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Abstract

A good seeding or initialization of cluster
centers for the k-means method is important
from both theoretical and practical stand-
points. The k-means objective is inherently
non-robust and sensitive to outliers. A pop-
ular seeding such as the k-means++ [3] that
is more likely to pick outliers in the worst
case may compound this drawback, thereby
affecting the quality of clustering on noisy
data.

For any 0 < δ ≤ 1, we show that using a
mixture of D2 [3] and uniform sampling,
we can pick O(k/δ) candidate centers with
the following guarantee: they contain some
k centers that give O(1)-approximation to
the optimal robust k-means solution while
discarding at most δn more points than
the outliers discarded by the optimal so-
lution. That is, if the optimal solution
discards its farthest βn points as outliers,
our solution discards its (β + δ)n points as
outliers. The constant factor in our O(1)-
approximation does not depend on δ. This
is an improvement over previous results
for k-means with outliers based on LP re-
laxation and rounding [7] and local search
[17]. The O(k/δ) sized subset can be found
in time O(ndk). Our robust k-means++
is also easily amenable to scalable, faster,
parallel implementations of k-means++ [5].
Our empirical results show a comparison
of the above robust variant of k-means++
with the usual k-means++, uniform ran-
dom seeding, threshold k-means++ [6] and
local search on real world and synthetic
data.
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1 Introduction

The k-means clustering is a popular tool in data
analysis and an important objective in statistics,
data mining, unsupervised learning, computational
geometry, approximation algorithms. The objective
of the k-means clustering is to find k centers that
minimize the sum of squared distances of all the
points to their nearest centers, respectively. Given a
set X ⊆ Rd of n data points and an integer k > 0, the
k-means objective is to find a set C ⊆ Rd of k centers
that minimizes φX(C) =

∑
x∈X minc∈C ‖x− c‖2 .

The k-means clustering objective and its variants for
kernel methods and Bregman divergence are widely
used in machine learning and data mining. The most
popular algorithm for the k-means remains Lloyd’s
k-means method [23] that originated as a vector
quantization technique for Pulse-Code Modulation
(PCM) in signal processing. Lloyd’s k-means method
[23] is a simple, fast heuristic that starts with any
given initial solution and iteratively converges to a
locally optimal solution.

However, k-means clustering suffers from two major
drawbacks – (a) the k-means objective itself is non-
robust and highly sensitive to outliers and, (b) the
k-means method does not have a provably good ini-
tialization that is also robust to outliers.

Non-robustness of the k-means objective: A
common statistical measure of robustness is the
breakdown point [18] 1. The mean or centroid is
not a robust statistic and has its breakdown point at
zero, that is, even a single outlier can move the mean
arbitrarily far. In comparison, median is more robust
with a high breakdown point. In that sense, the
k-means objective is extremely sensitive to outliers.

1Informally, the breakdown point is the minimum
fraction of data points which if significantly modified
will also significantly modify the output of the estimator.
Large breakdown point means better robustness.



Even though the median is a more robust statis-
tic than the mean, the geometric median of a set of
points in Rd is itself a non-trivial computational prob-
lem [10]. Thus, we do not have an efficient analog of
the k-means method [23] for the k-median problem.
In practice, we can remove the outliers first using
Principal Component Analysis (PCA), Minimum Co-
variance Determinant (MCD), or distance to the k-th
Nearest Neighbor (k-NN) and then clustering the in-
liers using k-means but these two objectives are not
fully aligned. Thus, despite the non-robustness, we
would like to retain the inherently nice properties
of the k-means objective for clustering in the pres-
ence of outliers. This has lead to the definition of
robust versions of the k-means objective such as the
trimmed k-means [14].

The robust k-means clustering objective we con-
sider in this paper is the same as trimmed k-means
that looks at the k-means objective on all but
the farthest β fraction of data points according to
their distances to their respective centers. In other
words, given a set X ⊆ Rd of n points, an inte-
ger k > 0, and an outlier parameter 0 < β < 1,
the objective of the robust k-means is to find a
set C ⊆ Rd of k centers that minimizes ρX(C) =

min Y⊆X
|Y |=(1−β)n

∑
x∈Y minc∈C ‖x− c‖2 .

Non-robustness of k-means++: Lloyd’s k-
means method [23] provably converges to a local
optimum, however, in the worst case, it can take
exponentially many iterations to do so even in the
plane [24]. Uniform sampling is a somewhat popular
initialization but provides provable approximation
guarantees only when the optimal clusters are some-
what large and balanced. In the worst case, only
k-means++ seeding [3] and its faster, scalable ver-
sions [5, 4] are known to provide provably good ini-
tialization with O(log k)-approximation to the global
optimum, in expectation. The k-means++ seeding
is based on D2-sampling which builds a partial solu-
tion gradually as follows: Pick a point uniformly at
random from the given points and make it the first
center. Then pick the second point with probabil-
ity proportional to its squared distance to the first
center, and make it the second center. In each step,
pick a new point with probability proportional to
its squared distance to the nearest center picked so
far (known as D2-sampling), and make that point
a new center. The k-means++ method applies D2-
sampling k times, adaptively as above, to come up
with an initial set of k centers. The practical im-
plementations of the k-means++ method actually
pick multiple samples (typically, O(log k) samples)
according to D2-sampling in each step, and retain the

best among them that minimizes the sum of squared
distances of all the points to their nearest centers in
the current partial solution, respectively.

