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Abstract

We consider the recently proposed reinforce-
ment learning (RL) framework of Contextual
Markov Decision Processes (CMDP), where
the agent interacts with a (potentially adver-
sarial) sequence of episodic tabular MDPs. In
addition, a context vector determining the MDP
parameters is available to the agent at the start
of each episode, thereby allowing it to learn a
context-dependent near-optimal policy. In this
paper, we propose a no-regret online RL algo-
rithm in the setting where the MDP parameters
are obtained from the context using generalized
linear mappings (GLMs). We propose and an-
alyze optimistic and randomized exploration
methods which make (time and space) efficient
online updates. The GLM based model sub-
sumes previous work in this area and also im-
proves previous known bounds in the special
case where the contextual mapping is linear. In
addition, we demonstrate a generic template to
derive confidence sets using an online learning
oracle and give a lower bound for the setting.

1 INTRODUCTION

Recent advances in reinforcement learning (RL) meth-
ods have led to increased focus on finding practical RL
applications. RL algorithms provide a set of tools for tack-
ling sequential decision making problems with potential
applications ranging from web advertising and portfo-
lio optimization, to healthcare applications like adaptive
drug treatment. However, despite the empirical success
of RL in simulated domains such as boardgames and
video games, it has seen limited use in real world ap-
plications because of the inherent trial-and-error nature
of the paradigm. In addition to these concerns, for the
applications listed above, we have to essentially design
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adaptive methods for a population of users instead of a
single system. For instance, optimizing adaptive drug
treatment plans for an influx of patients has two key re-
quirements: (1) ensure quickly learning good policies
for each user and (2) share the observed outcome data
efficiently across patients. Intuitively, we expect that fre-
quently seen patient types (with some notion of similarity)
can be adequately dealt with by using adaptive learning
methods whereas difficult and rare cases could be care-
fully referred to experts to safely generate more data.

An efficient and plausible way to incorporate this hetero-
geneity is to include any distinguishing exogenous factors
in form of a contextual information vector in the learn-
ing process. This information can include demographic,
genomic features or individual measurements taken from
lab tests. We model this setting using the framework of
Contextual Markov Decision Processes (CMDPs) (Modi
et al.l 2018) where the learner has access to some con-
textual features at the start of every patient interaction.
Similar settings have been studied with slight variations
by |Abbasi-Yadkori and Neu|(2014); Hallak et al.[(2015))
and Dann et al.|(2019). While the framework proposed
in these works is innovative, there are a number of defi-
ciencies in the available set of results. First, theoretical
guarantees (PAC-style mistake bounds or regret bounds)
sometimes hold only under a linearity assumption on the
mapping between contexts and MDPs. This assumption
is quite restrictive as it enforces additional constraints on
the context features which are harder to satisfy in practice.
Second, if non-linear mappings are introduced (Abbasi;
Yadkor1 and Neul 2014), the next state distributions are
left un-normalized and therefore do not correctly model
the context dependence of MDP dynamics.

We address these deficiencies by considering generalized
linear models (GLMs) for mapping context features to
MDP parameters (succinctly referred to as GLM-CMDP).
We build upon the existing work on generalized linear
bandits (Zhang et al.| 2016) and propose UCRL2 (opti-
mistic) and RLSVI (randomized) like algorithms with



regret analyses. Overall, our contributions are as follows:

e We provide optimistic and randomized regret min-
imizing algorithms for GLM-CMDPs. Our model
subsumes/corrects previous CMDP frameworks and
our analysis improves on the existing regret bounds
by a factor of O(+/S) in the linear case.

e The proposed algorithms use efficient online updates,
both in terms of memory and time complexity, im-
proving over typical OFU approaches whose running
time scales linearly with number of rounds.

e We prove a regret lower bound for GLM-CMDP
when a logistic or quadratic link function is used.

e We provide a generic way to convert any online
no-regret algorithm for estimating GLM parameters
to confidence sets. This allows an improvement in
the regret incurred by our methods when the GLM
parameters have additional structure (e.g., sparsity).

2 SETTING AND NOTATION

We consider episodic Markov decision processes, denoted
by tuple (S, A, P, R, H) where S and A are finite state
and action spaces, P(-|s,a) the transition distribution,
R(s, a) the reward function with mean (s, a) and H is
the horizon. Without loss of generality, we will consider
a fixed start state for each episode. In the contextual MDP
setting (Hallak et al., 2015; Modi et al.| 2018), the agent
interacts with a sequence of MDPs M, (indexed by k)
whose dynamics and reward functions (denoted by P
and Ry) are determined by an observed context vector
xy, € X. For notation, we use (Sg.x, Gk hy Tk, hy Sk,h+1) tO
denote the transition at step / in episode k. We denote the
size of MDP parameters by the usual notation: |S| = S
and |A| = A.

