ≥ nΛ

2dlog(ζmax/ζ0)e then
16: Nl ← 0, ζk+1 ← 2ζk, k ← k + 1
17: end if
18: t← t+ 1
19: end while

Algorithm 2 that tries to search ζ between an initial value
ζ0 and the upper bound ζmax, and adapts to the true ζ.

Algorithm 2 works in the finite-horizon scenario, where
the budget Λ is given as input. The process of Algorithm
2 is mostly similar to Algorithm 1, except that it uses ζk in
the second phase in place of ζ. We optimize the function
as if Assumption 1 holds for ζk. ζk starts from ζ0; at step
15, once we have spent enough queries at the current esti-
mate of ζ, we double the current ζk. We iterate until we
reach ζk > ζmax. The threshold for Nl,

nΛ

2dlog(ζmax/ζ0)e ,
is chosen such that we divide a label budget of nΛ/2 di-
rect queries equally among the dlog(ζmax/ζ0)e possible
values of the ζk’s. The constant 2 is chosen arbitrarily
here; any choice of nΛ/c for a constant c > 1 will obtain
the same rate.

We present our theoretical results as a corollary to The-
orem 3. Since we cannot find the exact ζ, our results
depend on a slightly larger ζ̄ = max{2ζ, ζ0}. We use
Ĥγ = {x ∈ X : fr(x) ≥ f∗r − 2L2ζ̄ − 4γ} to represent
the constraint set of interest when ζ is replaced by ζ̄.

Corollary 4. Suppose Assumptions 2 and 1 hold, and ζ ≤
ζmax. Under the same setting of β(r)

t , C,Λ0 as in Theo-

rem 3, and βt = 2B+

√
2
(

Φt−1(Ĥγ) + 1 + log(1/δ)
)

,

the simple regret of Algorithm 2 satisfies S(Λ) ≤
min{S1, S2}, where

S1 = 2L1γ + 2ζ+

C
(
B +

√
(ΦnΛ

(X ) + log(1/δ))
)√ΦnΛ

(X )

nΛ
,

S2 = C

(
B +

√(
ΦnΛ

(Ĥγ) + log(1/δ)
))√ΦnΛ

(Ĥγ)

nΛ

.

Remark. 1. The regret rate of Corollary 4 is almost the
same as Theorem 3, except the set Hγ is replaced with
Ĥγ . We note that all the terms in the regret rate depend
only on ζ̄ or ζ, and do not depend on ζmax. This means
Algorithm 2 can adapt to unknown level of comparison
bias ζ.
2. Similar to Theorem 3, Corollary 4 also requires the
unknown quantity Φt(Ĥ

γ) to set βt; in practice we can
also use a similar hyper-parameter search to find this
quantity. γ also takes a similar effect as in Algorithm
1, and γ = 1

L2
ζ0 can lead to Ĥγ ≈ H and a practical

algorithm. Again, setup of these parameters only depends
on ζ̄ and is not affected by ζmax.

3.6 Comparison with MF-GP-UCB (Kandasamy
et al., 2016)

Our setting and method share some common character-
istics as the multi-fidelity method MF-GP-UCB (Kan-
dasamy et al., 2016), and we formally discuss them here.
Our setup is similar to MF-GP-UCB in the two-fidelity
case, where the algorithm has access to the target function
f and its approximation f (1), with ‖f − f (1)‖∞ ≤ ζ
for some known ζ > 0. Although we also assume fc
is a good approximation for f (in a weaker sense of be-
ing close in terms of f∗ and f∗c , see Assumption 1), our
setting is harder than MF-GP-UCB and their algorithm
cannot be directly applied in our case. This is because
we cannot directly query fc: fc is only available through
comparisons, and we will get the same set of comparisons
from fc and fc + c for any constant c. In our case, we
can only get unbiased estimates for fr. However, it is
unlikely that ‖fr − f‖∞ is small, because fr(x) ∈ [0, 1]
for all x since it is the probability of beating a random
point, whereas f can have arbitrary values.

