
Layering-MCMC for Structure Learning in Bayesian Networks

Jussi Viinikka
Department of Computer Science

University of Helsinki
jussi.viinikka@helsinki.fi

Mikko Koivisto
Department of Computer Science

University of Helsinki
mikko.koivisto@helsinki.fi

Abstract

Bayesian inference of the Bayesian network
structure requires averaging over all possible
directed acyclic graphs, DAGs, each weighted
by its posterior probability. For approximate
averaging, the most popular method has been
Markov chain Monte Carlo, MCMC. It was
recently shown that collapsing the sampling
space from DAGs to suitably defined ordered
partitions of the nodes substantially expedites
the chain’s convergence; this partition-MCMC
is similar to order-MCMC on node orderings,
but it avoids biasing the sampling distribution.
Here, we further collapse the state space by
merging some number of adjacent members of
a partition into layers. This renders the compu-
tation of the (unnormalized) posterior proba-
bility of a state, called layering, more involved,
for which task we give an efficient dynamic
programming algorithm. Our empirical studies
suggest that the resulting layering-MCMC is
superior to partition-MCMC in terms of mix-
ing time and estimation accuracy.

1 INTRODUCTION

The Bayesian paradigm for statistical inference calls
for marginalizing the posterior distribution over all un-
knowns (variables, parameters) that are of no direct inter-
est. For Bayesian inference in graphical models with un-
known structure, Madigan and York (1995) implemented
the Bayesian approach using the Markov chain Monte
Carlo (MCMC) method. Their structure-MCMC sim-
ulates a Markov chain on the space of directed acyclic
graphs (DAGs) by stochastically adding, removing, and
reversing arcs, yielding a sample of DAGs drawn approx-
imately from the posterior distribution. While non-trivial
exact algorithms for model averaging and sampling have

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

been developed later (Tian and He, 2009; Talvitie et al.,
2019), it is the MCMC method that holds a promise of
applicability to graphs on dozens or hundreds of nodes.

Subsequent works have improved upon structure-
MCMC using various techniques. Friedman and Koller
(2003) proposed order-MCMC to simulate a Markov
chain on node orderings, each of which covers a large set
of DAGs. The smaller state space and smoother posterior
landscape of order-MCMC improve the mixing of the
chain, which appeared sufficient to compensate a larger
computation time per simulation step. Niinimäki et al.
(2016) collapsed the state space further by sampling par-
tial orders, with favorable effect on mixing properties.
Unfortunately, these ordering based methods introduce a
bias by favoring DAGs that are compatible with a larger
number of node orderings. Ellis and Wong (2008) pro-
posed a heuristic to correct the bias; Niinimäki et al.
(2016) corrected the bias through respective importance
sampling weights, i.e., the numbers of topological sorts
of the DAGs generated from the sampled partial orders.
Neither of these correction methods can escape the fact
that the biased sampling distribution can be relatively far
from the original target distribution.

Another line of works to improve upon structure-MCMC
insist on unbiased sampling. Grzegorczyk and Husmeier
(2008) proposed a stronger arc reversal move that not
only reverses an arc but at the same time reassigns the
parents of its both ends, significantly expediting the mix-
ing of the chain. Kuipers and Moffa (2017) made a fur-
ther improvement by collapsing the state space to or-
dered partitions of the nodes. In their partition-MCMC,
like in order-MCMC, the better mixing of the Markov
chain outweighs the increased computational cost per
simulation step; the mixing appeared comparable to that
of order-MCMC, yet avoiding the sampling bias.

In this paper, we investigate a way to further collapse
the state space of partition-MCMC by grouping adja-
cent members of a partition into what we will call layers.

This idea stems from two observations: First, on typi-
cal benchmark datasets, partition-MCMC tends to sam-
ple partitions that consist of a large number of small node
subsets, often containing just one or two nodes; see Sec-
tion 4.1 for our empirical findings. Consequently, the
effective sampling space is relatively large, comparable
to that of order-MCMC. In contrast, a layering consists
of a relatively small number of larger layers, each layer-
ing covering a large number of partitions. This renders
the sampling space smaller and smoother.

Second, each simulation step in partition-MCMC re-
quires summing over, in essence, all possible parent sets
for each node, typically millions of sets when there are
some dozens of nodes; this computation is similar to
what is required in order-MCMC. Given that the step
is in any case computationally demanding, in layering-
MCMC we can afford the additional work needed for
computing the (unnormalized) posterior probability of a
given layering, namely, for summing over all partitions
(and thereby DAGs) compatible with the layering. In-
deed, we show that, following the recent approach of
Talvitie et al. (2019), we can compute the sum in time
that is moderately exponential in the largest layer size;
by controlling the maximum layer size, we can trade the
computational complexity of a simulation step for the
smoothness of the posterior landscape.

This paper focuses on the key ideas of layering-MCMC.
The main question we aim to answer is the following:

Does collapsing the sampling space from par-
titions to layerings significantly enhance the
mixing properties of the Markov chain and the
accuracy of the resulting MCMC estimator for
arc posterior probabilities?

