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Abstract

Dominant generalized eigenspace computa-
tion, concerned with how to find one of the
top-k generalized eigenspaces of a pair of real
symmetric matrices, is one of the fundamental
problems in scientific computing, data analy-
sis, and statistics. In this work, we propose a
practical Riemannian algorithm based on the
first-order optimization on generalized Stiefel
manifolds while efficiently leveraging second-
order information. Particularly, we use inex-
act Riemannian gradients which result from
running a fast least-squares solver to approxi-
mate matrix multiplications for avoiding costly
matrix inversions involved therein. We also
conduct a novel theoretical analysis, achiev-
ing a unified linear convergence rate regard-
less of the conventional generalized eigenvalue
gap which is the key parameter to the currently
dichotomized analysis: gap-dependent or gap-
free. The resulting linear rate, albeit not opti-
mal, remains valid in full generality. Despite
the simplicity, empirically, our algorithm as a
block generalized eigensolver remarkably out-
performs existing solvers.

1 INTRODUCTION

Dominant generalized eigenspace computation is one
of fundamental problems in scientific and engineering
computing (Golub and Van Loan, 2013; Saad et al.,
2010), data analysis (Shi and Malik, 2000; Karampatzi-
akis and Mineiro, 2014; Guarracino et al., 2009), and
statistics (Mardia et al., 1979; Diaz-Garcia, 2011). For
example, it plays crucial roles in high-dimensional sta-
tistical problems such as canonical correlation analysis
(CCA) (Hotelling, 1936; Xu and Li, 2019), Fisher dis-
criminant analysis (Mika et al., 1999), and sufficient di-
mension reduction (Cook and Ni, 2005) which are in turn
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the backbones of many downstream tasks including re-
gression (Kakade and Foster, 2007), clustering (Chaud-
huri et al., 2009), and word embedding (Dhillon et al.,
2011). The goal is to find one of the top-k general-
ized eigenspaces for a pair of real symmetric matrices
of the same size with one being positive definite, where
k is the number of components desired. Compared to
the standard dominant eigenspace computation on a sin-
gle real symmetric matrix (Saad et al., 2010), there is an
additional cost from handling the inversion of the posi-
tive definite matrix. If it is handled naively, e.g., invert-
ing at the outset, the cost could be as high as O(n3),
where n is the size of matrices. Despite recent re-
search towards scalable algorithms with low per-iteration
costs (Ge et al., 2016; Allen-Zhu and Li, 2017; Li et al.,
2017; Bhatia et al., 2018; Chen et al., 2019), either prac-
tical implementation was not taken into account or the
performance is not satisfactory in practice.

In this work, we propose a practical Riemannian al-
gorithm based on the first-order optimization on gen-
eralized Stiefel manifolds while efficiently leveraging
second-order information. Given a pair of real symmetric
matrices (A,B) ∈ Rn×n × Rn×n, where B is positive
definite, the problem of dominant k-dimensional gener-
alized eigenspace computation is to find a subspace of
Rn in metric B spanned by (A,B)’s generalized eigen-
vectors1 corresponding to k largest generalized eigenval-
ues. Particularly, it admits a Riemannian formulation and
the underlying Riemannian problem can be written as
follows (Absil et al., 2008):

max
X∈gStB(n,k)

f(X) =
1

2
tr(X>AX), (1)

where gStB(n, k) = {X ∈ Rn×k : X>BX = I} is the
so-called generalized Stiefel manifold (Absil et al., 2008;
Yger et al., 2012). One then can deploy the first-order
optimization (e.g., Riemannian gradient method) on this

1See relevant definitions in the 2nd paragraph of Section 6.