The value of a policy in an episode k is defined as the
expected total return for H steps in MDP Mj:

H
vp = EM,M[ E Tk,h]
h=1

The optimal policy for episode k is denoted by 7}, =
argmax, vy and its value as v;. The agent’s goal in
the CMDP setting is to learn a context dependent policy
m: X xS — A such that cumulative expected return
over K episodes is maximized. We quantify the agent’s
performance by the total regret incurred over a (potentially
adversarial) sequence of K contexts:

K

R(K) =Y v —vp* (1)

k=1

Note that the regret here is defined with respect to the
sequence of context dependent optimal policies.

Additional notation. For two matrices X and Y, the
inner product is defined as (X,Y) = Tr(X"Y). For
a vector z € R? and a matrix A € R¥*? we de-
fine ||x||} = x" Az. For matrices W € R™*" and
X € R™™, we define | W% == > | [|[W |3 where
W@ is the i™ row of the matrix. Further, we reserve the
notation |W|| r to denote the Frobenius norm of a matrix
W. Any norm which appears without a subscript will
denote the ¢5 norm for a vector and the Frobenius norm
for a matrix.

2.1 GENERALIZED LINEAR MODEL FOR
CMDPs

Using a linear mapping of the predictors is a simple and
ubiquitous approach for modeling contextual/dynamical
dependence in sequential decision making problems. Lin-
ear models are also well known for being interpretable and
explainable, properties which are very valuable in our mo-
tivating settings. Similarly, we also utilize this structural
simplicity of linearity and model the categorical output
space (p(+|s, a)) in a contextual MDP using generalized
linear mappings. Specifically, for each pair s,a € S x A,
there exists a weight matrix W,, € W C R%*¢ where
W is a convex set. For any context z;, € R?, the next
state distribution for the pair is specified by a GLM:

Pi(-|s,a) = VO(Wsak) (2)

where ®(-) : RS — R is the link function of the GL
We will assume that this link function is convex which
is always the case for a canonical exponential family
(Lauritzen, (1996). For rewards, we assume that each
mean reward is given by a linear functionﬂ of the context:
re(s,a) == 0], ) where § € © C RY. In addition,
we will make the following assumptions about the link
function.

Assumption 2.1. The function ®(-) is a-strongly convex
and B-strongly smooth, that is:

D(v) > O(u) + (VO(u),v —u) + §llu—v[3  (3)
D(v) < B(u) + (VO(u),v —u) + Sllu—v[3 @)

We will see that this assumption is critical for construct-
ing the confidence sets used in our algorithm. We make
another assumption about the size of the weight matrices
W, and contexts zy:

"We abuse the term GLM here as we don’t necessarily con-
sider a complementary exponential family model in eq. (Z)
2 Similar results can be derived for GLM reward functions.



Assumption 2.2. For all episodes k, we have ||x|ls < R
and for all state-action pairs (s, a), |Wi |2 < B, and
10sallz < By. So, we have |Wzillo < BpR for all
W e Ww.

The following two contextual MDP models are special
cases of our setting:

Example 2.3 (Multinomial logit model, |Agarwal| (2013))).
Each next state is sampled from a categorical distribution

with probabilitie'

exp( W) x)

Px(si‘sv a) = i
Zle exp(Ws(é)x)

The link function for this case can be given as ®(y) =

10g(2§z1 exp(y;)) which can be shown to be strongly

convex with o = >p (BR)S? and smooth with = 1.

Example 2.4 (Linear combination of MDPs, Modi et al.
(2018)). Each MDP is obtained by a linear combination
of d base MDPs {(S, A, P', R', H)}¢_,. Here, ), €
Ad_l and Py(-|s,a) = Zle 21 P'(|s,a). The link
function for this can be shown to be:

e (y) = 5lyli3

which is strongly convex and smooth with parameters
a = B = 1. Moreover, Wy, here is the S X d matrix
containing each next state distribution in a column. We
have, B, < Vd, |Wa|lr < Vd and |Way|2 < 1.

3 ONLINE ESTIMATES AND
CONFIDENCE SET CONSTRUCTION

In order to obtain a no-regret algorithm for our setting,
we will follow the popular optimism in the face of uncer-
tainty (OFU) approach which relies on the construction of
confidence sets for MDP parameters at the beginning of
each episode. We focus on deriving these confidence sets
for the next state distributions for all state action pairs.
We assume that the link function ® and values o, B and
R are known a priori. The confidence sets are constructed
and used in the following manner in the OFU template for
MDPs: at the beginning of each episode k = 1,2, ..., K:

e Foreach (s, a), compute an estimate of transition dis-
tribution Py (+|s, a) and mean reward 7 (s, a) along
with confidence sets P and R such that Py (+|s,a) €
P and r(s,a) € R with high probability.