The D2-sampling used by the k-means++ seeding
inherently has a higher probability of picking outliers
as centers, making it extremely sensitive to outliers.
Consider the case when 99% of the points form k
clusters very close to each other, and the remaining
1% are outliers far from these clusters as well as from
each other. In such cases, D2-sampling is highly
likely to pick outliers. The uniform sampling alone,
on the other hand, is likely to miss smaller clusters
among inliers and does not take into account the
inter-point distances.

Compounding the non-robustness of the initialization
with the non-robustness of the k-means objective
itself can result in poor quality of clustering on noisy
data. An important question, therefore, is to come
up with provably good seedings or initializations for
the k-mean clustering that are robust to outliers.

Our paper addresses this question positively by
proposing a simple modification of the k-means++
seeding that is robust to outliers. Instead of using
D2-sampling in each step, we use a mixture of D2-
sampling and uniform sampling to get the best of
both worlds.

2 Our results

Assuming that the outliers constitute a constant frac-
tion of the given data, we propose a simple initial-
ization called robust k-means++ using a mixture of
D2 sampling and uniform sampling. Our algorithm
runs in O(ndk) time, outputs O(k) clusters, discards
marginally more points than the optimal number of
outliers, and comes with a provable O(1) approxi-
mation guarantee. Our algorithm can be modified
to output exactly k clusters instead of O(k) clusters,
while keeping its running time linear in n and d. The
pseudocode of our algorithm is presented in 1, and
the precise statement of our approximation guarantee
appears in Theorem 1. In addition, Table 1 shows
a detailed comparison of our results with previous
work.

Our empirical results in Section 5 show the advantage
of robust k-means++ over the k-means++ or D2

sampling, uniform random seeding, and a state of the
art local search algorithm for k-means with outliers
[17], on standard real world and synthetic data sets
used in previous work.



Result Approximation No. of clusters No. of outliers Practical Running time
guarantee in the output discarded algorithm

This paper 5 O(kn/z) O(z) Yes O(ndk)
5 k O(z) Yes O(ndk)× (kn/z)k

[6] (64 + ε) (1 + c)k (1+c)(1+ε)z
c(1−µ) Yes Õ(ndk)

[6] O(log k) k O(z log k) Yes Õ(ndk)

[19] (53.002 + ε) k z No nO(1/ε3)

[13] (1 + ε) k(1 + ε) z No knd
O(d)

[17] 274 k O(zk log n) Yes O( 1
εk

2(k + z)2 log(n∆) + nz),
∆:=largest pairwise distance

[9] O(1) k z No poly(n, k)
[7] 4(1 + 1/ε) k (1 + ε)z No nO(1)

Table 1: Comparison with related work on k-means clustering with outliers, where n = no. of data points, d =
dimension, k = desired or given no. of clusters, and z = desired or given no. of outliers. In [6], c is a given parameter,
and µ > 0 is an arbitrary constant. Their algorithm crucially require an initial guess of the optimal clustering cost.
[7, 9] are about a closely related problem called k-median clustering with outliers.

3 Related work

The k-means++ method, in its spirit, is a random-
ized variant of a 2-approximation algorithm for the k-
center clustering problem that picks the farthest data
point from the current partial solution in each step
[16]. A simple and clever modification of the farthest
point algorithm gives a 3-approximation for the ro-
bust k-center problem with outliers [7]. For k-median
with outliers, they give a 4(1+1/ε)-approximation in
polynomial time that discards at most (1 + ε) times
more outliers than the optimal robust k-median so-
lution. To compare with our results, their approxi-
mation depends on the additional number of points
discarded, whereas our approximation is a fixed con-
stant factor that does not. Gupta et al. [17] proposed
a local-search algorithm for the robust k-means prob-
lem that gives a O(1)-approximation while discard-
ing O(zk log n) outliers, which is unreasonably large
when the number of outliers is a constant fraction
of n. The number of extra outliers deleted by our
algorithm is δn, which is comparatively very small,
as for example we can choose δ = 1/poly(k). We
trade-off by picking O(k/δ) centers as opposed to k
centers picked by both these algorithms [7, 17].

Recently, Bhaskara et. al. [6] suggest a bi-criteria ap-
proximation algorithm for the problem. They show
that a thresholding operation on the D2 sampling dis-
tribution makes it robust to outliers. However, their
algorithms crucially require an initial guess of the
optimal clustering cost. With this assumption they
showed the following two results. In the first, their
algorithm output (1 + c)k centers and obtain (64 + ε)

approximations by discarding (1+c)(1+ε)z
c(1−µ) outliers in

the running time Õ(ndk), where c is some parameter,
and µ is a constant. Whereas our algorithm offers 5

approximation factor, in a faster running time, while
outputting O(kn/z) cluster centers and discarding
O(z) outliers. In the second result, their algorithm
output exactly k centers and obtain O(log k) ap-
proximations by discarding O(z log k) outliers in the
running time Õ(ndk). Whereas our algorithm offers
5 approximation factor while outputting k cluster
centers and discarding O(z) outliers. However, theo-
retical bounds of our running time is exponential in k
in this case, while for experiments we use a weighted
k-means++ as a heuristic.

[9] gives a polynomial time constant factor approxi-
mation to k-means and k-median with outliers that
does not discard extra outliers, however, the algo-
rithm is not practical or scalable compared to k-
means++ and its variants. There is an important
line of work [12, 20, 11] based on coresets and robust
coresets for clustering problems that give (1 + ε)-
approximation to robust k-median and various other
clustering problems by constructing small-sized core-
sets via sampling. Many of these algorithms are
relevant to our work and can be thought of as ex-
tensions of sampling-based seeding techniques with
the emphasis on getting nearly optimal or (1 + ε)-
approximately optimal solutions in running time lin-
ear in the number of points n and the dimension
d. Scalable k-means++ [5] has been empirically
observed to be more robust to outliers than the k-
means++ but there is no theoretical understanding
of this aspect.