smooth manifold, where we need to address the compu-
tationally expensive matrix inversion B−1 encountered
in computing Riemannian gradients. Instead of inverting
B directly, we follow Ge et al. (2016) to approximate ma-
trix multiplications of the form B−1Xt for Xt ∈ Rn×k
varying with iterations, by running a fast least-squares
solver (e.g., Nesterov’s accelerated gradient descent) for
a few iterations with a specially chosen warm start. Due
to the warm-start, the initial error of the least-squares
subproblem can be represented by the current negative
Riemannian gradient, giving rise to a neat interpreta-
tion that the initial error gets increasingly close to zero
during iterations. Meantime, the final error only needs
to be commensurate with that of the current iterate and
accordingly a few iterations are often sufficient for the
least-squares solver in practice. In experiments, we use
the preconditioned conjugate gradient method as the sub-
problem solver. Moreover, we leverage second-order
information, by using the inexact Riemannian Barzilai-
Borwein (RBB) step-sizes (Iannazzo and Porcelli, 2017),
to bring ease of use and faster convergence simultane-
ously. The resulting algorithm, denoted as rgGenElinK,
is almost as simple as the inexact power method (Ge
et al., 2016), i.e., GenElinK, but remarkably outperforms
the baseline algorithms including GenElinK, especially
for k > 1. Furthermore, we conduct a different theo-
retical analysis from existing ones, achieving a unified
linear rate of convergence regardless of the generalized
eigenvalue gap, i.e., the key parameter to the currently
dichotomized analysis: gap-dependent (convergence rate
depends on the k-th generalized eigenvalue gap) or gap-
free (the resulting rate does not depend on any gap). The
resulting linear rate, albeit not optimal, remains valid
in full generality similar to the gap-free rate. Our gen-
eral and unified linear convergence analysis is built upon
the structure of the solution space which can be char-
acterized by two unique2 top-k′ and top-k′′ generalized
eigenspaces due to the positive generalized eigenvalue
gaps at k′ and k′′, where k′ ≤ k ≤ k′′. The rgGenElinK
algorithm is also applicable to the k-CCA problem. It
is worth mentioning that the resulting algorithm, called
rgCCALin, does not need to use a block size of double
k for a top-k canonical subspace pair, and thus is more
memory efficient.

The rest of the paper is organized as follows. Section 2
discusses literature work. Section 3 briefly introduces
Riemannian geometry and optimization and Section 4
describes the k-CCA problem. The proposed algorithm
is detailed in Section 5 and followed by analysis in Sec-
tion 6. Section 7 presents experimental results and Sec-
tion 8 concludes the paper.

2When k′ = k = k′′ they collapse into one unique top-k
generalized eigenspace.

2 RELATED WORK

We discuss the main literature work on the dominant
generalized eigenspace computation. First note that the
scalable algorithms for standard eigenspace computation
such as Xu et al. (2017); Xu and Gao (2018) are not
applicable here due to the difference between two prob-
lems we mentioned in Section 1. The classic Lanczos
algorithm can be used for matrix pairs as well, e.g., Al-
gorithm 9.1 in Saad (2011), as long as matrix inversions
can be handled similarly to ours. However, Lanczos al-
gorithms require a considerably large amount of mem-
ory. Besides, theoretical support is lacking on the sub-
problem solver, warm start, and accuracy of the sub-
problem. Moreover, the default algorithm in MATLAB
uses Cholesky decomposition of the positive definite ma-
trix B such that it is converted into a standard eigenvalue
problem. But it works only for medium-sized problems
due to the Cholesky decomposition. In contrast, Ge et al.
(2016) proposed the GenELinK algorithm with theoreti-
cal guarantees which is based on the inexact block power
method. But the theoretical guarantee is unknown when
the k-th generalized eigenvalue gap vanishes, and empir-
ically, it performs not well enough as can be seen in our
experiments. The doubly accelerated method (Allen-Zhu
and Li, 2017) uses the shift-and-invert preconditioning
paradigm, which aims at a top-1 generalized eigenvector,
as the meta algorithm to recursively find a top-k gener-
alized eigenspace via deflation, instead of outputting a
top-k generalized eigenspace at a time. Despite the op-
timal rates of convergence, it skips practical implemen-
tations which, in fact, would be a concern due to many
tuning parameters. Especially, the gap parameter is dif-
ficult to set in general. Moreover, the block solver via
deflation may not always be applicable in some circum-
stances. Chen et al. (2018) considered the online com-
putation of dominant generalized eigenspace and pro-
posed a stochastic primal-dual algorithm with asymptotic
guarantees on convergence rate and sample complexity.
However, it assumes that the given matrices A,B are
commutative, which is unrealistic. Also, as we will see
in our experiments, it works not well in practice. Bha-
tia et al. (2018) extended Oja’s algorithm to the general-
ized streaming eigenvector computation (k = 1), which
is quite a different setting from ours.

3 RIEMANNIAN GEOMETRY AND
OPTIMIZATION

LetM be a Riemmanian manifold (Lee, 2012) of dimen-
sion d and TXM be its tangent space at X ∈ M which
is a d-dimensional Euclidean space Rd tangential toM
at X. M is often associated with a Riemannian met-
ric which is a family of smoothly varying inner products



on tangent spaces, i.e., 〈ξ, η〉X, where ξ, η ∈ TXM for
any X ∈ M. The Riemannian gradient of a function
f(X) onM is the unique tangent vector, i.e., ∇̃f(X) ∈
TXM, that satisfies 〈∇̃f(X), ξ〉X = Df(X)[ξ] for any
ξ ∈ TXM, where Df(X)[ξ] represents the directional
derivative of f(X) in ξ. The update of the Riemannian
gradient ascent method (Absil et al., 2008) onM can be
written as Xt+1 = R(Xt, αt∇̃f(Xt)), where αt > 0
is the step-size at the current step, and R(Xt, ·) rep-
resents the retraction at Xt that maps a tangent vector
ξ ∈ TXt

M to a point onM. Instead of using the costly
exponential map, cheap retractions can be used. In addi-
tion, tangent vectors at different points need to be parallel
transported to the same tangent space before arithmetic
operations between them in theory. In practice, parallel
transport is often omitted for computational concern.