MF-GP-UCB bears some resemblance to the second
phase in our Algorithm 1, but they are principally differen-
t in choosing the next query point xt. In the MF-GP-UCB
algorithm, we have access to another function f ′ similar to
f . The algorithm constructs two sets of UCBs φ(x), φ′(x)
for f and f ′ separately, and use min{φ(x), φ′(x)} as a
final UCB. In our case, UCBs of fr and f are not com-
parable. Instead we use a novel constrained optimization



approach based on observations in the first phase.

Another difference is that MF-GP-UCB needs the func-
tion difference ζ known beforehand, whereas our modi-
fied COMP-GP-UCB (Algorithm 2) can adapt to an un-
known ζ . We note that MF-GP-UCB does use a doubling
mechanism in their experiments to make it practical, but
they do not provide any theoretical guarantees.

4 Experiments

We perform experiments against plausible baselines to
verify our theory and illustrate the efficacy of our algorith-
m, on both synthetic and real-world data. For comparison,
we include state-of-art algorithms in the label-only and
comparison-only setting, as well as an adapted version of
MF-GP-UCB, as described below.

4.1 Experiment Setup

For synthetic data, we use functions from the multi-
fidelity literature to produce comparisons on a lower fi-
delity and direct labels on a higher fidelity. In particular
we use Currin exponential (CurrinExp, d = 2) and Bore-
hole (d = 8) (Xiong et al., 2013) functions. We note that
f and fc have different values and maximizers. We do
NOT add additional noise on direct queries for f .

For real-world data, we experiment with the SVM tuning
task from the MF-GP-UCB paper Kandasamy et al. (2016)
and train a SVM classifier on the MAGIC Gamma dataset
Dua and Graff (2017). We tune the RBF kernel bandwidth
and the soft margin coefficient within range (10−3, 101)
and (10−1, 105). We randomly sample a training set of
size 2,000 and a validation set of 500 from the original
dataset. Direct labels take in the specified bandwidth and
margin coefficient and return the corresponding validation
accuracy. On the other hand, comparisons only use a
(fixed) subset of size 500 from the training set (noisy but
cheap) and return the validation accuracy on the same
validation data.

4.2 Baselines and Implementation Details.

Baselines. We evaluate the performance of COMP-
GP-UCB against the following baselines: (1) GP-
UCB(Srinivas et al., 2009): The label-only algorith-
m optimizing UCB of GP posterior. (2) KernelSelfS-
parring(Sui et al., 2017): A comparison-only algorith-
m that uses Thompson Sampling to optimize compar-
isons. We note that since f 6= fc, optimizing compar-
isons cannot lead to the global optimum. (3) MF-GP-
UCB(Kandasamy et al., 2016): Although MF-GP-UCB is
not directly applicable in our case, we try to use it by us-
ing comparisons as the lower fidelity. When the algorithm
selects to query the lower fidelity on xt, we compare x
to a random point X ∈ X and use the result as feedback,
the same process as COMP-GP-UCB.

Experiment Setup. We apply common techniques in

Bayesian optimization to set up hyperparameters of each
algorithm (we detail the implementation in appendix). All
methods use the RBF kernel for GP. For all methods we
compute the simple regret (1) w.r.t. f 2. The results are
averaged over 20 runs.

Cost Ratio. In practice, the relation between the costs of
labels and comparisons can be complex. We call λlλc the
cost ratio between labels and comparisons; the larger the
cost ratio, the cheaper the comparisons. Our algorithm
generally works for a cost ratio λl

λc
> 1. We test the

performance under various cost ratios in our experiment.
Unless otherwise specified, for all the experiments with a
varying budget we follow the setup of MF-GP-UCB and
use λc = 0.1 and λl = 1, and use a total budget of up
to Λ = 100. For all the experiments with a varying cost
ratio, we set Λ = 100, λl = 1, and vary the cost ratio
between [1, 10].