[8] propose a natural modification of the Lloyd’s k-
means method in the presence of outliers, and show
its local convergence. Another recent paper revisits
the robust or trimmed k-means objective, proposes
a different variant and studies its consistency and
robustness properties [15].



Krishnaswamy et al. [19] give (roughly) 53-
approximation algorithm for k-means with z outliers.
Their algorithm outputs exactly k centers and does
not discard any extra points as outliers, and use it-
erative rounding of LP relaxation with polynomial
running time. However their algorithm is not de-
signed to be practical. Friggstad et al. [13] give
(1 + ε)-approximation to k-means with z outliers in a
fixed dimensional Euclidean space. Their algorithm
gives (1 + ε)k centers and discards exactly z outliers.
They use local search and have running time doubly
exponential in the dimension making it impractical.
k-means clustering with outliers problem has also
been studied in different formulations. We list a one
such recent results as follows: [22] considered the
problem of joint cluster analysis and outlier detection
and propose an algorithm that achieves simultaneous
consensus clustering and outlier detection.

Our proposed distribution – a mixture of D2-
sampling and uniform sampling – is used as a proposal
distribution in the initial step of the recent MCMC-
based fast and provably good seeding for the k-means
[4]. However, instead of employing this adaptively,
they only use it in the first step and their final result
is a O(log k)-approximation, in expectation, along
the lines of the inductive analysis of the k-means++.
On the other hand, our analysis uses ideas from [1, 2]
that provide a different analysis of the k-means++
method to give bi-criteria O(1)-approximations with
high probability guarantees. We summarise a com-
parison of the related work in Table 1.

Algorithm 1 Robust k-means++

Input: a set X ⊆ Rd of n points, an integer
k > 0, an outlier parameter 0 ≤ β ≤ 1, and an
error parameter 0 < δ ≤ 1.
Output: a set S ⊆ X of size O(k/δ)
Initialize S0 ← ∅
for i = 1 to t = O(k) do

for l = 1 to m = O(1/δ) do
Pick a point xl ∈ X from the following distri-
bution:

Pr (picking xl) =
φ{xl}(Si−1)

2 φX(Si−1)
+

1

2n
(Note: For i = 1 step, the distribution is
uniform.)

end for
Si ← Si−1 ∪ {x1, x2, . . . , xm}
i← i+ 1

end for
S ← St
return S

4 Analysis of robust k-means++

We start with a word of notations used in the analysis.

Notation: Given a set X ⊆ Rd of n points, an
integer k > 0, and an outlier parameter 0 < β < 1,
recall that the objective of the robust k-means is to
find a set C ⊆ Rd of k centers that minimizes

ρX(C) = min
Y⊆X

|Y |=(1−β)n

∑
x∈Y

min
c∈C
‖x− c‖2 .

In other words, ρX(C) is the squared distance
error only over the nearest (1 − β)n points in-
stead of the entire data. We denote by φA(C) =∑
x∈A minc∈C ‖x− c‖2 the contribution of points

in a subset A ⊆ X. Let COPT be the set of op-
timal k centers for the robust k-means problem
and let YOPT be the optimal subset of inliers, then
ρ(COPT) = φYOPT (COPT), since the error or the
potential is measured only over the inliers. In the
optimal solution, each point of YOPT is assigned to
its nearest center in COPT. This induces a natural
partition of the inliers YOPT as A1∪A2∪· · ·∪Ak into
disjoint subsets, with means µ1, µ2, . . . , µk, respec-
tively, while X \ YOPT are the outliers. Therefore,

ρ(COPT) = φYOPT (COPT) =

k∑
j=1

φAj ({µj}) .

Now we show the analysis of our sampling scheme.
One simple approach to obtain a set S that con-
tains k points which give O(1)-factor approximation
for k-means with outliers problem, is to run any c-
approximate k-means algorithm with (k+βn) centers,
where βn is the number of outliers. It is easy to show
the cost of such a solution is less than O(c) times
the cost of the optimal solution of k-means with βn
outliers. This approach picks (k + βn) points, which
is large for high values of β. In what follows, we
present our algorithm which is simple, accurate, and
samples a significantly lesser number of points.

Theorem 1. Let S ⊆ X be the subset of O (k/δ)
points picked by the robust k-means++ seeding Algo-
rithm 1. Then, with constant probability, S contains
some k centers that give 5-approximation to ρ(COPT)
while discarding (β + δ)n points, slightly more than
the βn outliers discarded by the optimal solution.
The probability can be boosted to 1− η, by repeating
it O(log(1/η)) and picking the best solution, where
η ∈ (0, 1). The running time of our algorithm is
O(nkd/δ). The subset of k centers guaranteed as
above can be recovered by iterating over all possible
subsets of size k, and picking the best solution in time
nd · 2O(k log(1/δ)).



Remark 1. β ∈ [0, 1] is an outlier parameter given
as input to Algorithm 1. δ is another parameter
introduced for our bi-criteria approximation. The-
orem 1 holds for any β ∈ (0, 1) and δ ∈ [0, 1 − β].
For example, we can always choose δ = β/100 so
that our algorithm discards at most 1.01βn points, in
other words, only 1% more outliers than the optimal
solution. Moreover, when outliers constitute a very
tiny (not even a constant) fraction of the data, e.g.,
say β = 1/poly(k), our algorithm can still output
poly(k) centers that give O(1)-approximation while
discarding only 1% more outliers than the optimal
solution.