For the generalized Stiefel manifold gStB(n, k), the Rie-
mannian metric can be chosen as 〈ξ, ζ〉B = tr(ξ>Bζ),
for any ξ, ζ ∈ TXgStB(n, k) and any X ∈ gStB(n, k).
The objective function of Problem (1) under this met-
ric has Riemannian gradient as ∇̃f(X) = (B−1 −
XX>)AX, by definition. We use the retraction defined
by the generalized polar decomposition:

R(X, ξ) = (X + ξ)(I + ξ>Bξ)−1/2

for ξ ∈ TXgStB(n, k), which can be implemented by
the modified Gram-Schmidt process with inner product
〈·, ·〉B, denoted as GSB(·).

4 CANONICAL CORRELATION
ANALYSIS

Given a data pair (X̃, Ỹ) ∈ Rdx×n × Rdy×n, let Cxy =
1
nX̃Ỹ>, Cxx = 1

nX̃X̃> + rxI, and Cyy = 1
nỸỸ> +

ryI, where rx, ry > 0 are regularization parameters for
avoiding ill-conditioned matrices. The k-CCA problem
is to solve the following program:

max
Φ>CxxΦ=Ψ>CxxΨ=I

tr(Φ>CxyΨ).

The ground-truth solution to this problem, called the top-
k canonical subspace pair, can be given by (Φ?,Ψ?) =

(C
− 1

2
xx Ũ,C

− 1
2

yy Ṽ), where Ũ and Ṽ are the top-k left
and right singular subspaces of the whitened cross-
covariance matrix C

− 1
2

xx CxyC
− 1

2
yy , respectively. With3

A=

(
0 Cxy

C>xy 0

)
, B=

(
Cxx 0
0 Cyy

)
, X=

1√
2

(
Φ
Ψ

)
,

the k-CCA problem is equivalent (Zhang, 2015) to Prob-
lem (1).

3We can manipulate the given data (X̃, Ỹ) without the need
to explicitly construct those matrices in our algorithm.

Algorithm 1 rgGenELinK
1: Input: a pair of real n × n symmetric matrices

(A,B) where B is positive definite, k, initial step-
size α0, least-squares solver ls(A,b,x0)

2: Output: the last iterate XT

3: X0 ← GSB(X0) where X0 ∈ Rn×k is entry-wise
i.i.d standard normal

4: for t = 0, 1, 2, · · · do
5: ∇̂f t ← ls(B,AXt,X

(0)
t ) which solves

min
X∈Rn×k

lt(X) = tr(
1

2
X>BX−X>AXt)

with initial X
(0)
t = Xt(X

>
t BXt)

−1X>t AXt

6: ̂̃∇f t ← (I−XtX
>
t B)∇̂f t

7: if t is even then
8: αt ← ‖Xt−Xt−1‖2F

|tr((Xt−Xt−1)>( ̂̃∇ft−
̂̃∇ft−1))|

if t > 0

9: else
10: αt ←

|tr((Xt−Xt−1)>( ̂̃∇ft−
̂̃∇ft−1))|

‖Xt−Xt−1‖2F
11: end if
12: Xt+1 ← GSB(Xt + αt

̂̃∇f t)
13: terminate if stopping criterion is met
14: end for

5 PROPOSED ALGORITHM

The pseudo code of the proposed rgGenELinK algo-
rithm is described in Algorithm 1. In Line 5, we only
need to solve the sub-problem approximately by run-
ning a least-squares solver for a few iterations with the
chosen warm-start X

(0)
t . The warm-start plays an im-

portant role here, because it injects useful information
about Xt from the previous iteration into the solver. Af-
ter getting ∇̂f t ≈ ∇ft = B−1AXt (∇ft represents
the exact solution to the sub-problem), Line 6 calculates
the inexact Riemannian gradient according to ∇̃f(X) =
(I − XX>B)B−1AX. We then calculate the inexact
Riemannian Barzilai-Borwein (RBB) step-size (Barzilai
and Borwein, 1988; Iannazzo and Porcelli, 2017), except
for the first iteration which needs to input an initial step-
size α0. The inexactness of the RBB step-sizes originates
from three aspects: 1) a globalization strategy is ignored
that ensures the global convergence (Raydan, 1997; Wen
and Yin, 2013; Iannazzo and Porcelli, 2017); 2) paral-
lel transport of old Riemannian gradients (Iannazzo and
Porcelli, 2017) is omitted; 3) inexact Riemannian gradi-
ents are used. Despite multiple sources of inexactness,
the RBB step-size scheme works well as is demonstrated
in experiments. Empirically, f(Xt) does not necessarily
keep increasing at each step due to the RBB step-size be-



ing non-monotone, but overall it will be increasing fast.