3Without loss of generality, we can set the last row Wéas ) of
the weight matrix to be 0 to avoid an overparameterized system.
* Ag4_1 denotes the simplex {z € R : ||z||; = 1, = > 0}.

e Compute an optimistic policy 7 using the confi-
dence sets and unroll a trajectory in M} with 7.
Using observed transitions, update the estimates and
confidence sets.

Therefore, in the GLM-CMDP setup, estimating transi-
tion distributions and reward functions is the same as
estimating the underlying parameters Wy, and 6, for
each pair (s,a). Likewise, any confidence set Wy, for
Wsa (O, for f,,) can be translated into a confidence set
of transition distributions.

In our final algorithm for GLM-CMDP, we will use the
method from this section for estimating the next state dis-
tribution for each state-action pair. The reward parameter
05, and confidence set O, is estimated using the linear
bandit estimator (Lattimore and Szepesvri (2020), Chap.
20). Here, we solely focus on the following online estima-
tion problem without any reference to the CMDP setup.
Specifically, given a link function ®, the learner observes
a sequence of contexts z; € X (¢t =1,2,...) and a sam-
ple y; drawn from the distribution P, = V®(W*x;) over
a finite domain of size S. Here, we use W* to denote the
true parameter for the given GLM model. The learner’s
task is to compute an estimate W; for W* and a confi-
dence set W; after any such ¢ samples. We frame this as
an online optimization problem with the following loss
sequence (based on the negative log-likelihood):

L(Wiz,y) = ®(Way) — y Way (5)

where y; is the one-hot representation of the observed
sample in round ¢. This loss function preserves the strong
convexity of ® with respect to Wz, and is a proper loss
function (Agarwall, 2013):

argmr/ninE [lt(W; T4, yt)|xt] =W (6)

Since our aim is computational and memory efficiency,
we carefully follow the Online Newton Step (Hazan et al.|
2007) based method proposed for 0/1 rewards with logis-
tic link function in/Zhang et al.|(2016). While deriving the
confidence set in this extension to GLMs, we use proper-
ties of categorical vectors in various places in the analysis
which eventually saves a factor of S. The online update
scheme is shown in Algorithm[I] Interestingly, note that
for tabular MDPs, where d = o = 1 and ®(y) = 1||y/|3,
with n = 1, we would recover the empirical average dis-
tribution as the online estimate. Along with the estimate
Wyt1, we can also construct a high probability confidence
set as follows:

Theorem 3.1 (Confidence set for W*). In Algorithm
for all timesteps t = 1,2, ..., with probability at least
1 — 6, we have:

HWI‘/-‘rl - W*||Zt,+1 < Vv Vt+1 (8)



Algorithm 1 Online parameter estimation for GLMs
1: Input: ¢, o, n
2: Set W <+ 0, Z1 + My
3: fort=1,2,...do

4:  Observe x; and sample y; ~ P;()
5.  Compute new estimate Wy ;:
W—W¢||2
arg min %—i—n(Vlt(tht)x:, W—Wy)
Wew
@)
where Z;,1 = Z; + %xﬂ:j
where

Yt+1 = AB? + 8nBpR
+ 20[(4 + 3By R)m + £ log 2] (9)

with T4 =
maxywew W F.

log(2[2log St|t2/6) and B =

Any upper bound for |[W*||2 can be substituted for B the
confidence width in eq (@). The term 7; depends on the
size of the true weight matrix, strong convexity parameter
é and the log determinant of the covariance matrix. We
will later show that the last term grows at a O(dlogt)
rate. Therefore, overall 7, scales as O(S + < log” t). The
complete proof can be found in Appendix [A]

Algorithm|l|only stores the empirical covariance matrix
and solves the optimization problem (7) for the current
context. Since VWV is convex, this is a tractable problem
and can be solved via any off-the-shelf optimizer up to
desired accuracy. The total computation time for each
context and all (s,a) pairs is O(poly(S, A, d)) with no
dependence on t. Furthermore, we only store S A-many
matrices of size S x d and covariance matrices of sizes
d x d. Thus, both time and memory complexity of the
method are bounded by O(poly(S, A, H, d)) per episode.

4 NO-REGRET ALGORITHMS FOR
GLM-CMDP

4.1 OPTIMISTIC REINFORCEMENT
LEARNING FOR GLM CMDP

In this section, we describe the OFU based online learn-
ing algorithm which leverages the confidence sets as de-
scribed in the previous section. Not surprisingly, our algo-
rithm is similar to the algorithm of|Dann et al.| (2019) and
Abbasi-Yadkori and Neu|(2014) and follows the standard
format for no-regret bounds in MDPs. In all discussions
about CMDPs, we will again use x; € X to denote the
context for episode k and use Algorithm [I]from the pre-
vious section to estimate the corresponding MDP M.