Here we are bound to set the maximum layer size so
that computing the posterior probability of a layering
does not become a computational bottleneck. To answer
the above question, we will compare layering-MCMC
to partition-MCMC running their basic instantiations on
data sets of moderate dimensions, for which the compu-
tation of the exact arc posterior probabilities is feasible
(Tian and He, 2009; Talvitie et al., 2019).

If the answer is affirmative, one can expect the col-
lapsed state space to preserve its advantage when one en-
hances the basic instantiations by sophisticated MCMC
techniques, such as Metropolis-coupling of several par-
allel, “heated” chains; supporting evidence for this
viewpoint is provided by the analogous comparison
of order-MCMC and partial-order-MCMC (Niinimäki
et al., 2016). Such additional techniques are needed and
available when one wishes to successfully infer DAGs
from data sets of larger dimensions. However, imple-

menting such enhancements is beyond the present work.

2 PRELIMINARIES

We begin by introducing the necessary concepts and no-
tation related to inferring BNs from data; for more com-
prehensive background on Bayesian networks, we re-
fer to Koller and Friedman (2009). We also review the
essential ingredients of the partition-MCMC method of
Kuipers and Moffa (2017).

2.1 BAYESIAN NETWORKS

Let V be a set of n elements. With each v ∈ V asso-
ciate a random variable Xv . If S ⊆ V , write XS for
the tuple (Xv)v∈S . A BN over the variables is a pair
(G, θ), where G is a DAG on V and θ parameterizes a
joint probability distribution of XV that factorizes along
the DAG: p(XV |G, θ) =

∏
v∈V p(Xv|XGv

, G, θ). Here
and henceforth Gv denotes the set of parents of v in G.
We also let p stand for a generic name for a probabil-
ity distribution; the referred random variables and events
will be clear from the context. The notation anticipates
the Bayesian approach, in which the uknown DAGG and
its parameters θ will be treated as random variables.

In principle, the parent set Gv of node v could be any
subset of V \{v}. However, we will be interested in sce-
narios where each node v is associated with some po-
tentially much smaller family of possible parent sets,
denoted by Gv . For instance, Gv might consist of all
Gv ⊆ V \{v} whose size is at most some fixed constant
K, the max-indegree of the allowed DAGs, or it could
consist of all subsets of some fixed set of candidate par-
ents Cv ⊆ V \{v}. We will denote by G the resulting set
of all DAGs G satisfying Gv ∈ Gv for all v ∈ V .

2.2 BAYESIAN INFERENCE OF THE
NETWORK STRUCTURE

We will consider Bayesian inference of the structure G
from a given dataset X. We will assume that X con-
sists of N datapoints X1, X2, . . . , XN , each of which is
viewed as an independent draw from the distribution as-
sociated with the DAG G. Consequently, the likelihood
of the BN (G, θ) is obtained as

∏N
s=1 p(X

s|G, θ). The
marginal likelihood p(X|G) is obtained by integrating
the likelihood over a parameter prior p(θ|G). For any
structure prior p(G), the structure posterior is obtained
via the Bayes rule as p(G|X) = p(G)p(X|G)/p(X). We
will denote the posterior of G also by π(G). The poste-
rior π(G) enables inference on any function of the struc-
ture. For instance, the posterior probability that node u
is a parent of node v is obtained by simply marginalizing

the posterior, i.e., summing up the probabilities π(G) of
all DAGs G in which u ∈ Gv .

In our experiments we adopt some standard choices for
the priors so that the marginal likelihood p(X|G) sat-
isfies so-called score equivalence, i.e., is constant over
Markov equivalent DAGs (Koller and Friedman, 2009,
Sect. 18.3.7). Specifically, we assume that all variables
are either categorical or continuous, and use the BDe
score in the former and the BGe score in the latter case
(Geiger and Heckerman, 2002; Kuipers et al., 2014).
Furthermore, we let the structure prior p(G) be uniform
(truncated to G).

These choices imply that the posterior π(G) is modular:

π(G) :=
∏
v∈V

πv(Gv) ,

where πv(Gv) can be efficently computed up to a con-
stant factor that is independent ofGv . In fact, the compu-
tational methods we will describe only rely on this prop-
erty of the posterior.

2.3 PARTITION-MCMC

The partition-MCMC method (Kuipers and Moffa, 2017)
stems from the fact that every DAG admits a unique or-
dered partition of its node set, obtained be iteratively ex-
tracting the root nodes of the DAG; a node is a root node
if it has no parents. For a graph G and a subset of its
nodes S, denote by G− S the graph obtained by remov-
ing the nodes in S and all edges that have an end in S.

Definition 1. The root-partition of a DAG G is the se-
quence R1R2 · · ·Rk, where R1 is the set of root nodes
of G and, if k > 1, the remainder R2R3 · · ·Rk is the
root-partition of G−R1.

Denote by R the set of all ordered set partitions of the
node set V . While the root-partition of any DAG is
unique, every member of R is the root-partition of one
or multiple DAGs on V . With every R ∈ R we associate
its posterior probability π(R) obtained by marginalizing
the posterior of DAGs:

π(R) =
∑

G∈G(R)

π(G) ,

where

G(R) := {G ∈ G : R is the root-partition of G} .