Remark 2. The analysis of Theorem 1 shown for
a (1/2, 1/2) mixture of uniform and D2 sampling
distribution used in Algorithm 1. We note that the
analysis of the theorem can be extended for any mix-
ture (α, 1− α) of D2 and uniform sampling distribu-
tion, where α ∈ (0, 1). In our experiments, we use
α ∈ {0, 1/4, 1/2, 3/4, 1}, and notice that our proposal
outperforms with respect to the baselines on at least
one of the values of α.

Our analysis is simple, largely based on ideas from
[1]. However, we need to carefully combine the ad-
vantages of D2-sampling and uniform sampling, es-
pecially when considering conditional probabilities.

Now we analyze the effect of sampling from a mixture
of D2-sampling and uniform sampling in each step.
Let Si−1 be the set of (i − 1)m centers obtained
after the (i− 1)-th iteration of the outer loop of our
algorithm, where m = O(1/δ). In step i, we define

Goodi = {Aj : φAj
(Si−1) ≤ 5 φAj

({µj})},

Badi = {A1, A2, . . . , Ak} \ Goodi.

In other words, Goodi consists of the optimal clusters
Aj for which the current cluster centers in Si−1 al-
ready give a good approximation. First we show that
when we sample from a mixture of D2-sampling and
uniform sampling with equal weights in the i-th step,
there is a reasonable probability that we pick a point
from some cluster in Badi and moving that cluster
to Goodi+1 for the subsequent step. We summarise
this in the lemma below whose proof is deferred to
appendix due to space limitations.

Lemma 2. In the outer loop of Algorithm 1, one of
the following two possibilities must hold.

1.
∑
j : Aj∈Badi |Aj | ≤ δn, in which case, Si−1 con-

tains some k centers that give 5-approximation
to robust k-means when we remove their farthest
(β + δ)n points.

2. The total number of bad clusters decreases
with at least a constant probability, that is,
Pr (|Badi+1| < |Badi|) = Ω(1).

Proof. Consider any cluster Aj ∈ Badi. Let µj be
the mean of Aj and define Bj ⊆ Aj as the subset of
points in Aj close to µj as follows. Define the root-
mean-square radius of Aj as rj =

√
φAj

({µj})/ |Aj |
and define Bj =

{
x ∈ Aj : ‖x− µj‖ ≤

√
2 rj

}
.

In step i of Algorithm 1, either
∑
j : Aj∈Badi |Aj | ≤

δn, in which case, Y ′ = ∪j : Aj∈GoodiAj has size
|Y ′| ≥ (1− β − δ)n and cost

φY ′(Si−1) =
∑

j : Aj∈Goodi

φAj
(Si−1)

≤ 5
∑

j : Aj∈Goodi

φAj
({µj})

≤ 5 φYOPT
(COPT) = 5 ρ(COPT),

that is, we get a 5-approximation to robust k-means
while discarding at most (β + δ)n points.

Otherwise, if
∑
j : Aj∈Badi |Aj | ≥ δn, then we show

that Pr (x ∈ Bj for some Aj ∈ Badi) is not too small,
and moreover, picking x ∈ Bj makes the cluster
Aj ∈ Goodi+1 for the subsequent (i + 1)-th step of
Algorithm 1. To begin with,

Pr (x ∈ Aj for some Aj ∈ Badi)

=

∑
j : Aj∈Badi φAj

(Si−1)

2 φX(Si−1)
+

∑
j : Aj∈Badi |Aj |

2n

≥
∑
j : Aj∈Badi |Aj |

2n
≥ δ

2
. (1)

Moreover, we have

Pr (x ∈ Bj | x ∈ Aj and Aj ∈ Badi) (2)

=

φBj
(Si−1)

2 φX(Si−1)
+
|Bj |
2n

φAj (Si−1)

2 φX(Si−1)
+
|Aj |
2n

≥ min

{
φBj

(Si−1)

φAj (Si−1)
,
|Bj |
|Aj |

}
(3)

Observe that Bj contains at least half of the points
in Aj , that is, |Bj | / |Aj | ≥ 1/2, for all j. Other-

wise,
∑
x/∈Bj

‖x− µj‖2 > |Aj | /2·2r2j = φAj
({µj}) =∑

x∈Aj
‖x− µj‖2, which is a contradiction.

Let p ∈ Si−1 be the point nearest to the mean
µj of Aj and let ‖p− µj‖ = d. For any Aj ∈
Badi, 5 φAj

({µj}) ≤ φAj
(Si−1) ≤ φAj

({p}) =

φAj
({µj}) + |Aj | ‖p− µj‖2, by the parallel axis the-

orem (see Proposition 1 of [1]), which implies that



‖p− µj‖ = d ≥ 2rj . Now

φBj
(Si−1) =

∑
x∈Bj

min
s∈Si−1

‖x− s‖2

≥
∑
x∈Bj

min
s∈Si−1

(‖s− µj‖ − ‖µj − x‖)2(triangle inequality)

≥ |Bj | (‖p− µj‖ −
√

2 rj)
2 ≥ |Aj |

2
(d−

√
2 rj)

2

The last inequality holds because |Bj | ≥ |Aj | /2. On
the other hand, φAj

(Si−1) ≤ φAj
({p}) = φAj

({µj})+
|Aj | ‖p− µj‖2 = |Aj | (r2j + d2). Therefore,

φBj (Si−1)

φAj
(Si−1)

≥ (d−
√

2 rj)
2

2 (r2j + d2)
≥ (2−

√
2)2

10
≥ 1

30
,

because the ratio above is an increasing function of
d for d ≥ 2rj . Hence, we can bound (3) as

Pr (x ∈ Bj | x ∈ Aj and Aj ∈ Badi)

≥ min

{
φBj (Si−1)

φAj
(Si−1)

,
|Bj |
|Aj |

}
≥ min

{
1

30
,

1

2

}
=

1

30
.