Specifically, for each state-action pair (s, a), we use all
observed transitions to estimate W, and 6,,. We com-
pute and store the quantities used in Algorithm [I]for each
(s,a): we use Wk,sa to denote the parameter estimate for
W, at the beginning of the k™ episode. Similarly, we use
the notation 7y s, and Zj, s, for the other terms. Using
the estimate /Wksa and the confidence set, we compute
the confidence interval for Py(+|s, a):

@) = |Pu(ls,a) = Bi(-ls, )l
< BVSIWaa = Weysallzio ol 1,
< BY'S\Arsallzrll g1

where in the definition of vj s, We use § = dy,. It is again
easy to see that for tabular MDPs with d = 1, we re-
cover a similar confidence interval as used in Jaksch et al.
(2010). For rewards, using the results from linear con-
textual bandit literature (Lattimore and Szepesvri (2020),
Theorem 20.5), we use the following confidence interval:

) =i, a) — (s, a)

(\/WJF il@%) lewlzz:, A

(10)

::gk',sa

In GLM-ORL, we use these confidence intervals to com-
pute an optimistic policy (Lines QHI5). The computed
value function is optimistic as we add the total uncertainty
as a bonus (Line([TT) during each Bellman backup. For any
step h, we clip the optimistic estimate between [0, H — h]
during Bellman backups (Line . After unrolling an
episode using 7, we update the parameter estimates and
confidence sets for every observed (s, a) pair.

For any sequence of K contexts, we can guarantee the
following regret bound:

Theorem 4.1 (Regret of GLM-ORL). Forany d € (0,1),
if Algorithm[2]is run with the estimation method|I] then
for all K € N and with probability at least 1 — 9, the
regret R(K) is:

(5((\/Emaxi,/aawsa||p

If [W || is bounded by B, we get |[W, |3 < SBZ,
whereas, for the linear case (Ex. 2.4), [|[Wa|% < Vd.
Substituting the bounds on || W, ||, we get:

J)BSH?\/Elog KHd)
(6%

Corollary 4.2 (Multinomial logit model). For exam-

ple we have |W||r < BVS, a = W and
B = 1. Therefore, the regret bound of Algorithm [2] is

O(dS® H*VAK).

>We use the notation a A b to denote min(a, b) and a \V b for
max(a, b).



Corollary 4.3 (Regret bound for linear combination case).
For example 2.4, with ||W || < /d, the regret bound of
Algorithm @ is O(dSH?*VAK).

Algorithm 2 GLM-ORL (GLM Optimistic Reinforcement
Learning)

1: Input:S, A, H, ®,d, W, )\, §

2 0 = 55tz Veyi(s) =0Vs € S,k €N

3: fork < 1,2,3,...do

4:  Observe current context xj

5: forse€S,ac Ado __

6 Pk(~|s7a) — V(I)(Wk’saal‘k)
7: Tr(s,a)
8:
9

<ék,sa; J)k>
Compute conf. intervals using eqns. (I0), (IT)
: forh<+ H H-1 ,1,and s € S do
10: fora € Ado
11: - ”Vk h+1||005k sa+§k sa
12: kah(s, a) =P, T Vi1 +7u(s,a) + ¢
13: Qk,h(s,a) =0V (Qk,h(s,a)/\v}{“a")
14: T n(s) = argmax, Q. n(s, a)
15: Vin(s) = Qr.n(s mrn(s))

16:  Unroll a trajectory in M}, using 7y
17:  Update Wy, and 6, for observed samples.

In Corollary 4.3} the bound is worse by a factor of v H
when compared to the O(H S+/AK H) bound of UCRL2
for tabular MDPs (d = 1). This factor is incurred while
bounding the sum of confidence widths in eq. 28) (in

UCRL2 itis O(VSAKH)).

4.1.1 Proof of Theorem

We provide the key lemmas used in the analysis with the
complete proof in Appendix Here, we assume that
transition probability estimates are valid with probability
at least 1 — 6, and reward estimates with 1 — 6,. for all
(s, a) for all episodes. We first begin by showing that the
computed policy’s value is optimistic.

