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Abstract

This work examines the convergence of stochas-
tic gradient-based optimization algorithms that
use early stopping based on a validation func-
tion. The form of early stopping we consider
is that optimization terminates when the norm
of the gradient of a validation function falls
below a threshold. We derive conditions that
guarantee this stopping rule is well-defined,
and provide bounds on the expected number
of iterations and gradient evaluations needed
to meet this criterion. The guarantee accounts
for the distance between the training and vali-
dation sets, measured with the Wasserstein dis-
tance. We develop the approach in the general
setting of a first-order optimization algorithm,
with possibly biased update directions subject
to a geometric drift condition. We then derive
bounds on the expected running time for early
stopping variants of several algorithms, includ-
ing stochastic gradient descent (SGD), decen-
tralized SGD (DSGD), and the stochastic vari-
ance reduced gradient (SVRG) algorithm. Fi-
nally, we consider the generalization properties
of the iterate returned by early stopping.

1 INTRODUCTION

This work considers the minimization of a differentiable
and possibly nonconvex objective function:

min
x∈Rd

f(x). (1)

For nonconvex problems, a generally accepted notion of
success for algorithms that use only first-order informa-
tion is that an approximate stationary point is generated.
These are points x ∈ Rd where the norm of the gradient
of f is small. In a typical machine learning scenario, f
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is the average loss over a dataset of training examples,
and it is common to solve problem (1) using stochastic
gradient-based optimization, for instance, stochastic gra-
dient descent (SGD; see Algorithm 1). The success of
SGD in machine learning problems has led to many ex-
tensions of the algorithm, including variance-reduced and
distributed variants (reviewed in Section 1.1).

A common approach to stopping optimization in practice
is to use early stopping, in which a performance crite-
rion is periodically evaluated on a validation function and
optimization terminates once this condition is met. How-
ever, there is little theoretical work on the run-time of
nonconvex optimization with such early stopping rules.
In general, one would expect that the run-time and per-
formance will depend on several factors, including the
similarity between the validation and training functions,
the desired level of solution accuracy, and internal settings
of the optimization algorithm, such as learning rates.

In this work, we carry out an analysis of early stopping
when the criterion is that the algorithm has generated
an approximate stationary point for a validation func-
tion. Formally, we consider the stopping time defined as
the first time, or iteration number, that an iterate has the
property of being an approximate stationary point for the
validation function, and we derive upper bounds on the ex-
pected value of this stopping time. Furthermore, although
the stopping time is defined in terms of stationarity of the
validation function, we also derive a bound on the station-
arity gap of the training function at the resulting iterate,
in terms of the Wasserstein distance between the training
and validation sets. As an extension, we describe how
to leverage Wasserstein concentration results to bound
the expected stationarity gap with respect to the testing
distribution from which both the training and validation
datasets are drawn.

The analysis is carried out for several procedures, in-
cluding stochastic gradient descent (SGD), decentralized
SGD (DSGD), and the stochastic variance reduced gradi-



ent (SVRG) algorithm, The result is new bounds on the
expected number of Incremental First-order Oracle (IFO)
calls needed by these algorithms to generate approximate
stationary points. We believe the general technique used
to obtain the results will be useful for analyzing the ex-
pected running time of other optimization algorithms as
well.

Main contributions. Our main contributions include:

◦ We present a non-asymptotic analysis of SGD with
early stopping that leads to a bound on the expected
amount of resources needed to find approximate sta-
tionary points of the training function, including the
number of iterations (Proposition 10) and gradient eval-
uations (Corollary 12). The analysis allows for biases
in the update direction, subject to a geometric drift
condition on the error terms (specified in Assumption
9.)

◦ We specialize the results to decentralized SGD, a vari-
ant of SGD designed for distributed computation, re-
sulting in upper bounds on the number of iterations
(Proposition 16) and gradient evaluations (Corollary
17) needed by the algorithm. This is done by mod-
eling DSGD as a biased form of SGD, whose bias is
controlled in part by the diffusion coefficient of the
network communication graph.