Partition-MCMC runs the Metropolis–Hastings algo-
rithm to simulate a Markov chain onRwith the posterior
π(R) as its stationary distribution. When the chain is in

EITHER

TUB XRAY

DYSP

ASIA

LUNG

BRONCSMOKE

Figure 1: The root-partition R and the 5-layering B of
the ASIA network. See Examples 1 and 2.

state R, the next state is generated by first drawing a pro-
posal state R′ from a proposal distribution q(R′|R) and
then accepting the proposal with probability

min

{
1,
π(R′)

π(R)

q(R|R′)
q(R′|R)

}
, (1)

in which case the next state is R′, and otherwise setting
the next state to R. Thus the proposal distribution can be
viewed as generating possible moves in the state space.

Kuipers and Moffa (2017) consider various types of
moves in the partition space: splitting a part into two
adjacent parts; joining two adjacent parts into a single
part; moving a single node to another part or to form
a new part of size one; swapping two nodes from dif-
ferent parts. In addition, they employ the edge reversal
move of Grzegorczyk and Husmeier (2008) by simply
first generating a DAG conditionally on the current par-
tition, making the edge reversal move in the DAG space,
and mapping the obtained DAG to its root-partition.

Example 1. The root-partition of the eight-node ASIA
benchmark network (Lauritzen and Spiegelhalter, 1988)
consists of four parts (Fig. 1). Observe that there are no
arcs within any part and that every node, unless it is in
the first part, takes a parent from the previous part.

2.4 COMPUTING THE PARTITION POSTERIOR

Each simulation step in partition-MCMC requires the
computation of the posterior π(R) of a given partition
R = R1R2 · · ·Rk, up to a normalizing constant (which
cancels when computing the ratio (1)). Instead of di-
rectly summing over all DAGs compatible with R, a
computationally more efficient way is enabled by the fact

that conditionally on the partition, the nodes’ parent sets
are mutually independent. Furthermore, a Gv ∈ Gv is a
valid parent set of a node v ∈ Ri exactly when Gv only
contains nodes from members Rj for j < i and at least
one parent from Ri−1; the obvious exception is when
i = 1, in which case Gv must be empty.

For a more precise formulation of this crucial property,
for any node v ∈ V and node subsets T ⊆ U ⊆ V ,
denote the possible parent sets of v relative to (U, T) by

Gv(U, T) := {Gv ∈ Gv : Gv ⊆ U,Gv ∩ T 6= ∅}

if U is not empty and Gv(∅, ∅) := Gv ∩ {∅} otherwise,
and the corresponding sum of posterior weights by

π̂v(U, T) :=
∑

Gv∈Gv(U,T)

πv(Gv) .

Now, by letting

f(U, T, S) :=
∏
v∈S

π̂v(U, T) ,

we have that π(R) factorizes into a part-wise product:

π(R) =

k∏
i=1

f(R1:i−1, Ri−1, Ri) ; (2)

here and henceforth, R−1, R1:−1 := ∅. In this product
each node v ∈ Ri contributes a term π̂v(U, T), where U
consists of all nodes in Rj for j < i and T equals Ri−1.

The factorization reduces the computations to the com-
putation of the required sum π̂v(U, T) for each v. A
straightforward way to compute the sum is by enumer-
ating all Gv ∈ Gv(U, T), which, in turn, can be im-
plemented by iterating through all Gv ∈ Gv and check-
ing for each Gv whether it satisfies the two constraints,
Gv ⊆ U andGv∩T 6= ∅. This algorithm is implemented
in Kuipers and Moffa (2017).

3 LAYERING-MCMC

The key feature in layering-MCMC is that its state space
is smaller than in partition-MCMC (Kuipers and Moffa,
2017). We begin by introducing the notion of M -
layering, where M is a user parameter that controls the
size of the state space. Then we formulate a Metropolis–
Hastings algorithm for simulating a Markov chain on
M -layerings, following the corresponding algorithm of
partition-MCMC. While it is relatively straightforward
to compute the unnormalized posterior probability of a
root-partition (see Section 2.4), for M -layerings the re-
spective task is more involved—we will give a dynamic
programming algorithm whose time complexity is expo-
nential only in the parameterM and therefore not a com-
putational bottleneck when M is set small enough.

3.1 LAYERINGS

Consider an ordered set partition R = R1R2 · · ·Rk ∈ R
of the node set V , and let M be a natural number less
than or equal to |V |. The M -layering of R, defined
formally below, is a unique grouping of adjacent mem-
bers of R into disjoint layers, each containing at most
M nodes and being as large as possible; an exception is
when a layer corresponds to a single member ofR whose
cardinality exceeds M .

Definition 2. The M -layering of R1R2 · · ·Rk is the se-
quence B1B2 · · ·B` where

B1 =

{
R1 if |R1| > M ,

R1:i else, for the largest i s.t. |R1:i| ≤M ;

and, if i < k, the remainder B2B3 · · ·B` is the M -
layering of Ri+1Ri+2 · · ·Rk.