Lemma 4.4 (Optimism). If all the confidence intervals
as computed in Algorithm|2|are valid for all episodes k,
then for all k and h € [H) and s,a € S x A, we have:

Qkﬁ(sv a) 2 Qz,h(sﬂ a)

Proof. We show this via an inductive argument. For every
episode, the lemma is true trivially for H 4+ 1. Assume
that it is true for h + 1. For h, we have:

Qk,h(sa CL) - Qz’h(sv a‘)
= (ﬁk(s,a)TVk,hH + 7x(s,a) + @i n(s,a)) A
- Pk'(saa)TVI:,h-i-l

max
Vh

—ri(s,a)

We use the fact that when Qy, 1, (s, a) = Vpnax, the lemma
is trivially satisfied. When Q1 (s, a) < V;"**, we have:

Qk,h(sv CL) - Qz,h(sa Cl)
=7i(s,a) — (s, a) + ﬁk(sa Q)T(Vk,hﬂ - Vk*,h+1)
+kn(s,a) = (Pe(s,a) — Pe(s,0) Vi

—|Fk(s,a) — (s, a)| + @rn(s, a)
—||Pe(s,a) = Pe(s,a)[|1]|Vieps1llos > 0

The last step uses the guarantee on confidence intervals
and the inductive assumption for h + 1. Therefore, the
estimated @)-values are optimistic by induction. O

Using this optimism guarantee, we can bound the instan-
taneous regret Ay, in episode k as: V', (s) — V"j(s) <
Vi (s) — V'3 (s). With V as the upper bound, we can
bound the total regret with the following Lemma:

Lemma 4.5. In the event that the confidence sets are valid
for all episodes, then with probability at least 1 — SH 61,
the total regret R(K) can be bounded by

(2081 (Sk,hs Q,n) A VET) (12)

The proof is given in the appendix. The second term in
ineq. (I2) can now be bounded as follows:

M=
M=

(20(Skns anp) A Vi)

k=1h=1
K H (
r) max
ZZ ksk,h,vak,h V * )
k=1h=1
K H
3SR )
k=1h=1

We ignore the reward estimation error in eq. (I3) as it
leads to lower order terms. The second expression can be
again bounded as follows:

H
maxg(p)
h+1 k,sk.h 0k,

WE

Vm'lx)
k=1 h:l
<23 v (108 Smlonmaen el 7
k,h o

(14)



Using Lemma[B.4] we see that

87) log det(Zy sq)

P)/k(sv (l) = f@(kaép) det(Z]_ )
na 8n det(Zk 11 5a)
< —~ T 7P
< 95 * Jo(IH.G) + < Tlog det(Zs o)
8nd KHR?
< 1= >0z
_25+f<D(KH5) a10g<1+ d >

We use fo(k, d,) to refer to the Z;, independent terms in
eq. (O). Setting Vi to the last expression guarantees that
255 =4 > 1. We can now bound the term in eq. (T4) as:

max 2S’_YK na

28y KH no
§26V1max\/’w< Z<1/\)2||xk”2zk1 })

o
N k,h

s)

Ineq. (T3)) follows by using Cauchy-Schwarz inequality.
Finally, by using Lemma [B.4]in Appendix [B.T} we can
bound the term as

Z 2Vh axﬁ’gp‘zk JhQk,h Vmax)

k=1 h=1
[255 KH
= 4gymax, [ 22K \/ 2HSAd log 1 n

Now, after setting the failure probabilities 6, = J, =
d, =0/(2SA + SH) and taking a union bound over all
events, we get the total failure probability as §. Therefore,
with probability at least 1 — ¢, we can bound the regret of
GLM-ORL as

R(K) = O Vdmax, . [|[W} | n d BSH2VAR
Va @
where max; | W,

|| 7 is replaced by the problem depen-
dent upper bound assumed to be known a priori

2
)

4.1.2 Mistake bound for GLM—-ORL

The regret analysis shows that the total value loss suffered
by the agent is sublinear in K, and therefore, goes to
0 on average. However, this can still lead to infinitely
many episodes where the sub-optimality gap is larger
than a desired threshold e, given that it occurs relatively
infrequently. It is still desirable, for practical purposes, to

%An improved dependence on 3", ||[WZ || can be ob-
tained instead of S max,q ||WJ, || in the regret bound.

analyze how frequently can the agent incur such mistakes.
Here, a mistake is defined as an episode in which the
value of the learner’s policy 7y is not e-optimal, i.e., V' —
V' > €. In our setting, we can show the following result.

Theorem 4.6 (Bound on the number of mistakes). For
any number of episodes K, 6 € (0,1) and € € (0, H),
with probability at least 1 — §, the number of episodes
where GLM-ORL’s policy Ty, is not e-optimal is bounded
by

o (dS?AH5 log(KH) (dlog2OEKH) N 5))

€
ignoring O(poly(loglog K H)) terms.

We defer the proof to Appendix [C] Note that this term de-
pends poly-logarithmically on K and therefore increases
with time. The algorithm doesn’t need to know the value
of € and result holds for all e. This differs from the stan-
dard mistake bound style PAC guarantees where a finite
upper bound is given. Dann et al.| (2019) argued that this
is due to the non-shrinking nature of the constructed con-
fidence sets. As such, showing such a result for CMDPs
requires a non-trivial construction of confidence sets and
falls beyond the scope of this paper.