◦ We derive a run-time bound for a variant of nonconvex
SVRG with early stopping, obtaining a bound on the
expected number of iterations (Proposition 18) and
IFO calls (Corollary 19) need to generate approximate
stationary points.

◦ We demonstrate how Wasserstein concentration bounds
can be leveraged to bound the generalization perfor-
mance of the iterate returned by the algorithms (Section
6), expressed in terms of the number of samples used
to construct the datasets, and properties of the testing
distribution.

1.1 Related work

The study of stochastic optimization goes back (at least)
to the pioneering work of Robbins and Monro (Robbins &
Monro, 1951). Subsequent developments include the or-
dinary differential equation (ODE) method (Ljung, 1977)
and stochastic approximation (Kushner & Clark, 1978),
which emphasizes the asymptotic behavior of the algo-
rithms. Asymptotic performance of biased SGD has been
considered in (Bertsekas & Tsitsiklis, 2000) which es-
tablishes the asymptotic convergence of the algorithm to
stationary points.

The randomized stochastic gradient (RSG) method
(Ghadimi & Lan, 2013) uses randomization to obtain a
non-asymptotic performance guarantee for SGD applied
to nonconvex functions. In one interpretation of RSG, the
algorithm (e.g., SGD) is run for a fixed number of itera-
tions, and a random iterate is selected as the final output
of optimization (alternatively, the algorithm is executed
for a random number of steps, after which the final iterate
is returned.) The randomization technique has became
a standard tool for analyzing optimization algorithms in
the nonconvex setting (Ghadimi & Lan, 2016; Lian et al.,
2017; Reddi et al., 2016; Zhang et al., 2016; Lei et al.,
2017; Lian et al., 2015). Follow-up works have employed
randomization for the analysis of nonconvex optimiza-
tion in diverse algorithmic settings, such as asynchronous
(Lian et al., 2015) and decentralized (Lian et al., 2017)
optimization.

Machine learning problems often involve an objective that
is a finite sum of functions, and, in this setting, variance re-
duction techniques lead to improved rates of convergence
over SGD (Johnson & Zhang, 2013; L. Roux et al., 2012;
Defazio et al., 2014). Analysis of variance reduction has
extended beyond convex functions, from an application to
principal components analysis (Shamir, 2015) to general
nonconvex functions (Allen-Zhu & Hazan, 2016; Reddi
et al., 2016; Lei et al., 2017).

In contrast to the aforementioned works, in which random-
ization is used to analyze performance in the nonconvex
case, this work considers algorithms that use a different
approach to stopping optimization, based on periodically
evaluating a performance criterion with respect to a valida-
tion function. There are several variants of early stopping
that appear in practice. For instance, one approach is to
train until the error on a validation set increases (Wang &
Carreira-Perpinan, 2012), (Dai & Le, 2015), or there is no
improvement for a number of epochs (Zhang et al., 2019).
Alternatively, one can train the model for a fixed number
of epochs, and then take the parameter from the epoch at
which validation error is lowest (Jaderberg et al., 2017),
(Lee et al., 2018), (Franceschi et al., 2019). Despite the
prevalence of early stopping, there is comparatively little
work on the analysis of this strategy in the nonconvex
setting, and our work aims to fill this gap

Several recent works also have explored the average
amount of resources needed to reach a desired perfor-
mance level in optimization. The expected running time
of a stochastic trust region algorithm is given in (Blanchet
et al., 2016), based on a renewal-reward martingale ar-
gument. This proof technique was also used to analyze
the expected run time of a stochastic line search method
(Paquette & Scheinberg, 2018). Our convergence analysis
is similar in spirit, as we also are interested in the ex-



pected amount of time or other resources required to meet
the performance guarantee. However, our focus is on
different algorithms (SGD, DSGD, and SVRG), and the
variants of these algorithms that we consider contain ex-
plicit stopping mechanisms based on validation functions.
Other recent work considering the theoretical aspects of
early stopping include (Duvenaud et al., 2016), where the
authors developed an interpretation of early stopping in
terms of variational Bayesian inference. Early stopping
for a least squares problem in a reproducing kernel Hilbert
space has been treated in (Lin & Rosasco, 2016), while
the implications of early stopping on generalization were
studied in (Hardt et al., 2016). To the authors’ knowledge,
the present work is the first to analyze run-time when us-
ing a validation function for early stopping in nonconvex
optimization.