Observe that the 1-layering of a root-partition of a DAG
is the root-partition itself, and in this sense layerings
amount to a generalization of root-partitions.

Example 2. The 5-layering of the eight-node ASIA
benchmark network consists of two layers (Fig. 1).

The partitions in R that are compatible with a given M -
layering B form the subset

R(B) := {R ∈ R : B is the M -layering of R} .

The posterior probability of B is thus obtained as

π(B) :=
∑

R∈R(B)

π(R) .

We denote by BM the set of all M -layerings on V , i.e.,

BM :={B :B is the M -layering of R for some R ∈ R}.

The definitions directly imply the following characteri-
zation of BM :

Proposition 1. An ordered set partition of V is an M -
layering on V if and only if the total size of any two ad-
jacent parts exceeds M .

3.2 MARKOV CHAIN ON LAYERINGS

Our algorithm for simulating a Markov chain on BM
is analogous to that in partition-MCMC. In particular,
the chain moves from the current state B to a new state
B′, generated from a proposal distribution q(B′|B), with
probability

min

{
1,
π(B′)

π(B)

q(B|B′)
q(B′|B)

}
. (3)

At first glance, one might also consider directly adopt-
ing the moves in the partition space. However, the ad-
ditional constraints in BM (cf. Proposition 1) invalidate
some moves; for example, splitting a layer of size at most
M would always produce an element of R that does not
belong to BM .

We have implemented three types of moves. In the de-
scription below, all draws are uniformly at random over
the available choices unless told otherwise.

Relocate Draw a layer and an integer s between 1 and
the layer’s size. Draw s nodes from the layer and
insert them into another layer or in between adjacent
two layers (to form a new layer).

Swap With probability one half, draw two adjacent lay-
ers; otherwise draw two non-adjacent layers. Draw
one node from each layer and swap their locations.

Re-partition First draw a partition R ∈ R(B) propor-
tionally to π(R). Then make a move in the par-
tition space (split, join, or swap); this results in a
partitionR′. Finally mapR′ to the induced layering
B′ ∈ BM , which is accepted as the new state.

For the relocate and swap moves, it is straightfor-
ward to calculate the proposal probabilities q(B′|B) and
q(B|B′), which we need for the evaluation of the ratio
(3); we omit the calculation here. For the re-partition
move, these terms are not needed, given that the pro-
posed partitionR′ is accepted according to the respective
ratio of posterior and proposal probabilities (1)—the ar-
gument is, in essence, given by Kuipers and Moffa (2017,
Sect. 5) and not repeated here.

Since we use the Metropolis–Hastings algorithm, the
chain is reversible and thus converges to π(B), provided
that the chain is irreducible and aperiodic. It is easy to
see that our chain is irreducible, since from any layering
one can move to the single-layer layering by repeated
relocate moves, and then back to any other layering by
another series of relocate moves. To make the chain ape-
riodic, we simply let the chain stay in the same state with
some small probability.

3.3 COMPUTING THE LAYERING POSTERIOR

Let B be an M -layering on V . By the definition of π(B)
and the factorization (2), we have

π(B) =
∑

R∈R(B)

k(R)∏
i=1

f(R1:i−1, Ri−1, Ri) .

To compute π(B) by dynamic programming, we next
define a function gj through a recurrence for all j =

0, 1, . . . , ` such that π(B) can be read from g0. Let us
make the notational convention that B−1 = B0 = ∅. Let
T ⊆ D ⊆ Bj and denote U := B1:j−1 ∪ D. We next
define the value gj(U, T).

Suppose first that D = Bj , i.e., U = B1:j . Now, if
j = `, define gj(U, T) := 1; otherwise, if |Bj+1| > M ,
define

gj(U, T) := f(U, T,Bj+1) gj+1(B1:j+1, Bj+1) ;

else define

gj(U, T) :=
∑

∅⊂S⊆Bj+1

j=0 or |S|>M−|Bj |

f(U, T, S) gj+1(U ∪ S, S) .

Suppose then that U 6= B1:j , i.e., D ⊂ Bj . Then define

gj(U, T) :=
∑

∅⊂S⊆Bj\U

f(U, T, S) gj(U ∪ S, S) .

The proof of the following result is mechanical and, for
the sake of exposition, given in the Supplement.

Lemma 2. We have g0(∅, ∅) = π(B).

Our dynamic programming algorithm computes the val-
ues gj(U, T) using the above recurrences in decreasing
order by j and |U |. The sets T ⊆ U \Bj can be traversed
in arbitrary order, while, for the ease of computation, it
is advisable to sum over the relevant sets S in increasing
order by size, as discussed in the next paragraph.

The complexity of the algorithm is clearly dominated by
the complexity of the steps that require summing over
the sets S. In the first summation, U is fixed, while T
and S range over subsets of Bj and Bj+1, respectively,
whose number in total is at most 2|Bj |2|Bj+1| ≤ 4M .
(Observe that if |Bj | > M , then gj(U, T) is only needed
for T = Bj .) In the second summation, (U, T, S) runs
over at most 4|Bj | ≤ 4M choices. Since we clearly have
` = O(n/M), we need O(4Mn/M) arithmetic opera-
tions, provided that we can access the values f(U, T, S)
using a constant number of operations. To this end, we
visit the sets S in increasing order by size and compute
f(U, T, S) by multiplying an already computed value
f(U, T, S\{v}) by π̂v(U, T) for some v ∈ S. One way
to organize these computations are given in the pseudo
code in Fig. 3.