4.2 RANDOMIZED EXPLORATION FOR
GLM-CMDP

Empirical investigations in bandit and MDP literature has
shown that optimism based exploration methods typically
over-explore, often resulting in sub-optimal empirical per-
formance. In contrast, Thompson sampling based meth-
ods which use randomization during exploration have
been shown to have an empirical advantage with slightly
worse regret guarantees. Recently, Russo| (2019) showed
that even with such randomized exploration methods, one
can achieve a worst-case regret bound instead of the typi-
cal Bayesian regret guarantees. In this section, we show
that the same is true for GLM-CMDP where a random-
ized reward bonus can be used for exploration. We build
upon their work to propose an RLSVI style method (Algo-
rithm [3) and analyze its expected regret. The main differ-
ence between Algorithm [2]and Algorithm [3]is that instead
of the fixed bonus ¢ (Line@ in the former, GLM—RLSVI
samples a random reward bonus in Line[12]for each (s, a)
from the distribution N (0, HS¢?). The variance term
@ is set to a sufficiently high value, such that, the result-
ing policy is optimistic with constant probability. We
use a slightly modified version of the confidence sets as
follows:

®)

gkpsa =2A (ﬁ\@\/'yk,sa”xknzlziu>
()

& e = BB A (resallzl )



Algorithm 3 GLM-RLSVI
1: Input:S, A, H, ®,d, W, A

2: vk’H+1(S) =0VseS,keN

3: fork <+ 1,2,3,...do

4:  Observe current context xy,

5: forseS,ae Ado__

6: Pk('|8,a) — V@(Wk,sa:vk)

7: 1(8,a) < Ok sa, 1)

8: Compute conf. intervals using eqns. (I0), (TT)

9: forh+ H H—-1,---,1,and s € Sdo

10: fora € Ado

o= (H =N+ &

12: Draw sample by, 1,(s,a) ~ N(0, SHyp)

13: Qrnl(s,a) = P,Isavkﬁﬂ + 7i(s,a) +
bk,h(s, a) .

14: Tk,n(s) = argmax, Q. 1, (s, a)

15: Vk»,h(s) = th(s, ﬁk,h(s))

16:  Unroll a trajectory in M}, using 7.
17:  Update Wy, and 6, for observed samples.

The algorithm, thus, generates exploration policies by
using perturbed rewards for planning. Similarly to |Russo
(2019), we can show the following bound for the expected
regret incurred by GLM-RLSVI:

Theorem 4.7. For any contextual MDP with given link
function ®, in Algorithm|[3) if the MDP parameters for
M, are estimated using Algorithm[I} with reward bonuses
be.n(s,a) ~ N(0,SHepn(s,a)) where oy, 1,(s, a) is de-
fined in Line. the algorithm satisfies:

K
R(K)=E | Vi—V™
k=1

_ 6 <<\/L§maxs,a HWsaHF + d) 5\/m)
«Q

Ja

The proof of the regret bound is given in Appendix [B.2]
Our regret bound is again worse by a factor of v'H when
compared to the O(H?*S3/2\/AK) bound from Russo
(2019) for the tabular case. Therefore, such randomized
bonus based exploration algorithms can also be used in
the CMDP framework with similar regret guarantees as
the tabular case.

S LOWER BOUND FOR GLM CMDP

In this section, we show a regret lower bound by con-
structing a family of hard instances for the GLM-CMDP
problem. We build upon the construction of |Osband and
Van Roy|(2016) and Jaksch et al.[(2010) for the analysisﬂ

"The proof is deferred to the appendix due to space con-
straints.

Theorem 5.1. For any algorithm A, there exists CMDP’s
with S states, A actions, horizon H and K > dS A for
logit and linear combination case, such that the expected
regret of A (for any sequence of initial states € S¥) after
K episodes is:

E[R(K; A, My.k, s1.x)] = QUHVASAK)

The lower bound has the usual dependence on MDP pa-
rameters in the tabular MDP case, with an additional
O(+/d) dependence on the context dimension. Thus, our
upper bounds have a gap of O(H+/dS) with the lower
bound even in the arguably simpler case of Example [2.4]

6 IMPROVED CONFIDENCE SETS
FOR STRUCTURED SPACES

In Section 3] we derived confidence sets for W* for the
case when it lies in a bounded set. However, in many
cases, we have additional prior knowledge about the prob-
lem in terms of possible constraints over the set VV. For
example, consider a healthcare scenario where the con-
text vector contains the genomic encoding of the patient.
For treating any ailment, it is fair to assume that the pa-
tient’s response to the treatment and the progression in
general depends on a few genes rather than the entire
genome which suggests a sparse dependence of the tran-
sition model on the context vector x. In terms of the
parameter W*, this translates as complete columns of the
matrix being zeroed out for the irrelevant indices. Thus,
it is desirable to construct confidence sets which take this
specific structure into account and give more problem
dependent bounds.