2 PRELIMINARIES

Let f : Rq × Rd → R be a loss function whose value we
denote by f(y, x). Intuitively, the variable y represents
an (input, output) pair, and x represents the parameters of
a model. Throughout, we shall assume that the gradient
of the loss function is Lipschitz continuous:

Assumption 1. The function f : Rq × Rd → R is
bounded from below by f∗ ∈ R, and ∇xf is L-Lipschitz
continuous as a function of x: ∀y ∈ Rq, x1, x2 ∈ Rd,

‖∇xf(y, x1)−∇xf(y, x2)‖ ≤ L‖x1 − x2‖.

This is a standard assumption that is also referred to as
smoothness of the loss function. Where appropriate, we
will make a distinction between the training function fT ,
which is used to calculate gradients, and a validation
function fV used to decide when to stop training:

Assumption 2. The function fT is defined using a set
YT ⊆ Rq as fT (x) = 1

nT

∑
y∈YT

f(y, x), where nT =
|YT |, and the function fV is defined using a set YV ⊆ Rq
as fV (x) = 1

nV

∑
y∈YV

f(y, x), where nV = |YV |.

Note that there is no assumption that the validation and
training sets are disjoint. At times we will assume a bound
on the variance of stochastic gradients of fT :

Assumption 3. There is a σ2
v ≥ 0 such that ∀ x ∈ Rd,

1

nT

∑
y∈YT

‖∇xf(y, x)−∇fT (x)‖2 ≤ σ2
v .

In the SGD and DSGD algorithms considered below, op-
timization takes place on the training function, while the
stopping criteria is evaluated using the validation function.
To guarantee that this leads to well-defined behavior, we

will make use of a bound on the distance between the train-
ing and validation functions. Intuitively, the functions fT
and fV will be close when the datasets YT and YV are sim-
ilar. Formally, the datasets YT and YV determine probabil-
ity measures µT and µY , defined as µT = 1

nT

∑
y∈YT

δy
and µV = 1

nV

∑
y∈YV

δy, respectively, where δy is the
delta measure δy(A) = 1y∈A for all sets A. We can
compare these measures using the Wasserstein distance,
which is defined as follows.

For q ≥ 1, p ≥ 1, denote by Pp(Rq) the probability mea-
sures on Rq with finite moments of order p. Recall that
a coupling of probability measures µ1 and µ2 is a proba-
bility measure γ on Rq × Rq such that for all measurable
sets A, γ(A × Rq) = µ1(A) and γ(Rq × A) = µ2(A).
Intuitively, a coupling transforms data distributed like µ1

into a data distributed according to µ2 (and vice versa).
The p-Wasserstein distance on Pp(Rq), denoted by dp, is
defined as:

dp(µ1, µ2)= inf
γ∈Γ(µ1,µ2)

(
E

(x1, x2)∼γ
[ ‖x1 − x2‖p ]

) 1
p

(2)

where Γ(µ1, µ2) is the set of all couplings of µ1 and µ2.
For more details, including a proof that this definition in-
deed satisfies the axioms of a metric, the reader is referred
to Chapter 6 of (Villani, 2008).

In order to link the distance of the functions ∇fT and
∇fV to the distance between the empirical measures µT
and µV , the following assumption will be useful:

Assumption 4. The function ∇xf is G-Lipschitz contin-
uous as a function of y: ∀x ∈ Rd, y1, y2 ∈ Rq,

‖∇xf(y1, x)−∇xf(y2, x)‖ ≤ G‖y1 − y2‖.

Assumption 4 implies the following bound: ∀x ∈ Rd,

‖∇fV (x)−∇fT (x)‖ ≤ Gd1(µV , µT ). (3)

To see that (3) follows from Assumption 4, let γ be any
coupling of µV and µT . Then

‖∇fV (x)−∇fT (x)‖=
∥∥∥∥ E

(u,v)∼γ
[∇xf(u, x)−∇xf(v, x)]

∥∥∥∥
≤ G E

(u,v)∼γ
[‖y1 − y2‖] .