It is straightforward to apply the rgGenELinK to the
k-CCA problem for top-k canonical subspaces. We
can run the rgGenElinK for the matrix pair (A,B) de-
fined in Section 4. Denote the output as (Φ̂>, Ψ̂>)>.
We then get the approximate top-k canonical subspace
pair (Φ̂(Φ̂>CxxΦ̂)−

1
2 , Ψ̂(Ψ̂>CyyΨ̂)−

1
2 ). We denote

the resulting algorithm as rgCCALin. Compared to the
CCALin (Ge et al., 2016) which, as a projection based
method, requires a block size of 2k for a top-k canonical
subspace pair, our rgCCALin algorithm does not need to
set the block size to 2k since it is a gradient search based
method. Thus, it is more memory efficient.

6 ANALYSIS

In this section, we present a different analysis from ex-
isting ones for Problem (1), based on the structure of the
solution space together with appropriate potential func-
tions as well as the methodology of the Riemannian opti-
mization. The theorem and lemmas are presented, while
their proofs are placed in the supplementary material.

Structure of Solution Space Let (λi,ui) be the i-
th generalized eigenpair of (A,B) in descending or-
der of generalized eigenvalues, i.e., Aui = λiBui and
u>i Buj = δij , where δij = 1 if i = j otherwise
0. Let Uj = [u1, · · · ,uj ]. Uj’s column space in
non-Euclidean metric B, denoted as colB(Uj), will be
a top-j generalized eigenspace (Golub and Van Loan,
2013). Denote the j-th generalized eigenvalue gap as
∆j = λj − λj+1. Letting λ0 = +∞ and λn+1 = −∞,
we have ∆0 = +∞ and ∆n = +∞. Note that

f(Uk) = λ1 + · · ·+ λk−1 + λk = max
X∈gStB(n,k)

f(X).

If the k-th gap is positive, i.e., ∆k > 0, (A,B)’s top-
k generalized eigenspace colB(Uk) is unique. Other-
wise, the k-th generalized eigenvalue is repeated and the
target eigenspace is not unique any more. Generally,
there always exist two integers k′, k′′ crossing k such that
k′ ≤ k′′ and λk′ > λk′+1,

λi = λk, i = k′ + 1, · · · , k′′,
λk′′ > λk′′+1,

and then k′, k′′ fall into one and only one out of the fol-
lowing categories:

a) k′ = k = k′′,

b) 0 = k′ < k < k′′ < n,

c) 0 < k′ < k < k′′ = n,

d) 0 < k′ < k < k′′ < n,

e) 0 = k′ < k < k′′ = n.

For all categories, we can write the solution space
uniformly as follows: U = {U ∈ gStB(n, k) :
colB(Uk′) ⊂ colB(U) ⊂ colB(Uk′′)}. It is easy to
see that f(Uk) = f(U) for any U ∈ U . The target
eigenspace is unique only when the given matrix pair
falls into Category a), otherwise it is not unique but both
colB(Uk′) and colB(Uk′′) are unique. Note that Cate-
gory e) is trivial as f(X) becomes a constant. We now
can define the structured gap of generalized eigenvalues
around k as ∆† = min{∆k′ ,∆k′′}, which always re-
mains positive. Note that this gap is different from the
conventional generalized eigenvalue gap ∆k. Our theo-
retical results will be stated in terms of ∆†.

Potential Functions Motivated by the structure of the
solution space U , the progress of iterate Xt to U can
be determined by its progress to the two unique sub-
spaces colB(Uk′) and colB(Uk′′), where distances be-
tween subspaces of different dimensions need to be han-
dled. For global convergence (Pitaval et al., 2015), we
use the Martin distance (Ye and Lim, 2016) in metric B.
For any matrix G ∈ Rl×s, we define for brevity that

Det(G) =

{
det((GG>)1/2), l ≤ s
det((G>G)1/2), else

.

Our potential function then is given by

ψ(X,U) = max
l=k′ or k′′

−2 log Det(X>BUl).