Combining this with (1), we get

Pr (x ∈ Bj for some Aj ∈ Badi) ≥ δ/60 = Ω(δ).

Moreover, for x ∈ Bj ,

φAj
(Si−1 ∪ {x}) ≤ φAj

({x})
= φAj

({µj}) + |Aj | ‖x− µj‖2

≤ φAj
({µj}) + |Aj | 2r2j ≤ 3 φAj

({µj}),

and when the algorithm updates Si ← Si−1 ∪ {x},
we have Aj ∈ Goodi+1, and the probability of this
is at least Ω(δ) as shown above. By repeating it
O(1/δ) times the inner loop of the algorithm boosts
this probability to Ω(1).

To prove Theorem 1, we use the following well known
facts about super-martingales.

Definition 3. A sequence of real valued random
variables J0, J1, . . . , Jt is called a super-martingale
if for every i > 1, E [Ji | J0, . . . , Ji−1] ≤ Ji−1.

Super-martingales have the following concentration
bound.

Theorem 4. (Azuma-Hoeffding inequality) If
J0, J1, . . . , Jt is a super-martingale with Ji+1−Ji ≤ 1,
then Pr (Jt ≥ J0 + ε) ≤ exp(−ε2/2t).

Proof. (Proof of Theorem 1) Recall that by Lemma
2, in each step of the inner loop of Algorithm 1,

• Either
∑
j : Aj∈Badi |Aj | ≤ δn, in which case,

Si−1 contains a subset of k centers that give
5-approximation to robust k-means when we
remove the farthest (β + δ)n points.

• Or the total number of bad clusters decreases
with at least a constant probability, that is,
Pr (|Badi+1| < |Badi|) = Ω(1).

For each step define an indicator variable Xi as fol-
lows.

Xi =

{
1 if |Badi+1| = |Badi|
0 otherwise.

and let Pr (Xi = 0) ≥ θ = Ω(1). Define Ji =∑
1≤j≤i (Xj − (1− θ)). Then Ji+1 − Ji ≤ 1 and

E [Ji | J0, . . . , Ji−1] = E [Ji−1 +Xi − (1− θ) | J0, . . . , Ji−1]

= Ji−1 + E [Xi | J0, . . . , Ji−1]− (1− θ)
≤ Ji−1,

which means that J1, J2, . . . , Jt is a super-martingale.
So using Theorem 4 we get the following bound:
Pr (Jt ≥ J0 + ε) ≤ exp(−ε2/2t), which translates

to Pr
(∑t

i=1(1−Xi) ≥ θt− ε
)
≥ 1 − exp(−ε2/2t).

Choosing t = (k +
√
k)/θ and ε =

√
k, we obtain,

Pr

(k+
√
k)/θ∑

i=1

(1−Xi) ≥ k

 ≥ 1− exp(−θ/4).

Therefore,

Pr
(

there are no bad clusters after (k +
√
k)/θ steps

)
≥ 1− exp(−θ/4),

or equivalently, Pr (φ(S) ≤ 5 φ(COPT )), with high
probability.

5 Experiments

Hardware description. We performed our exper-
iments on a machine having the following configu-
ration: CPU: Intel(R) Core(TM) i5-3320M CPU @
2.70GHz x 4; Memory: 8 GB.

We study the performance of robust k-means++ to
find k initial centers, wherein each iteration we use
a (1 − α, α) mixture of D2-sampling and uniform
sampling, and the algorithm marks the farthest z
points as outliers. Though we proved that α = 1/2
works well in case of outliers, we use several values of
α ∈ {0, 0.25, 0.5, 0.75, 1.0} in experiments. Although
our cost guarantee holds after removing (β + δ)n
fraction of points as outliers, we only remove the



number of points removed by other algorithms for
a fair comparison. Following is the experimental
procedure we used to compare with an algorithm
removing z outliers.

1. Sample 1 center uniformly at random.

2. In each iteration, pick 1/δ centers using (1−α, α)
mixture distribution of D2 and uniform. Repeat
this for k − 1 iterations.

3. Find z outliers corresponding to these centers.

4. Using the inliers from the previous step, we
calculate the weights of each of these O(k/δ)
centers, which is equal to the number of points in
their respective cluster. We solve this weighted
k-means instance using k-means++ sampling.
We use this procedure as a heuristic to extract k
good centers, and refer as weighted k-means++.

5. Farthest points from these centers are considered
final outliers.

The minimum, maximum, and average values are
over 10 repetitions. We compare the performance of
our algorithm with: (a) LSO (local search algorithm
for k-means with outliers) [17], (b) k-means++ [3],
(c) random seeding [23], and (d)TKM + + (Greedy
Sampling for Approximate Clustering in the Presence
of Outliers) [6]. TKM + + [6] requires two parame-
ters to derive the probability distribution – an initial
guess of optimal clustering cost, and error tolerance
parameter in clustering cost. In their paper they
did not mentioned any principal way of guessing the
clustering cost. For our empirical comparison we
used, the cost k-means++ results as initial guess
and for the error parameter we used values from
∈ {0.1, 0.5, 1, 2, 5, 10}, and report the best result.
We use precision and recall as our evaluation met-
ric. If z∗ is the set of true outliers and z is the set
of outliers reported by the algorithm, then preci-
sion:=|z∗ ∩ z|/|z|, and recall :=|z∗ ∩ z|/|z∗|.