Taking the infimum over all couplings of µV and µT
yields Equation (3). For an example of a function that
satisfies Assumption 4, consider the following:

Example 5. Let g : Rq × Rd → R be any smooth
(that is, infinitely differentiable) function, and let h :
Rd → Rd be the function that applies the hyperbolic
tangent function to each of its components: h(x) =
(tanh(x1), . . . , tanh(xd)). Define f(y, x) = g(y, h(x)),



and further suppose that the training data are bounded:
‖y‖ ≤ J for all y ∈ YT ∪ YV . To guarantee that As-
sumption 4 is satisfied, it is sufficient that the derivative
∂2f
∂x∂y (y, x) is bounded as a bilinear map, uniformly in y
and x (Proposition 2.4.8 in (Abraham et al., 2012)). It
can be shown that this is indeed the case, and we may
take G = sup‖y‖≤J,‖x‖≤

√
d ‖

∂2g
∂x∂y (y, x)‖. We defer the

details to an appendix.

In our analyses the notion of success is that an algorithm
generates an approximate stationary point:

Definition 6. A point x ∈ Rd is an ε-approximate sta-
tionary point of f if ‖∇f(x)‖2 ≤ ε.

We measure the complexity of algorithms according to
how many function value and gradient queries they make.
Formally, an IFO is defined as follows (Agarwal & Bottou,
2015):

Definition 7. An IFO takes a parameter x and an input y
and returns the pair (f(y, x),∇xf(y, x)).

In Appendix A, we briefly recall the notion of filtration,
stopping times, and other concepts from stochastic pro-
cesses that will be used in this paper.

3 BIASED SGD

In this section we present our analysis of SGD with early
stopping. The steps of the procedure are detailed in in Al-
gorithm 1. Starting from an initial point x1, the parameter
is updated at each iteration with an approximate gradient
hn, using a step-size η. The norm of the gradient of the
validation function is evaluated every m iterations, and
the algorithm ends when the squared norm of the gradient
falls below a threshold ε.

We assume that the update direction ht is a sum of two
components, vt and ∆t, that represent an unbiased gradi-
ent estimate and an error term, respectively:

ht = vt + ∆t. (4)

Let {Ft}t≥0 be a filtration such that x1 is F0-measurable,
and for all t > 1, the variables (vt,∆t) are Ft-
measurable. Our assumptions on the vt are as follows.

Assumption 8. For any t ≥ 1, it holds that

E [vt −∇fT (xt) | Ft−1] = 0, (5)

E
[
‖vt −∇fT (xt)‖2 | Ft−1

]
≤ σ2

v . (6)

Assumption 8 states that the update terms vt are valid
approximations to the gradient, and have bounded vari-
ance. For the bias terms we assume the following growth
condition:

Algorithm 1 SGD with early stopping
1: input: Initial point x1 ∈ Rd
2: t = 1
3: /* check if stopping criteria is satisfied. */
4: while ‖∇fV (xt)‖2 > ε do
5: /* if not, perform an epoch of training. */
6: for n = t to t+m− 1 do
7: xn+1 = xn − ηhn
8: end
9: t = t+m

10: end
11: /* once criteria is met, return current iterate. */
12: return xt

Assumption 9. There is a sequence of random variables
V1, V2, . . ., and U1, U2, . . . such that for all t ≥ 1 the
pair (Vt, Ut) is Ft-measurable, ‖∆t‖2 ≤ Vt, and the Vt
satisfy the following geometric drift condition: For some
pair of constants α ∈ [0, 1) and β ≥ 0,

V1 ≤ β, (7)
∀t ≥ 2, Vt ≤ αVt−1 + Ut−1, (8)
∀t ≥ 1, E [Ut | Ft−1] ≤ β. (9)

Assumption 9 models a scenario where the bias dynamics
are a combination of contracting and expanding behav-
iors. Contraction shrinks the error and is represented by
a factor α. External noise, represented by the Ut terms,
prevents the error from vanishing completely. Note that
the assumption would be satisfied in the unbiased case by
simply setting Vt = 0.