We point out that only one distance in the potential
function is active for Categories a)-c) and e). To
be well-defined for log Det(X>BUj) at j = 0, let
log Det(X>BU0) , 0. If ψ(X,U) = 0, it must hold
that X ∈ U . We now can state our theorem as follows.

Theorem 6.1 If we use Nesterov’s accelerated gradient
descent method as the least-squares solver, then Algo-
rithm 1 under a constant or mixed step-size scheme is
able to converge globally to one of the ground-truth so-
lutions to Problem (1), i.e., ψ(XT ,U) < ε, with overall
complexity

O((nnz(A) + nnz(B)
√
κ(B) log

λ1

∆†
)(
λ1

∆†
)2 log

1

ε
),

where nnz(A) represents the number of nonzero entries
in A and κ(B) represents the condition number of B.

We briefly describe the proof idea here and have the de-
tails deferred to the supplementary material. For proof,
we show that the potential function eventually decays to
zero at an exponential rate, which can be done by demon-
strating that the potential will be contracted by a constant
in (0, 1) at each iteration. To this end, the potential func-
tion can be split into two parts: one part is about exact



updates and the other is about errors. The first part is
handled by the following lemma.

Lemma 6.2 Let X̂t+1 = Xt + αt∇̃f(Xt). If 0 < αt <
1

8λ1ηjt
where ηjt =

dist2
b(Xt,Uj)

1− dist2
b(Xt,Uj)

and distance

functions dist are given in Lemma 6.4, then

− 2 log Det(X̂>t+1BUj) ≤ dist2
m(Xt,Uj)

− 2αtdistf (Xt,Uj) + 32kα2
tλ

2
1η

2
jt.

The error part can be controlled with Lemma 6.3.

Lemma 6.3 For the sub-problem in Algorithm 1, letting

ξt(X) = X−X?
t and εt(X) = lt(X)− lt(X?

t ),

where X?
t = B−1AXt = arg min lt(X), we have that

εt(X)=
1

2
‖ξt(X)‖2B,F and εt(X

(0)
t )=

1

2
‖∇̃f(Xt)‖2B,F ,

where the norm is defined in Lemma 6.6. In ad-
dition, Nesterov’s accelerated gradient descent takes

O(nnz(A) + nnz(B)
√
κ(B) log

εt(X
(0)
t )

εt(∇̂ft)
) complexity to

reach sub-optimality εt(∇̂f t).

In fact, we have ξt(X0
t ) = −∇̃f(Xt), which gives rise

to a neat interpretation of the initial error with the sub-
problem and strong support for the chosen warm-start
noting that the gradient gradually approaches zero. Par-
ticularly, the final error of the subproblem only needs to
be as accurate as follows:

εt(∇̂f t) ∝ ∆2
†(1− min

l=k′ or k′′
Det2(X>t BUl)).

There are some other issues in proof that also need to be
handled with the following lemmas.

Lemma 6.4 For X ∈ gStB(n, k) and Y ∈ gStB(n, l),
let

distm(X,Y) = (−2 log Det(X>BY))
1
2 ,

distb(X,Y) = (1−Det2(X>BY))
1
2 ,

distc(X,Y) = (min{k, l} − ‖X>BY‖2F )
1
2 .

We then have that

distb(X,Y) ≤ distm(X,Y),

distb(X,Y)≤distc(X,Y)≤(min{k, l}) 1
2 distb(X,Y).

Three distance functions are extended from the Mar-
tin, Binet-Cauchy, and Chordal distances (Ye and Lim,
2016), respectively, in order to accommodate distances
between subspaces of different dimensions.

Lemma 6.5 Let

distf (Xt,Uj) =

{
f(Uj)− f(XtPj), j ≤ k
f(UjQj)− f(Xt), j ≥ k

,

where Pjt and Qjt are from the rank-min{j, k} SVD:
X>t BUj = PjtΣjtQ

>
jt. We then have that

distf (Xt,Uj) ≥ ∆jdist2
b(Xt,Uj).

The above lemma is one key to the linear convergence
especially for Categories b)-e) by relating to Uk′ and
Uk′′ , because there is no non-trivial lower bound on
distf (Xt,U) for any U ∈ U .

Lemma 6.6 We have that ‖∇̃f(X)‖B,2 ≤ λ1 and

‖∇̃f(X)‖2B,F ≤ kλ2
1 min{2 min

U∈U
dist2

m(X,U), 1},

where ‖X‖B,2 =‖B 1
2 X‖2 and ‖X‖2B,F =tr

(
X>BX

)
.

This lemma is yet another key to achieving a linear rate.