4.3 Results

Results on synthetic data. The results are summarized
in Figure 1a & 1b. Firstly we compare the performance
on CurrinExp 3 by varying the total budget from 10 to
100 (Figure 1a). COMP-GP-UCB shows the best per-
formance over all budget setups. It is worth noting that
MF-GP-UCB performs worse than label-only GP-UCB
in our setting; this is because the target function of MF-
GP-UCB in this case essentially optimizes the function
fr, which is bounded in [0, 1], resulting in a very large ap-
proximation bias. In contrast, COMP-GP-UCB is able to
use comparisons in an efficient way to reduce the search
space for optimization. In the appendix, we also include
the case where f = fc and λc = λl (i.e., no bias on
comparisons and cost ratio equals 1).

Then in Figure 1b, we fix the total budget to be Λ = 100
and cost of labels λl = 1, and vary the cost ratio from
1 to 10 by varying comparison costs. COMP-GP-UCB
achieves the best performance for all setups except for
λc = λl = 1 when it is worse than the label-only GP-
UCB algorithm. This is expected since our algorithm
targets to use cheaper comparisons. Our algorithm can be
more effective even with a fairly small cost ratio (≥ 2).

Alternative Definitions of Regret. Since the simple re-
gret notion defined for settings with both direct and com-
parison queries is necessarily unfair for methods designed
to handle only one query type, we perform an additional
experiment to examine the comparison regret and direct
query regret separately. Namely, define

Rc(Λ) =

{
min

t,qt=comp
f∗ − f(xt), if ∃t s.t qt =comp,

∞ otherwise.

2We find that KernelSelfSparring is extremely slow for d =
8 so we only test it for CurrinExp.

3Due to space limits, we include results on the Borehole
function, along with other experiment results in the appendix.
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Figure 1: Empirical results comparing COMP-GP-UCB with baseline methods. KSS stands for KernelSelfSparring.
and

Rl(Λ) =

{
min

t,qt=label
f∗ − f(xt), if ∃t s.t qt =label,

∞ otherwise.

In Figure 2, we plot the comparison regret Rc and direc-
t query regret Rl for the CurrinExp synthetic function
(same setting as Figure 1a). We plot Rc and Rl respec-
tively for both COMP-GP-UCB and MF-GP-UCB, Rl
for GP-UCB, and Rc for KSS. Our results show that
even if we only consider comparisons or direct queries,
COMP-GP-UCB still outperforms the baselines in most
budget settings. Overall, COMP-GP-UCB has a large
direct query regret initially because we mostly do compar-
isons in the initial stage, but it achieves a low regret when
we have a larger budget. We note that COMP-GP-UCB
can still query both comparisons and direct queries in this
setting, and it leads to a better regret for both comparisons
and direct queries.

Results on real data. The results are in Figure 1c & 1d.
KernelSelfSparring (KSS) has an error rate much higher
than other methods (larger than 0.16), so we exclude it
in the plot. Similar to the synthetic data case, COMP-
GP-UCB outperforms other baselines. The advantage
of COMP-GP-UCB over GP-UCB is smaller than the
synthetic case, which might possibly result from the larger
difference between fc and f . Note that for real data we
still vary the cost ratio because in practice the actual cost
ratio might depend on various factors like computational
cost and data collection. Nevertheless, Figure 1d shows
that COMP-GP-UCB has an advantage over the baselines
for cost ratio at least 2; this is very likely to happen since

Figure 2: Result comparing comparison and direct regret.

the training set for comparisons is only 1/4 the size of that
for direct queries.

5 Conclusion

We consider a novel dueling-choice setting when both di-
rect queries and comparisons are available for non-convex
optimization. We propose the COMP-GP-UCB algorithm
that can achieve benign regret rates in the dueling-choice
setting, and can adapt to unknown biases in the compar-
isons. Our algorithm can also be of independent interest
for other multi-fidelity or transfer learning settings where
information gleaned from one fidelity or source domain
can be actively transferred to optimize the target domain
function, under milder conditions than existing literature.
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