We can now state our result on the expected number of
iterations required by biased SGD with early stopping:

Proposition 10. Let {xt}t≥1 be as in Algorithm 1. Let
Assumptions 1, 2, 4, 8, and 9 hold. For ε > 0, let τ(ε) be
the stopping time

τ(ε)=inf{n≥1|n≡ 1(mod m) and ‖∇fV (xn)‖2≤ ε}.

Suppose that η ≤ 1
L and

ε− 4Lmησ2
v − 4mβ/(1− α)− 2G2d1(µV , µT )2 > 0.

Then

E[τ(ε)] ≤
G2d1(µV ,µT )2 +2(fT (x1)−f∗)/η+ ε+2β/(1−α)

ε/(2m)− 2Lησ2
v − 2β/(1− α)−G2d1(µV , µT )2/m

.

Furthermore, the gradient of fT at xτ(ε) satisfies

‖∇fT (xτ(ε))‖2 ≤
(√
ε+Gd1(µV , µT )

)2
. (10)



We present a sketch of the proof below, saving the full
proof for an appendix.

Proof sketch. To emphasize the main ideas, we make the
simplifying assumptions that there are no error terms
(∆t = 0), the Lipschitz constant for the gradient is L = 2,
and the training and validation sets are equal (YT = YV ).
To establish a bound on E[τ(ε)], we first consider the
truncated stopping time τ(ε)∧n, defined as the minimum
of τ(ε) and an arbitrary iteration number n. We find an
upper bound on E[τ(ε) ∧ n] that is independent of n, and
appeal to the monotone convergence theorem to conclude
that this same bound must hold for E[τ(ε)].

Using a quadratic growth bound that follows from the
Lipschitz property of the gradient (Equation (18) in the
appendix), for any n it holds that

f(xτ(ε)∧n+1) ≤ f(x1)− η(1− η)

τ(ε)∧n∑
t=1

‖∇f(xt)‖2

− η(1− 2η)

τ(ε)∧n∑
t=1

∇f(xt)
T δt + η2

τ(ε)∧n∑
t=1

‖δt‖2.

Taking expectations and applying Proposition 23, we ob-
tain

E
[
f(xτ(ε)∧n+1)

]
≤f(x1)−η(1−η)E

τ(ε)∧n∑
t=1

‖∇f(xt)‖2


+ η2σ2
v E[τ(ε) ∧ n].

Rearranging terms and noting that f(xτ(ε)∧n+1) ≥ f∗,

η(1− η)E

τ(ε)∧n∑
t=1

‖∇f(xt)‖2
 ≤

f(x1)− f∗ + η2σ2
v E[τ(ε) ∧ n].

Next, using the definition of τ(ε), we have

ε (E[τ(ε) ∧ n]−1)

m
≤E

τ(ε)∧n∑
t=1

1t≡1 (mod m)‖∇f(xt)‖2


≤ E

τ(ε)∧n∑
t=1

‖∇f(xt)‖2
 .

Combining the previous two equations, upon rearranging
terms we obtain

η
(
(1−η)

ε

m
−ησ2

v

)
E[τ(ε)∧n]≤f(x1)−f∗+ η(1− η)ε

m

The coefficient on the left hand side of this equation is
positive provided that

η <
ε

mσ2 + ε

Choose a c ∈ (0, 1) and let η = c · ε
mσ2+ε . Rearranging

terms, and letting n→∞, we obtain

E[τ(ε)] ≤ (f(x1)− f∗)m2σ2

ε2c(1− c)
+O

(m
ε

)
.

We refer the reader to the appendix for a complete proof.

Note that the condition on η in the proposition requires
that it scales inversely with the epoch length m. Whether
this argument can be refined to yield conditions on ε that
are independent of m, we leave as an open question. Let
us note that the situation is somewhat more favorable in
the case of SVRG. In our analysis of SVRG below, the
introduction of early stopping does not produce any new
constraints on the step-size.

Proposition 10 implies that SGD can find ε-approximate
stationary points, for any ε > 4mβ/(1 − α) +
2G2d1(µV , µT )2. We can relax this condition, allowing
for smaller values of ε, by assuming a coupling between
the step-size and the expansion coefficient, as demon-
strated in the next corollary.