It remains to analyze the complexity of precomputing the
values π̂v(U, T) for every node v. For convenience, as-
sume first that T intersectsBj and v ∈ Bj . A straightfor-
ward, but slow, approach would be to compute the values
separately for all possible pairs (U, T), whose number

scales in the worst case as 3M . To expedite the compu-
tations, we however compute the values simultaneously
for all (U, T), as follows. For all C ⊆ Bj define

τv(C) :=
∑

C′⊆B1:j−1

C′∪C ∈Gv

πv(C
′ ∪ C) .

We can compute all these values by visiting each possible
parent setGv ⊆ B1:j and adding its contribution, namely
πv(Gv), to τv(Gv∩Bj). This requiresO(|Gv|) additions.
Then we compute the zeta transform τ̂v of τv , defined by

τ̂v(D) :=
∑
C⊆D

τv(C) , D ⊆ Bj ,

using O(3M) additions—or asymptotically faster, using
O(2MM) additions (Kennes, 1992)–and finally make
use of the following identity:

Lemma 3. We have π̂v(U, T) = τ̂v(D)− τ̂v(D \ T).

Proof. Recall that U = B1:j−1 ∪D. Write

τ̂v(D)− τ̂v(D \ T) =
∑
C⊆D

τv(C)−
∑

C⊆D\T

τv(C)

=
∑
C⊆D

C∩T 6=∅

∑
C′⊆U\D
C′∪C ∈Gv

πv(C
′ ∪ C)

=
∑
X⊆U

X∩T 6=∅
X∈Gv

πv(X) .

This equals π̂v(U, T) by the definition of Gv(U, T).

Consider then the other case, namely that T intersects
Bj but v ∈ Bj+1. We see that the construction above
is valid also in this case. We also observe that if |Bj | >
M , then we may assume that U = T = Bj and only
need the value π̂v(B1:j , Bj), which can be computed by
a straightforward pass through Gv .

The pseudo code in Fig. 2 organizes the computation of
the functions τ̂v .

We arrive at the main result of this subsection:

Proposition 4. Computing π(B) for a givenM -layering
B requiresO

(
4Mn/M+

∑
v|Gv|

)
arithmetic operations.

3.4 GENERATING PARTITIONS AND DAGS

For the re-partition move of our Markov chain we need
an algorithm that generates a partition compatible with
the current layering B with a probability that is propor-
tional to the posterior of the partition. Having computed
the posterior probability π(B) and stored the dynamic

PARENTS-SUMS(B1B2 · · ·B`)

1 B`+1 = ∅
2 for j = 1 to `
3 for each v ∈ Bj+1 // Preparing for T = Bj

4 τ̂v[{v}] = 0 // Initialize
5 for each Gv ∈ Gv s.t. Gv ⊆ B1:j

6 if Gv ∩Bj 6= ∅
7 add πv(Gv) to τ̂v[{v}]
8 if |Bj | ≤M
9 for each v ∈ Bj ∪Bj+1

10 for each C ⊆ Bj

11 τv[C] = 0 // Initialize
12 for each Gv ∈ Gv s.t. Gv ⊆ B1:j

13 add πv(Gv) to τv[Gv ∩Bj]
// Compute τ̂v

14 for each D ⊆ Bj \ {v}
15 τ̂v[D] = 0 // Initialize
16 for each C ⊆ D
17 add τv[C] to τ̂v[D]
18 return (τ̂v)v∈V

Figure 2: Pseudo code for computing the functions τ̂v .
Note: if v ∈ Bj+1, then the returned value τ̂v[{v}]
equals π̂v(B1:j , Bj); in other cases (i.e., the argument
is a proper subset of Bj) one has to invoke Lemma 3.

programming tables gj , it is a standard routine to gener-
ate a random partition by stochasting backtracking. (A
pseudo code is given in the Supplement.)

Having generated a partition, we can further generate a
compatible DAG with a probability proportional to the
posterior of the DAG. The DAG will be a sample from
the posterior conditionally on the current layering.

4 EXPERIMENTS

We have implemented the layering-MCMC method in
Python.1 For tests on partition-MCMC, we used the orig-
inal implementation by Kuipers and Moffa (2017); for a
clean comparison of the different state spaces, we did not
enable the edge reversal move. As neither implementa-
tion is optimized for speed and the theoretical cost per
simulation step is about the same for both algorithms,
we run both algorithms the same number of simulations
steps, which we set to 60 000. (This is the length of the
simulations in Kuipers and Moffa (2017) on data sets of
comparable dimensions.)

4.1 TYPICAL ROOT-PARTITIONS

The potential of layering-MCMC crucially relies on the
possibility to cover a large number of root-partitions

1The source code of our implementation is freely available
at github.com/jussiviinikka/layeringMCMC.