5.1 Results on real world data sets

Results on KDDCup Full dataset: KDDFull[21]
This dataset is from 1999 kddcup competition
and contains instances describing connections of se-
quences of tcp packets, and have about 4.9M data
points. We only consider the 34 numerical features of
this dataset. We also normalize each feature so that
it has zero mean and unit standard deviation. There
are 23 classes in this dataset, 98.3% points of the
dataset belong to 3 classes (normal 19.6%, neptune
21.6%, and smurf 56.8%). We consider small clusters
as outliers and there are 45747 outliers.

We run robust k-means++ on the KDDFull dataset
with k = 3, and δ = {0.1, 0.15} and considering 45747
points as outliers. We compare its performance with
LSO, vanilla k-means++ and random initialisation,
and we delete the same number of outliers, and note
the values of precision, recall, clustering cost and
running time. We summarise our empirical findings
in Table 2,3.

Insight. We noticed that our clustering cost is sig-
nificantly better than that of k-means++, TKM + +
and random seeding. Further, on max and avg values
of precision and recall we obtained advantage over
majority of the values as compared to TKM + +,
k-means++ and random seeding. However, our run-
ning time is slightly off comparable to baselines.

Result α Cost Time(s)
Min Mean Med.

This work δ=0.05 0 2.8 2.8 2.8 150
δ=0.1 0 2.8 2.8 2.8 295
δ=0.15 0 2.8 2.8 2.8 395
TKM + + 2.83 4.49 4.49 233
KM + + 2.8 4.22 4.44 120
RAND 2.83 3.38 2.85 70

Table 2: Robust k-means++ on KDDCup Full dataset with k =
3. We consider 45747 points as outliers. The cost of Robust k-
means++ is same for all other values of α = {0.25, 0.5, 0.75, 0.1}.
LSO doesn’t stop after 8 hours. All costs are multiplicative of
107.

Result α Precision Recall
Max. Avg. Med. Max. Avg. Med.

0 0.61 0.61 0.61 0.61 0.61 0.61
0.25 0.63 0.59 0.61 0.63 0.59 0.61

This work 0.5 0.64 0.62 0.61 0.64 0.62 0.61
δ=0.1 0.75 0.63 0.59 0.61 0.63 0.59 0.61

1 0.61 0.61 0.61 0.61 0.61 0.61
0 0.64 0.61 0.61 0.64 0.61 0.61
0.25 0.64 0.60 0.61 0.64 0.60 0.61

This work 0.5 0.61 0.56 0.61 0.61 0.56 0.61
δ=0.15 0.75 0.63 0.60 0.61 0.63 0.60 0.61

1 0.63 0.61 0.61 0.63 0.61 0.61
TKM + + 0.63 0.55 0.60 0.63 0.55 0.60
KM + + 0.63 0.61 0.62 0.63 0.61 0.62
RAND 0.63 0.56 0.63 0.63 0.56 0.63

Table 3: Result on KDDCup dataset with k = 3 and 45747
outliers. LSO doesn’t stop after 8 hours.

Results on Shuttle dataset. Shuttle training
data set from UCI Machine Learning Repository [21]
contains 43, 500 points. It has 7 classes in total. The
two smallest classes contain only 17 points and we
would like to detect these as outliers. The choice
of Shuttle data set was because the local search
algorithm of [17] reported particularly poor precision
and recall values on it.

We run robust k-means++ on the Shuttle dataset
with k ∈ {5, 10, 15}, and δ = {0.05, 0.1}. In order



to have a fair basis of comparison among all the
candidate algorithms, we delete the same number of
outliers as of mentioned in LSO (see Table 4 of [17]),
and note the values of precision, recall, and cost. We
summarise our empirical findings in Tables 4, 5, 6, 7.

Result α Precision Recall
Max. Avg. Med. Max. Avg. Med.

0 0.28 0.17 0.26 0.35 0.21 0.32
0.25 0.28 0.09 0.02 0.35 0.11 0.02

This work 0.5 0.28 0.12 0.04 0.35 0.15 0.05
0.75 0.28 0.13 0.07 0.35 0.12 0.07
1 0.19 0.19 0.19 0.23 0.23 0.23

TKM + + 0.25 0.17 0.23 0.29 0.21 0.29
KM + + 0.28 0.16 0.23 0.35 0.20 0.29
RAND 0.19 0.19 0.19 0.23 0.23 0.23
LSO – 0.176 – – 0.212 –

Table 4: Robust k-means++ on Shuttle dataset with k = 5
and δ = 0.05. We delete the farthest 21 point similar to LSO.

Result α Precision Recall
Max. Avg. Med. Max. Avg. Med.

0 0.20 0.16 0.17 0.41 0.32 0.35
0.25 0.29 0.176 0.16 0.58 0.353 0.32

This work 0.5 0.20 0.14 0.16 0.41 0.29 0.32
0.75 0.23 0.14 0.14 0.47 0.29 0.29
1 0.176 0.15 0.15 0.353 0.30 0.29

TKM + + 0.26 0.14 0.11 0.52 0.29 0.23
KM + + 0.26 0.15 0.14 0.52 0.31 0.29
RAND 0.14 0.14 0.14 0.29 0.29 0.29
LSO – 0.176 – – 0.353 –

Table 5: Robust k-means++ on Shuttle dataset with k = 10
and δ = 0.05. We delete the farthest 34 point similar to LSO.