Lemma 6.7 If a > 1 and at ≤ (1− a
ν+t )at−1 + b

(ν+t)2

holds for t ≥ 1, then (Balsubramani et al., 2013)

at ≤ (
ν + 1

ν + 1 + t
)aa0 +

2a+1b

a− 1

1

ν + 1 + t
.

Lemma 6.8 For X ∈ gStB(n, k), Y ∈ gStB(n, l), let

Ω+(Y)={Z ∈ gStB(n, k) : colB(Y)⊂colB(Z)}, l ≤ k,

Ω−(Y)={Z ∈ gStB(n, k) : colB(Z)⊂colB(Y)}, l ≥ k.

We then have that

distm(X,Y) =


min

Z∈Ω+(Y)
distm(X,Z), l ≤ k

min
Z∈Ω−(Y)

distm(X,Z), l > k
.

Two sets Ω+(Y) and Ω−(Y) above are called Schubert
varieties of subspace colB(Y). This lemma offers us a
natural and intrinsic way to analyze the distance between
subspaces of different dimensions. It is extended from Ye
and Lim (2016) by replacing the Euclidean metric I with
non-Euclidean metric B for Rn. It is used together with
Lemma 6.6 to help get the linear rate.

Lemma 6.9 If X0 = W(W>BW)−1/2 with W being
entry-wise standard normal, then

dist2
m(X0,Uj) < −2k log

η
√
κ(B)

k +
√
nk

with probability at least 1− η for any η ≥ 0.



Therefore, dist2
m(X0,Uj) < +∞ with probability 1,

which means X0 is neither a saddle point nor a min-
imizer almost surely. This explains the global conver-
gence of Algorithm 1 mentioned in Theorem 6.1.

Before closing this section, a few remarks on Theo-
rem 6.1 are in order. 1) If the matrix pair falls into
Categories a)-c) and e) then constant step-sizes are suf-
ficient, otherwise mixed step-sizes are required (details
can be found in the supplementary material). 2) With
the new gap ∆†, we get a unified convergence rate for
both the gap-dependent and gap-free cases that are de-
fined with the conventional gap ∆k. The dependence
of our rate on ∆† extends the common dependence on
∆k. Compared to other methods, e.g., linear depen-
dence on ∆k of the GenELink (Ge et al., 2016), it is
quadratic and worse when ∆† = ∆k. The quadratic de-
pendence seems a phenomenon associated with offline
gradient methods (Shamir, 2015, 2016). Nonetheless,
our rate covers the vanishing gap ∆k = 0, while the rate
in Ge et al. (2016) does not. Also, our rate remains valid
across categories, similar to the gap-free rate (Allen-Zhu
and Li, 2017) but from a different perspective.

7 EXPERIMENTS

We now examine our algorithms’ empirical performance
on synthetic and real data. All algorithms were imple-
mented in MATLAB and fed with the same random ini-
tials for each dataset.

7.1 Generalized Eigenspace

We compare Algorithm 1 to the GenElinK (Ge et al.,
2016) and the stochastic generalized Hebbian algorithm
(SGHA) (Chen et al., 2018) for the dominant general-
ized eigenspace computation. The initial step-size for the
rgGenElinK is set to α0 = 10−3 unless otherwise stated.
SGHA is a stochastic primal-dual algorithm which iter-
ates the primal step and the dual step. The constraint
of Problem (1) is handled by the dual update. One is-
sue with the SGHA is that the step-size η needs to be set
relatively very small, otherwise it will cause the floating-
point overflow easily during iterations. To implement the
SGHA, we evenly partition A and B into column blocks,
and sample blocks uniformly at random to form At and
Bt at each iteration. Both rgGenElinK and GenElinK
have the same subproblems which we solved by the pre-
conditioned conjugate gradient method with a matlab
built-in function. For this sub-problem solver, four and
ten iterations are used on synthetic and real data, respec-
tively. For evaluation of the generalized eigenspace com-
putation, the following quality measures are used:

• relative objective error

rdistf (X,Uk) =
f(Uk)− f(X)

f(Uk)
,

• squared sine value of the largest principal angle be-
tween X and Uk, i.e.,

sin2 θmax(X,Uk) = 1− σ2
min(X>BUk),

For the above two measures (smaller is better), the
ground-truth is obtained by MATLAB’s eigs function.

7.2 Synthetic Data

Three synthetic datasets with n = 1000, k = 4 and gen-
eralized eigenvalue gap ∆ ∈ {0.16, 0.016, 0.0016} are
generated according to the simultaneous diagonalization
equations4:

Z>AZ = Λ and Z>BZ = I.