POSTERIOR(B1B2 · · ·B`)

1 (τ̂v)v∈V = PARENTS-SUMS(B1B2 · · ·B`)

2 for j = ` downto 0
3 if |Bj | > M or j = = 0 // Set P
4 P = {(Bj , Bj)}
5 else P = {(D,T) : ∅ ⊂ T ⊆ D ⊆ Bj}

6 for each (D,T) ∈ P in decreasing order by |D|
7 if D = = Bj // j′ and D′

8 j′ = j + 1; D′ = ∅
9 else j′ = j; D′ = D

10 if D ⊂ Bj or j = = ` or |Bj+1| ≤M // S and A
11 S = {S ⊆ Bj′ \D′ : ∅ ⊂ S}; A = ∅
12 else S = {Bj+1}; A = Bj+1 \minBj+1

13 for each v ∈ Bj′ \D′ // Construct p[.]
14 if T = = ∅
15 p[v] = πv(∅)
16 else if T = = Bj // Special case
17 p[v] = τ̂v[{v}]
18 else p[v] = τ̂v[D]− τ̂v[D\T]

19 f [A] = 1 // Construct f [A]
20 for each v ∈ A
21 multiply f [A] by p[v]

22 if S is empty // Happens iff j = ` and D = Bj

23 gj [D,T] = 1
24 else gj [D,T] = 0
25 for each S ∈ S in increasing order by |S|
26 v = minS
27 f [S] = f [S\{v}] · p[v]
28 if D 6= Bj or j = = 0 or |S| > M − |Bj |
29 add f [S] · gj′ [D′ ∪ S, S] to gj [D,T]
30 return g0[∅, ∅]

Figure 3: Pseudo code for computing the posterior π(B)
of a given M -layering B. Note: B0 = B`+1 = ∅.

by a M -layering with a relatively small M . To ex-
amine whether typical root-partitions permit an effec-
tive use of the layering technique, we first collected the
size distributions of root-partition parts in benchmark
networks (Table 1). In this study, we include all the
medium and large networks from the bnlearn repository
(www.bnlearn.com/bnrepository). In addition, we
included the ASIA network, which serves as our running
toy example. For most of the networks, we see large re-
ductions when comparing the length of the root-partition
to the length of the 8-layerings, with WATER and HEPAR
II being the only exceptions.

Then we did a similar study for the root-partitions
traversed by partition-MCMC on a set of benchmark
datasets (Table 2). The datasets are from the UCI ma-
chine learning repository (Dua and Graff, 2017), and
preprocessed for learning discrete BNs in Malone et al.

Table 1: The median length (k) and part size (m) of
the root-partition and the length (`) of the 8-layering of
benchmark networks

Network Nodes Arcs Max-Indeg. m k `

ASIA 8 8 2 2 4 1
CHILD 20 25 2 5 5 3
INSURANCE 27 52 3 2.5 10 5
WATER 32 66 5 8 4 4
MILDEW 35 46 3 1.5 14 4
ALARM 37 46 4 2 11 5
BARLEY 48 84 4 2.5 12 6
HAILFINDER 56 66 4 1.5 14 6
HEPAR II 70 123 6 8.5 8 8
WIN95PTS 76 112 7 3 9 5

Table 2: The length (k) and part size (m) of the root-
partition and the length (`) of the induced 8-layering
on benchmark data. Medians of values collected from
60 000 steps of partition-MCMC

Data Set Nodes Points Max-Indeg. m k `

ASIA-1000 8 1000 7 1 6 1
BOSTON 14 506 5 1 10 2
ZOO 17 101 5 1 11 3
VOTING 17 435 5 2 8 3
LYMPH 19 148 5 2 9 3
HEPATITIS 20 155 5 2 10 3
EUCALYPTUS 20 736 5 1 13 3
SPECT 23 267 5 1 16 3
AUTOS 26 205 5 2 16 4
PYRIM 28 74 5 2 14 4
COLIC 28 368 5 2 12 4
FLAG 29 194 5 2 14 4
TRAINS 30 10 5 1 18 4

(2018). We included all datasets with less than 1000
data points and up to 30 variables, to fit within our com-
putational constraints with a maximum indegree of 5.
In addition, we included the BOSTON dataset against
which partition-MCMC was benchmarked by Kuipers
and Moffa (2017), and a dataset of 1000 samples from
the ASIA network. We did not set any indegree limit for
ASIA as there are only eight nodes.

Arguably, the analysis on the root-partitions visited by
a simulated Markov chain is a more direct indicator of
the potential of the layering method than the static syn-
thetic networks. Here we see even a greater promise for
layering-MCMC: the median sizes of root-partition parts
are either 1 or 2, with no exception. Consequently, we
see a dramatic reduction from lengths of root-partitions
to lengths of 8-layerings.

4.2 MIXING OF MARKOV CHAINS

To study the effect of the maximum layer size M on the
performance of layering-MCMC, we ran nine indepen-
dent chains, with M ∈ {4, 8}, on the first six benchmark
data sets from Table 2. For comparison, we also ran nine
independent chains of partition-MCMC. Figure 4 shows
the simulation traces (scores of sampled DAGs) for four
selected data sets; see the Supplement for the rest.