In this section, we show that it is possible to convert a
generic regret guarantee of an online learner to a confi-
dence set. If the online learner adapts to the structure
of W, we would get the aforementioned improvement.
The conversion proof presented here is reminiscent of the
techniques used in |Abbasi-Yadkori et al.| (2012) and Jun
et al.| (2017) with close resemblance to the latter. For this
section, we use X to denote the ¢ x d shaped matrix with
each row as x; and C} as t x S shaped matrix with each
row i being (W1I7)T Also, set W, = Z;_llX;C't. Us-
ing a similar notation as before, we can give the following
guarantee.

Theorem 6.1 (Multinomial GLM Online-to-confidence
set conversion). Assume that loss function l; defined in
eq. ) is a-strongly convex with respect to Wx. If an
online learning oracle takes in the sequence {xz;,y; }!_;,
and produces outputs {W;}!_, for an input sequence

8We again solely consider the estimation problem for a single
(s, a) pair and study a t-indexed online estimation problem.



{s, yi}§=1, such that:

t
> LW =1L, (W) < By VW e W,t>0,

i=1

then with W as defined above, with probability at least
1—46, forallt > 1, we have

W =WillZ,., <n

where v; = 7,(B;) + AB2S — (||Ci]|% — (W, X, Cy)),

(B =1+ 4B+ S log (§y/4+ 58 + 15 ).

The complete proof can be found in Appendix [E} Note
that, all quantities required in the expression y; can be in-
crementally computed. The required quantities are Z; and
Z; ! along with X,” C; which are incrementally updated
with O(poly(.S, d)) computation. Also, we note that this
confidence set is meaningful when B, is poly-logarithmic
in ¢ which is possible for strongly convex losses as shown
in Jun et al.|(2017)). The dependence on S and d is the
same as the previous construction, but the dependence on
the strong convexity parameter is worse.

Column sparsity of W* Similar to sparse stochastic
linear bandit, as discussed in|Abbasi- Yadkori et al.|(2012),
one can use an online learning method with the group
norm regularizer (||IW||2,1). Therefore, if an efficient on-
line no-regret algorithm has an improved dependence on
the sparsity coefficient p, we can get an O(y/plog d) size
confidence set. This will improve the final regret bound
to (’N)(\/ 'pdT) as observed in the linear bandit case. To
our knowledge, even in the sparse adversarial linear re-
gression setting, obtaining an efficient and sparsity aware
regret bound is an open problem.

7 DISCUSSION

Here, we discuss the obtained regret guarantees for our
methods along with the related work. Further, we outline
the algorithmic/analysis components which are different
from the tabular MDP case and lead to interesting open
questions for future work.

7.1 RELATED WORK

Contextual MDP To our knowledge, Hallak et al.
(2015) first used the term contextual MDPs and studied
the case when the context space is finite and the context
is not observed during interaction. They propose CECE,
a clustering based learning method and analyze its regret.
Modi et al.|(2018)) generalized the CMDP framework and

proved the PAC exploration bounds under smoothness
and linearity assumptions over the contextual mapping.
Their PAC bound is incomparable to our regret bound as
a no-regret algorithm can make arbitrarily many mistakes
Ay > € as long as it does so sufficiently less frequently.

Our work can be best compared with |Abbasi-Yadkori and
Neu| (2014) and Dann et al.| (2019) who propose regret
minimizing methods for CMDPs. |Abbasi-Yadkori and
Neu/(2014) consider an online learning scenario where
the values py(s’|s, a) are parameterized by a GLM. The
authors give a no-regret algorithm which uses confidence
sets based on |Abbasi-Yadkori et al.| (2012). However,
their next state distributions are not normalized which
leads to invalid next state distributions. Due to these mod-
elling errors, their results cannot be directly compared
with our analysis. Even if we ignore their modelling er-
ror, in the linear combination case, we get an O(S+v/A)
improvement. Similarly, Dann et al.|(2019) proposed an
OFU based method ORLC-ST for the linear combina-
tion case. Their regret bound is O(v/S) worse than our
bound for GLM-ORL. In addition, the work also showed
that obtaining a finite mistake bound guarantees for such
CMDPs requires a non-trivial and novel confidence set
construction. In this paper, we show that a polylog(K)
mistake bound can still be obtained. For a quick compari-
son, Table [I] shows the results from the two papers.