Corollary 11. Let Assumptions 1, 2, 4, 8, and 9 hold.
In the context of Proposition 10, let the constant β be
of the form β = ηR for some R ≥ 0, and suppose that
ε > 2G2d1(µV , µT )2. Let c ∈ (0, 1) and let the step-size
be

η = c ·min

{
1

L
,
ε/2−G2d1(µV , µT )2

m(2Lσ2
v + 2R/(1− α))

}
. (11)

Then

E[τ(ε)] = O
(

m2 (1 +R/(1− α))

(1− c) c (ε− 2G2d1(µV , µT )2)2

)
.

The reader may refer to the full proof contained in an
appendix for the complete formula, including lower order
terms. This result will be used below, in our analysis of
DSGD.

We now specialize the results in the case of using SGD to
minimize a finite sum using unbiased gradient estimates.

Corollary 12. Let Assumptions 1, 2, 3, 4 hold. Sup-
pose each gradient estimate is obtained by selecting
an element yt ∈ YT uniformly at random and setting
vt = ∇xf(yt, xt). Let ε > 2G2d1(µV , µT )2 and con-
sider running SGD with epoch length m ≥ 1, and step-
size η as defined in (11) with c = 1/2. Then the expected
number of IFO calls used by SGD with early stopping is

E [IFO (ε)] = O
(

mnV +m2

(ε− 2G2d1(µV , µT )2)2
+ nV

)



Algorithm 2 DSGD with early stopping
1: input: Node id i, initial parameters xi1.
2: t = 1
3: /* check if stopping criteria is satisfied. */
4: while ‖∇fV (xt)‖2 > ε do
5: /* if not, perform an epoch of training. */
6: for n = t to t+m− 1 do
7: /* perform local average and descent steps. */

8: xin+1 =
M∑
j=1

ai,jx
j
n − ηvin

9: end
10: t = t+m
11: end
12: /* once criteria is met, return current iterate. */
13: return xt

Note that when d1(µV , µT ) = 0, this result states that
the expected IFO complexity is O(1/(ε2)). This can
be compared with the RSG algorithm, where O(1/(ε2))
iterations are sufficient for the expected squared norm of
the gradient at a random iterate to be at most ε (Corollary
2.2 in (Ghadimi & Lan, 2013)).

4 DECENTRALIZED SGD

In this section we analyze the expected running time of
decentralized SGD (DSGD), a variant of SGD designed
for distributed optimization across a network of com-
pute nodes. Recently, a randomization-based analysis of
DSGD was presented in (Lian et al., 2017). We com-
plement that analysis by studying the expected running
time of a variant of DSGD with early stopping. The main
idea is to model the algorithm as a biased form of SGD
that satisfies the geometric drift condition described in
Assumption 9.

The steps of DSGD are shown in Algorithm 2. The pro-
cedure involves M > 0 worker nodes that participate
in the optimization, and an M ×M communication ma-
trix a describing the connectivity among the workers;
ai,j > 0 means that workers i and j will communicate
at each iteration, while ai,j = 0 means there is no direct
communication between those workers. At each step of
optimization, every node computes a weighted average of
the parameters in its local neighborhood, as determined
by the connectivity matrix. This is combined with a local
gradient approximation to obtain the new parameter at
the worker. Every m epochs, the norm of gradient of the
validation function is evaluated at the average parameter
across the system, denoted xt:

xt =
1

M

M∑
i=1

xi (12)

When this norm falls below a threshold, the algorithm
terminates, returning the final value of xt.

The intuitive justification for DSGD is that it may be more
efficient compared to naive approaches to parallelizing
SGD, since two nodes i and j need not communicate
when ai,j = 0. In (Lian et al., 2017) those authors offer
theoretical support for the superiority of DSGD. In the
present work, our goal is to analyze the expected running
time of DSGD as an example of how the theory developed
above may be applied in practice.