For ASIA-1000 and ZOO there is little visible difference
between the three algorithms. Both data sets seem rela-
tively easy: all nine chains appear to quickly reach the
regions of high posterior probabilities. Here it is worth
noting that on ASIA-1000 layering-MCMC withM = 8
samples independent DAGs from the exact posterior dis-
tribution as the state space only contains one state.

In contrast, for BOSTON and VOTING the simulation
traces reveal the difficulty of partition-MCMC to mix
between different modes of the distribution. Layering-
MCMC with M = 4 performs better, but it takes around
10 000 steps before the chains appear to converge, and
even then some of the chains on VOTING seem to not
reach the high probability regions. IncreasingM to 8 has
a clear positive effect and the chains appear to converge
already after a couple of thousand steps.

4.3 ARC POSTERIOR ESTIMATES

For a less subjective measure of performance we first
computed the exact posterior probabilities for edges be-
tween each pair of the variables given the computed local
scores, with software by Pensar et al. (2020). Then we
computed the empirical probability for the same at each
iteration step for the three compared MCMC-chains and
for each of the 9 independent runs. Finally, we calcu-
lated the maximum absolute error between the exact and
the empirical probabilities and plot the median of the 9
values thus obtained at each step.

The results are presented in the right-most column in
Fig. 4, and clearly show the harshness of the measure.
In ASIA and ZOO the curves seem to be able to capture
differences between the methods not clearly visible di-
rectly from the DAG-scores. Even when the chains seem
to have mixed roughly equally well, the analysis on the
edge probabilities almost invariantly rank the layering-
MCMC with M = 8 to have performed the best and
partition-MCMC the worst. The only exception hap-
pens briefly around 20 000 iterations for BOSTON when
partition-MCMC fares better than layering-MCMC with
M = 4. The overall picture is in line with the theoret-
ical idea of layering-MCMC, despite the more practical
differences between the two software implementations.

5 CONCLUDING REMARKS

We proposed the layering-MCMC method for Bayesian
structure learning in Bayesian networks. Like the re-
cently discovered partition-MCMC (Kuipers and Moffa,
2017), it allows (approximate) sampling from the unbi-
ased posterior distribution of DAGs, thus avoiding the
main drawback of some previous sophisticated MCMC
methods (Friedman and Koller, 2003; Niinimäki et al.,
2016) or bias correction schemes (Ellis and Wong, 2008;
He et al., 2016). Because layering-MCMC simulates a
Markov chain on layerings, each of which covers mul-
tiple ordered partitions, it has the potential to mix faster
and thereby yield more efficient estimators of arc poste-
rior probabilities and related quantities, as compared to
partition-MCMC.

To realize this potential we gave an algorithm to com-
pute the posterior probability of a given layering suf-
fciently fast, so that the computational complexity is
on par with the work required per simulation step in
partition-MCMC, or, likewise, in partial-order-MCMC
(Niinimäki et al., 2016). More technically, the compu-
tational complexity is controlled by the maximum layer
size M . The parameter M can be set to roughly match
the computational cost due to the large number of poten-
tial parent sets, which mainly depends on the number of
nodes n and the maximum indegree (if any).

We verified empirically that already a moderate value of
the parameter M , say M = 8, yields substantial gains
in mixing and convergence speed. We can be explain
this result by our finding that both in benchmark BNs
and in BNs that fit well benchmark data sets, the root-
partitions tend to contain a large number small parts, of-
ten with just one or two nodes per part; this appears to
hold also for larger networks on several dozens of nodes.
The present study of layering-MCMC was, however, re-
stricted to moderate-size networks on at most 22 nodes,
as motivated by two facts: first, this enables comparison
of arc posterior probability estimates to their exact val-
ues; second, typical data sets in this category are suffi-
ciently hard for demonstrating clear differences between
MCMC schemes.

MCMC methods, of course, aim to scale up to high di-
mensions that are beyond the reach of exact algorithms.
Our results suggest that layering-MCMC holds a promise
for reliable inference also in higher dimensions. To ful-
fill this promise, several enhancements—not included
in the present preliminary study—are needed and can
be implemented. First, the proposal distributions can
be made more efficient in several ways. In particular,
it is relatively straightforward to add the so-called new
edge reversal move (Grzegorczyk and Husmeier, 2008)

−2275

−2270

−2265

−2260

−2255
Partition

4-Layering
8-Layering

0

0.2

0.4

0.6

0.8

1

−20.44k

−20.43k

−20.42k

−20.41k

0

0.2

0.4

0.6

0.8

1

−4650

−4640

−4630

−4620

0

0.2

0.4

0.6

0.8

1

1000 2 5 10k 2 5
−700

−680

−660

1000 2 5 10k 2 5 1000 2 5 10k 2 5 1000 2 5 10k 2 5

0

0.2

0.4

0.6

0.8

1

Layering MCMC, M=8 Layering MCMC, M=4 Partition MCMC Median max edge error
Asia-1000