Insight. In almost every scenario robust k-
means++ outperforms random initialisation. On
the comparison with k-means++ and TKM + + our
algorithm gives comparable/better performance for
small values of k. However, when the value of k is
large k = 15, on most of the cases robust k-means++
outperforms both k-means++ and TKM + +. We
compare the performance of robust k-means++ with
LSO. Here again, we notice that for a small value
of k such as k ∈ {5, 10}, robust k-means++ give
similar performance as of LSO, while simultaneously
outperforming on some values of α. However, for a
large value of k, it significantly outperforms LSO on
the most values of α.

5.2 Results on Synthetic Data Sets

Dataset. We generate synthetic dataset in the sim-
ilar way as used in k-means++ [3] and LSO [17]. We
discuss it as follows. We pick k+z uniformly random
points from a large d-dimensional hyper-cube of side

We defer the benchmark on the clustering cost and
running time on Shuttle and Synthetic datasets the
appendix due to space limit.

Result α Precision Recall
Max. Avg. Med. Max. Avg. Med.

0 0.25 0.15 0.15 0.76 0.47 0.47
0.25 0.25 0.15 0.14 0.76 0.47 0.44

This work 0.5 0.25 0.21 0.23 0.76 0.65 0.64
0.75 0.27 0.22 0.22 0.82 0.67 0.67
1 0.17 0.14 0.13 0.52 0.44 0.41

TKM + + 0.25 0.17 0.19 0.76 0.52 0.58
KM + + 0.25 0.17 0.17 0.76 0.52 0.5
RAND 0.13 0.13 0.13 0.41 0.41 0.41
LSO – 0.181 – – 0.553 –

Table 6: Robust k-means++ on Shuttle dataset with k = 15
and δ = 0.05. We delete the farthest 51 point similar to LSO.

Result α Precision Recall
Max. Avg. Med. Max. Avg. Med.

0 0.29 0.20 0.21 0.88 0.61 0.64
0.25 0.27 0.21 0.22 0.82 0.64 0.67

This work 0.5 0.29 0.21 0.22 0.88 0.64 0.67
0.75 0.25 0.16 0.16 0.76 0.48 0.5
1 0.17 0.13 0.13 0.52 0.40 0.41

TKM + + 0.25 0.17 0.19 0.76 0.52 0.58
KM + + 0.25 0.17 0.17 0.76 0.52 0.5
RAND 0.13 0.13 0.13 0.41 0.41 0.41
LSO – 0.182 – – 0.553 –

Table 7: Robust k-means++ on Shuttle dataset with k = 15
and δ = 0.1. We delete the farthest 51 point similar to LSO.

length s = 100. We use k points from them as means
and pick n/k points around each of them from a
random Gaussian of unit variance. This gives a data
set of n + z points with n points clustered into k
clusters and the remaining z as outliers.

Empirical Evaluation. We first run robust k-
means++ with the values of k ∈ {10, 20}, α ∈
{0, 0.25, 0.5, 1}, δ ∈ {0.05, 0.1} on the synthetic
datasets with values n = 104, d = 15 , and the num-
ber of outliers {25, 50, 100}. In all the cases, simi-
lar to LSO (see Table 1 of [17]), robust k-means++
achieves both precision and recall 1.

We further perform experiments on synthetic datasets
with values n = 1000, d = 2, k = 20 and the number
of outliers 25, 50, 100. We summarised our results in
Tables 8,9,10,11.

Efficiency of robust k-means++ As mentioned
earlier, the algorithm first sample a set of size
O(k/δ), which contains k points that give O(1)-
approximation for the problem. We empirically find
a set of k points using weighted k-means++ that
gives better/comparable performance as compare
to other algorithms. The running time of the al-
gorithm is linear in n, k, d. However, for LSO it is
O( 1εk

2(k + z)2 log(n∆) + nz), where ∆ is the largest
distance between pair of points. Their time com-
plexity is of order k4, and moreover, when z = Ω(n)
it becomes quadratic in n. Empirically, we noticed



Result α Precision Recall
Max. Avg. Med. Max. Avg. Med.

0 0.96 0.85 0.84 0.96 0.85 0.84
0.25 0.92 0.82 0.84 0.92 0.82 0.84

This work 0.5 0.88 0.82 0.84 0.88 0.82 0.84
0.75 0.96 0.88 0.88 0.96 0.88 0.88
1 1 0.9 0.92 1 0.9 0.92

TKM + + 0.80 0.65 0.64 0.80 0.65 0.64
KM + + 0.96 0.51 0.48 0.96 0.51 0.48
RAND 0.4 0.07 0.04 0.4 0.07 0.04
LSO – 0.94 – – 0.94 –

Table 8: Robust k-means++ on Synthetic dataset with δ = 0.1.
n = 1000, d = 2, k = 20. We delete the farthest 25 point similar
to LSO.

Result α Precision Recall
Max. Avg. Med. Max. Avg. Med.

0 0.86 0.83 0.84 0.86 0.83 0.84
0.25 0.88 0.84 0.83 0.88 0.84 0.83

This work 0.5 0.88 0.82 0.83 0.88 0.82 0.83
0.75 0.94 0.89 0.88 0.94 0.89 0.88
1 1 0.9 0.92 1 0.9 0.92

TKM + + 0.90 0.86 0.5 0.90 0.86 0.5
KM + + 0.84 0.5 0.5 0.84 0.5 0.5
RAND 0.48 0.07 0.04 0.48 0.07 0.04
LSO – 0.91 – – 0.91 –

Table 9: Robust k-means++ on Synthetic dataset with δ = 0.1.
n = 1000, d = 2, k = 20. We delete the farthest 50 point similar
to LSO.

that our running time of our algorithm is slightly off
compare to k-means++ and TKM + +.