We set
Λ = diag(1−∆[−0.4,−0.2, 0, 1, 0.1, 0.2, 0.3, 0.4],

|a1|
n , · · · , |an−8|

n )

with ai being i.i.d. standard normal samples, and

Z = Qdiag(5b1 + 5, · · · , 5bn + 5)Q>,

where bi are i.i.d. uniform samples on (0, 1) and Q is
orthogonal. We then have that

A = Z−>ΛZ−1 and B = Z−>Z−1.

The SGHA uses block size 100 and step-sizes η are
shown in legends. Figure 1 reports the performance of
the algorithms on these datasets with varying general-
ized eigenvalue gaps. First, the results indicate that our
rgGenElinK consistently outperforms all the others in
terms of both measures. Second, for both rgGenElinK
and GenElinK, larger gap ∆ results in faster conver-
gence. Third, the SGHA is not working well in all
cases. Particularly, in the case of a small gap, ours is the
only working algorithm, while the GenElinK can be even
worse than the SGHA in terms of the second measure.

We also test on a pair of sparse symmetric random matri-
ces with one being positive definite, generated by MAT-
LAB’s sprandsym function. The generating parameters,
i.e., size n = 10000, density 10−3, and reciprocal con-
dition number 0.1, are used for (A,B) with B gener-
ated from the first kind of positive definiteness. We use
k = 20 here and set the block size to 2000 for the SGHA.
Algorithms’ convergence behaviors on this dataset can
be seen in Figure 2. Similar to the case of the small-
gap datasets above, our rgGenElinK performs well, while
others even can’t converge in the given time interval.

4http://fourier.eng.hmc.edu/e161/
lectures/algebra/node7.html

http://fourier.eng.hmc.edu/e161/lectures/algebra/node7.html
http://fourier.eng.hmc.edu/e161/lectures/algebra/node7.html
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Figure 1: Performance of generalized eigensolvers on
synthetic data - part I.
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Figure 2: Performance of generalized eigensolvers on
synthetic data - part II.

7.3 Real Data

We turn to some challenging real data5. Challenges
spring from the clustered eigenvalues which often re-
sult in small relative generalized eigenvalue gaps. Statis-
tics of the data are given in Table 1. k = 10 is used
and block sizes for the SGHA on the three datasets are
500, 2000, 4000, respectively. As shown in Figure 3, our
rgGenElinK is a clear winner over others and advantages
are more pronounced in terms of the second measure.

Last, we examine the sensitivity of rgGenElinK’s two pa-
rameters on dataset “Lapla4”: initial step-size α0 and
iteration number m of the least-squares solver. Fig-
ure 4 shows the performance of the algorithm with fixed

5http://faculty.smu.edu/yzhou/data/
matrices.htm
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Figure 3: Performance of generalized eigensolvers on
real data.
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Figure 4: Performance of the rgGenELinK with α0 =
10−3 and varying m.

α0 = 10−3 and varying m. We can see that if m is set
to be too small, e.g., m = 4, poor results are observed
probably due to the challenges with the data, though it is
often sufficient for the synthetic data. We thus increased
m in previous experiments to secure more accurate Rie-
mannian gradients for faster convergence. In practice,
we might also dynamically increase m starting from a
small number, until acceptable progress per iteration is
observed.

Table 1: Summary of real data

Matrix pair n nnz(A) nnz(B)
Lapla3 5795 136565 141779

Lapla4 10891 259425 269639
Lapla5 18903 455337 489875

http://faculty.smu.edu/yzhou/data/matrices.htm
http://faculty.smu.edu/yzhou/data/matrices.htm
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Figure 5: Performance of the rgGenELinK with m = 10
and varying α0.

On the other hand, we fix m = 10 and test with vary-
ing α0. As is shown in Figure 5, Algorithm 1 is fairly
insensitive to the initial step-size. In addition to the auto-
matic BB step-size, this further eases practitioners’ con-
cern about how to set the initial step-size, verifying the
practical use of the proposed algorithm.

7.4 Canonical Subspaces

We compare our rgCCALin to the CCALin (Ge et al.,
2016) and the S-AppGrad (Ma et al., 2015) for k-CCA.
Note that the CCALin is an instance of the GenELinK
for CCA, while the S-AppGrad is a scalable iterative
algorithm for CCA with data sampling. Two separate
subproblems in each iteration in terms of Φ and Ψ for
the rgCCALin and CCALin, which are equivalent to the
original subproblem in terms of X, are solved by the
stochastic variance reduced gradient method (SVRG).
The SVRG runs four epochs with each running m = n
iterations and the step-size ηx = 1

maxi ‖X̃i‖22
or ηy =

1

maxi ‖Ỹi‖22
, where X̃i represents the i-th column of X̃.