(Generalized) linear bandit Our reward model is
based on the (stochastic) linear bandit problem first stud-
ied by |Abe et al.|(2003). Our work borrows key results
from |Abbasi-Yadkori1 et al.| (2011) for both the reward
estimator and during analysis for the GLM case. Extend-
ing the linear bandit problem, [Filippi et al.| (2010) first
proposed the generalized linear contextual bandit setting
and showed a O(d\/T ) regret bound. We, however, lever-
age the approach from|Zhang et al.|(2016) and Jun et al.
(2017) who also studied the logistic bandit and GLM
Bernoulli bandit case. We extend their proposed algo-
rithm and analysis to a generic categorical GLM setting.
Consequently, our bounds also incur a dependence on
the strong convexity parameter i of the GLM which was
recently shown to be unavoidable by [Foster et al.| (2018)
for proper learning in the closely related online logistic
regression problem.

Regret analysis in tabular MDPs |Auer and Ortner
(2007) first proposed a no-regret online learning algo-
rithm for average reward infinite horizon MDPs, and the
problem has been extensively studied afterwards. More
recently, there has been an increased focus on fixed hori-
zon problems where the gap between the upper and lower
bounds has been effectively closed. |/Azar et al.|(2017)) and
Dann et al.| (2019), both provide optimal regret guarantees



Algorithm RUinear () RLogit(K) P,("|s,a) normalized
Algorithm 1 (Abbasi-Yadkori and Neu, 2014) Cf’)v(dH‘?’SQA\/Ii() X X
ORLC-ST (Dann et al.,[2019) O(dH283/%\/AK) X X
GLM-ORL (this work) O(dH2SVAK) | O(dH%S3\AK) v

Table 1: Comparison of regret guarantees for CMDPs. Last column denotes whether the transition dynamics P, (+|s, a)
are normalized in the model or not.

(O(H+/SAK)) for tabular MDPs. Another series of pa-
pers (Osband et al., 2013}, |2016; Russo et al., 2018) study
Thompson sampling based randomized exploration meth-
ods and prove Bayesian regret bounds. [Russo| (2019) re-
cently proved a worst case regret bound for RLSVI-style
methods (Osband et al.,|2016). The algorithm template
and proof structure of GLM-RLSVTI is borrowed from
their work.

Feature-based linear MDP |Yang and Wang| (2019a)
consider an RL setting where the MDP transition dy-
namics are low-rank. Specifically, given state-action fea-
tures ¢(s, a), they assume a setting where p(s’|s,a) =
Zle ¢i(s,a)v;(s") where v; are d base distributions
over the state space. This structural assumption guar-
antees that the Q™ (s, a) value functions are linear in the
state-action features for every policy. |Yang and Wang
(2019b); Jin et al.| (2019) have recently proposed regret
minimizing algorithms for the linear MDP setting. Al-
though, their algorithmic structure is similar to ours (lin-
ear bandit based bonuses), the linear MDP setting is only
superficially related to CMDP. In our case, the value func-
tions are not linear in the contextual features for every
policy and/or context. Thus, the two MDP frameworks
and their regret analyses are incomparable.

7.2 CLOSING THE REGRET GAP

From the lower bound in Section [3] it is clear that the
regret bound of GLM-ORL is sub-optimal by a factor
of O(H+/dS). As mentioned previously, for episodic
MDPs, |Azar et al.|(2017) and |Dann et al.[(2019) propose
minimax-optimal algorithms. The key technique in these
analyzes is to directly build a confidence interval for the
value functions and use a refined analysis using empirical
Bernstein bonuses based on state-action visit counts saves
a factor of O(v/HS). In our case, we use a Hoeffding
style bonus for learning the next state distributions to de-
rive confidence sets for the value function. Further, the
value functions in GLM-CMDP do not have a nice struc-
ture as a function of the context variable and therefore,
these techniques do not trivially extend to CMDPs. Simi-
larly, the dependence on context dimension d is typically

resolved by dividing the samples into phases which make
them statistically independent (Auer, 2002} |Chu et al.,
20115 L1 et al.L [2017). However, for CMDPs, these filter-
ing steps cannot be easily performed while ensuring long
horizon optimistic planning. Thus, tightening the regret
bounds for CMDPs is highly non-trivial and we leave this
for future work.

8 CONCLUSION AND FUTURE WORK

In this paper, we have proposed optimistic and random-
ized no-regret algorithms for contextual MDPs which
are parameterized by generalized linear models. We pro-
vide an efficient online Newton step (ONS) based update
method for constructing confidence sets used in the algo-
rithms. This work also outlines potential future directions:
close the regret gap for tabular CMDPs, devise an efficient
and sparsity aware regret bound and investigate whether
a near-optimal mistake and regret bound can be obtained
simultaneously. Lastly, extension of the framework to
non-tabular MDPs is an interesting problem for future
work.
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