6 Conclusion and open questions

In this work, we present a robust sampling algorithm
for k-means clustering. Our major contribution lies
in coming up with a simple and intuitive tweak to
the k-means++ sampling algorithm, which makes it
robust to the outliers. We empirically evaluated our
algorithm on synthetic as well real-world datasets,
and showed that our proposed method seems to be
better than k-means++, random initialization, and
[17], when the value of k and/or the fraction of out-
liers is large, and when these outliers are very far
away from the inliers. Our work leaves the possibil-
ity of several open questions. We discuss them as
follows:

Our algorithm samples a set of O(k/δ) points which
contain some k centers that givesO(1)-approximation
for the k-means problem with outliers. For analysis
purpose, we generate all possible subsets of size k,
and pick the best solution, which has time complexity
exponential in k. For experiments, we use weighted
k-means++ as a heuristic to find a set of k-points,
which gives good results. Coming up with an algo-
rithm that can pick k points from the O(k/δ) sized
set in time polynomial in k, and linear in n, d, and
simultaneously offers a O(1)-factor approximation, is

Result α Precision Recall
Max. Avg. Med. Max. Avg. Med.

0 0.80 0.77 0.77 0.97 0.92 0.93
0.25 0.80 0.77 0.77 0.97 0.93 0.93

This work 0.5 0.81 0.78 0.77 0.98 0.94 0.93
0.75 0.81 0.79 0.79 0.98 0.95 0.95
1 0.83 0.79 0.79 0.99 0.95 0.94

TKM + + 0.75 0.49 0.54 0.90 0.59 0.65
KM + + 0.63 0.37 0.32 0.76 0.44 0.39
RAND 0.33 0.21 0.251 0.40 0.26 0.25
LSO – 0.72 – – 0.91 –

Table 10: Robust k-means++ on Synthetic dataset with δ =
0.1. n = 1000, d = 2, k = 20. We delete the farthest 120 point
similar to LSO.

Result α Precision Recall
Max. Avg. Med. Max. Avg. Med.

0 0.79 0.77 0.77 0.95 0.93 0.93
0.25 0.80 0.78 0.78 0.97 0.94 0.93

This work 0.5 0.79 0.77 0.77 0.95 0.93 0.93
0.75 0.78 0.76 0.77 0.94 0.92 0.92
1 0.80 0.77 0.77 0.97 0.92 0.92

TKM + + 0.75 0.49 0.54 0.90 0.59 0.65
KM + + 0.62 0.33 0.30 0.74 0.39 0.36
RAND 0.33 0.2 0.2 0.39 0.23 0.23
LSO – 0.72 – – 0.91 –

Table 11: Robust k-means++ on Synthetic dataset with δ =
0.05. n = 1000, d = 2, k = 20. We delete the farthest 120 point
similar to LSO.

an open question of this work.

We analyzed the bounds of our algorithm for α = 1/2.
However, we performed experiments with several
values of α ∈ {0, 0.25, 0.5, 0.75, 1}. We notice that
in most of the cases at least on one values of α, we
outperformed w.r.t. other candidate algorithms. For
a given distribution of points, finding the optimal
value of α is another open question of this work.
Finally, given the simplicity, accuracy, and efficiency
of our algorithm, we hope that it will be adopted in
practice.
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Escudero, and Alfonso Gordaliza. Robustness
properties of k means and trimmed k means.
Journal of the American Statistical Association,
94:956–969, 1999.

[15] Alexandros Georgogiannis. Robust k-means: a
theoretical revisit. In Advances in Neural Infor-
mation Processing Systems 29.

[16] Teofilo F. Gonzalez. Clustering to minimize the
maximum intercluster distance. Theor. Comput.
Sci., 38:293–306, 1985.

[17] Shalmoli Gupta, Ravi Kumar, Kefu Lu, Ben-
jamin Moseley, and Sergei Vassilvitskii. Lo-
cal search methods for k-means with outliers.
PVLDB, 10(7):757–768, 2017.

[18] P.J. Huber, J. Wiley, and W. InterScience. Ro-
bust statistics. Wiley New York, 1981.

[19] Ravishankar Krishnaswamy, Shi Li, and Sai
Sandeep. Constant approximation for k-median
and k-means with outliers via iterative round-
ing. In Proceedings of the 50th Annual ACM
SIGACT STOC 2018, Los Angeles, CA, USA,
June 25-29, 2018, pages 646–659, 2018.

[20] Michael Langberg and Leonard J Schulman. Uni-
versal ε-approximators for integrals. In Proceed-
ings of the twenty-first annual ACM-SIAM sym-
posium on Discrete Algorithms, pages 598–607.
SIAM, 2010.

[21] M. Lichman. Uci machine learning repository.
2013.

[22] Hongfu Liu, Jun Li, Yue Wu, and Yun
Fu. Clustering with outlier removal. CoRR,
abs/1801.01899, 2018.

[23] S. Lloyd. Least squares quantization in pcm.
IEEE Trans. Inf. Theor., 28(2):129–137, Septem-
ber 2006.

[24] Andrea Vattani. K-means requires exponentially
many iterations even in the plane. In Proceedings
of the Twenty-fifth Annual Symposium on Com-
putational Geometry, SCG ’09, pages 324–332,
2009.