The initial step-size for the rgCCALin is set to α0 =
10−3. For the S-AppGrad, we use authors’ implementa-
tion with batch size of 50 and tuned step-sizes.

For evaluation of the top-k canonical subspace pair, the
following four quality measures are used:

• PCC error = 1− TCC(X̃Φt,ỸΨt)

TCC(X̃Φ?,ỸΨ?)
, where the subtra-

hend is called the Proportion of Correlations Cap-
tured (PCC) defined via the Total Correlations Cap-
tured (TCC) (Ma et al., 2015; Ge et al., 2016), i.e.,
the sum of canonical correlations between two ma-
trices;

• sin2 θmax(Xt,Uk), where

Xt =
1√
2

(
Φt

Ψt

)
and Uk =

1√
2

(
Φ?

Ψ?

)
;

• sin2 θmax(Φt,Φ
?) and sin2 θmax(Ψt,Ψ

?).

The ground truth (Φ?,Ψ?) used above is based on
(Ũ, Ṽ) which can be obtained by MATLAB’s svds func-
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Figure 6: Performance of CCA solvers on real data.

tion for evaluation purpose. Again, smaller is better for
each measure above.

Table 2: Summary of the CCA Data.

Data dx dy n
JW11 273 112 30000

MNIST 392 392 60000

We test the algorithms on two CCA datasets:
JW11 (Westbury, 1994) and MNIST (LeCun et al.,
1998). The former is about acoustic and articulation
measurements, while the latter consists of left and right
halves of images. Their statistics are given in Table 2.
We use rx = ry = 0.1 for both datasets and set k = 10.
The tuned step-sizes for the S-AppGrad are 5e−3 and
5e−4 for the data, respectively. The performance of the
algorithms is shown in Figure 6, where the x-axis is the
number of passes over data X̃ and Ỹ. We can see that
the rgCCALin algorithm performs best in terms of all



the four measures. Contrastingly, the S-AppGrad fails
to work. Note that even in the original paper on the
S-AppGrad the PCC error converted from the PCC there
is only in the order of 10−1. Similar to the SGHA, the
S-AppGrad is hard to use probably due to the sampling.

8 CONCLUSION

We study the dominant generalized eigenspace computa-
tion. Despite a large body of previous research, practical
algorithms are quite lacking. In this work, we propose
a practical Riemannian algorithm. It is simply based on
the first-order Riemannian optimization where the inex-
act Riemannian gradient is used with error controlled by
a least-square solver. In the meantime, the second-order
information is embedded into step-sizes for both accel-
eration and efficiency in practice. We also extend the
algorithm to CCA for the computation of the dominant
canonical subspaces. Interestingly, the resulting block
CCA solver does not need to use a block size of dou-
ble the desired number of components. In addition, we
present a novel theoretical analysis which achieves a uni-
fied linear rate of convergence by identifying the struc-
ture of the solution space, defining the structure-aware
potential function, and overcoming difficulties caused
by distances between subspaces of different dimensions.
We conduct an extensive experimental study for exam-
ining and comparing our algorithms with baseline algo-
rithms on synthetic and real data. Experiments consis-
tently show that our proposed algorithm performs quite
well in terms of the well-known evaluation measures.
The future directions along this work include distributed
computation for better scalability, incorporating precon-
ditioning techniques into both the main problem and sub-
problems for acceleration, as well as trying to theoreti-
cally understand the effect of the BB step-size scheme
on the performance of the proposed algorithm.

Acknowledgement

The authors sincerely thank the anonymous reviewers for
their constructive comments.

References

Pierre-Antoine Absil, Robert Mahony, and Rodolphe
Sepulchre. Optimization algorithms on matrix man-
ifolds. Princeton University Press, 2008.

Zeyuan Allen-Zhu and Yuanzhi Li. Doubly accelerated
methods for faster CCA and generalized eigendecom-
position. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pages 98–
106, Sydney, Australia, 2017.

Akshay Balsubramani, Sanjoy Dasgupta, and Yoav Fre-
und. The fast convergence of incremental PCA. In
Advances in Neural Information Processing Systems
(NIPS), pages 3174–3182, Lake Tahoe, NV, 2013.

Jonathan Barzilai and Jonathan M. Borwein. Two-point
step size gradient methods. IMA Journal of Numerical
Analysis, 8:141–148, 01 1988.

Kush Bhatia, Aldo Pacchiano, Nicolas Flammarion, Pe-
ter L. Bartlett, and Michael I. Jordan. Gen-oja: Simple
& efficient algorithm for streaming generalized eigen-
vector computation. In Annual Conference on Neu-
ral Information Processing Systems (NeurIPS), pages
7016–7025, Montréal, Canada, 2018.
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