Boston
Voting

Zoo

Figure 4: Comparison of layering-MCMC and partition-MCMC on benchmark data sets. Left: The posterior proba-
bility of the sampled DAG (a logarithm of the unnormalized posterior) per simulation step, in nine independent runs.
Right: The largest absolute error in the arc posterior probability estimate as a function of the length of the simulation
(median over nine independent runs). Note that the x-axis is logarithmic and that, per run, shown are only 200 evenly
spaced points out of the 60 000 steps.

that has proven beneficial in partition-MCMC (Kuipers
and Moffa, 2017); one only has to ensure that a pro-
posed move is likely to yield a change in the induced
layering, to avoid frequently proposing the current state
itself. Second, one can equip layering-MCMC with
generic boosting techniques, such as Metropolis cou-
pling (Geyer, 1991) and adaptive optimization of pro-
posal distributions (Andrieu and Thoms, 2008). Third,
when the number of nodes is in several dozens or in hun-
dreds, one can resort to heuristic pruning of the poten-
tial parents sets of a node and, in particular, pre-select a
relatively small set of candidate parents (Friedman and

Koller, 2003).

Finally, our current implementatation of layering-
MCMC is in Python, a high-level programming lan-
guage, and is unoptimized for speed. We believe that
a significant speedup, by two orders of magnitude, can
be achieved by using a low-level language like C.

Acknowledgements

This work was partially supported by the Academy of
Finland, Grant 316771.

References

Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive
MCMC. Statistics and Computing, 18:343–373.

Dua, D. and Graff, C. (2017). UCI machine learning
repository. http://archive.ics.uci.edu/ml.
University of California, Irvine, School of Information
and Computer Sciences.

Ellis, B. and Wong, W. H. (2008). Learning causal
Bayesian network structures from experimental data.
Journal of the American Statistical Association,
103:778–789.

Friedman, N. and Koller, D. (2003). Being Bayesian
about network structure. A Bayesian approach to
structure discovery in Bayesian networks. Machine
Learning, 50(1-2):95–125.

Geiger, D. and Heckerman, D. (2002). Parameter priors
for directed acyclic graphical models and the charac-
terization of several probability distributions. The An-
nals of Statistics, 30(5):1412–1440.

Geyer, C. J. (1991). Markov chain Monte Carlo maxi-
mum likelihood. In Proceedings of the 23rd Sympo-
sium on the Interface, pages 156–163. Interface Foun-
dation of North America.

Grzegorczyk, M. and Husmeier, D. (2008). Improving
the structure MCMC sampler for Bayesian networks
by introducing a new edge reversal move. Machine
Learning, 71:265–305.

He, R., Tian, J., and Wu, H. (2016). Structure learning
in Bayesian networks of a moderate size by efficient
sampling. Journal of Machine Learning Research,
17:101:1–101:54.

Kennes, R. (1992). Computational aspects of the Möbius
transformation of graphs. IEEE Transactions on Sys-
tems, Man and Cybernetics, 22(2):201–223.

Koller, D. and Friedman, N. (2009). Probabilistic
Graphical Models: Principles and Techniques. MIT
Press.

Kuipers, J. and Moffa, G. (2017). Partition MCMC for
inference on acyclic digraphs. Journal of the American
Statistical Association, 112:282–299.

Kuipers, J., Moffa, G., and Heckerman, D. (2014).
Addendum on the scoring of Gaussian directed
acyclic graphical models. The Annals of Statistics,
42(4):1689–1691.

Lauritzen, S. and Spiegelhalter, D. (1988). Local com-
putation with probabilities on graphical structures and
their application to expert systems (with discussion).
Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 50(2):157–224.

Madigan, D. and York, J. (1995). Bayesian graphical
models for discrete data. International Statistical Re-
view, 63:215–232.

Malone, B., Kangas, K., Järvisalo, M., Koivisto, M., and
Myllymäki, P. (2018). Empirical hardness of find-
ing optimal Bayesian network structures: algorithm
selection and runtime prediction. Machine Learning,
107(1):247–283.

Niinimäki, T., Parviainen, P., and Koivisto, M. (2016).
Structure discovery in Bayesian networks by sampling
partial orders. Journal of Machine Learning Research,
17:57:1–57:47.

Pensar, J., Talvitie, T., Hyttinen, A., and Koivisto, M.
(2020). A Bayesian approach for estimating causal ef-
fects from observational data. In Proceedings of the
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, pages 5395–5402. AAAI Press.

Talvitie, T., Vuoksenmaa, A., and Koivisto, M. (2019).
Exact sampling of directed acyclic graphs from mod-
ular distributions. In Proceedings of the Thirty-Fifth
Conference on Uncertainty in Artificial Intelligence,
UAI 2019, pages 345–354. AUAI Press.

Tian, J. and He, R. (2009). Computing posterior proba-
bilities of structural features in Bayesian networks. In
Proceedings of the Twenty-Fifth Conference on Uncer-
tainty in Artificial Intelligence, UAI 2009, pages 538–
547. AUAI Press.