For the analysis, define the filtration {Ft}t≥0 as follows:

F0 = σ
( {
xi1
∣∣ 1 ≤ i ≤M} ),

∀t ≥ 1, Ft = σ
( {
xi1, v

i
n

∣∣ 1 ≤ n ≤ t, 1 ≤ i ≤M
} )
.

We assume that the gradient estimates used at each worker
are unbiased and have bounded variance.

Assumption 13. For any t ≥ 1 and 1 ≤ i ≤M,

E
[
vit −∇fT (xit) | Ft−1

]
= 0, (13)

E
[∥∥vit −∇fT (xit)

∥∥2 | Ft−1

]
≤ σ2

v . (14)

The connectivity matrix a is subject to the same condi-
tions as in (Lian et al., 2017), stated below as Assumption
14. In this Assumption, λi(a) refers to the eigenvalues of
the matrix a in nonincreasing order: λi(a) ≥ λi+1(a) for
1 ≤ i < M .

Assumption 14. The M × M connectivity matrix,
denoted a, is symmetric and stochastic. The diffu-
sion coefficient, denoted by ρ and defined as ρ =
max2≤i≤M |λi(a)|2, satisfies ρ < 1.

We will show that the sequence of averages xt for t =
1, 2, . . . can be modeled in terms of biased SGD, using
the tools from Section 3. This involves showing that the
distance between local parameter values and the system
average obey a geometric drift condition, and furthermore,
this distance can be controlled through the step-size.

Proposition 15. Let Assumptions 1, 2, 13, and 14 hold,
and let the step-size satisfy

η ≤
1−√ρ
4L
√

2
. (15)

Define the variables V1, U1, V2, U2, . . . and the constants



α, β as follows:

Vt =
L2

M

M∑
i=1

‖xit − xt‖2, (16a)

Ut =
32 η2 L2

M(1−√ρ)

M∑
i=1

‖vit −∇f(xit)‖2, (16b)

α =

(
3 +
√
ρ
)2

16
, (16c)

β = η
8L

1−√ρ
σ2
v . (16d)

Then for all t ≥ 1 it holds that Vt+1 ≤ αVt + Ut and
E[Ut | Ft−1] ≤ β.

We can now move to the main result on decentralized
SGD. The result gives conditions that guarantee the ex-
pected time E[τ(ε)] is finite, and also bounds this time
in terms of the problem data, including the epoch length,
variance, and the mixing rate of the connectivity matrix.
Proposition 16. Let Assumptions 1, 2, 4, 14, and 13 hold,
and assume that the initial parameters at every node are
equal: xi1 = xj1 for all 1 ≤ i, j ≤ M . Suppose that
ε > 2G2d1(µV , µT )2. Let c ≤ (1−√ρ)/(4

√
2), and let

the step-size be

η=
c

L
min

{
1,

ε/2−G2d1(µV , µT )2

2mσ2
v(1+128/(7+5ρ+ρ3/2−13

√
ρ))

}
.

If τ(ε) is the stopping time

τ(ε)=inf{n≥1|n≡ 1(mod m) and ‖∇fV (xn)‖2≤ ε}.

then

E[τ(ε)] =

O
(

m2

(1−c) c (ε−2G2d1(µV , µT )2)2(1−√ρ)2

)
.

Note that in the above result, the order of the convergence
is the same as for regular SGD.

Using these tools allows us to bound the expected num-
ber of IFO calls needed by DSGD to find approximate
stationary points.
Corollary 17. Let Assumptions 1, 2, 3 and 4 hold. Sup-
pose each gradient estimate is obtained by selecting an
element yjt ∈ YT uniformly at random and setting vjt =
∇xf(yjt , x

j
t ). Let ε > 2G2d1(µV , µT )2 and consider

running DSGD with epoch-length m ≥ 1, and step-size η
as defined in Proposition 16 with c = (1−√ρ)/(4

√
2).

Then the expected number of IFO calls used by DSGD
with early stopping is

E [IFO(ε)] =

O

(
m(nV +mM)

(1−√ρ)3√ρ (ε− 2G2d1(µV , µT )2)
2 + nV

)
.

Algorithm 3 SVRG with early stopping
1: input: Initial point x1

m ∈ Rd

2: for s = 1, 2, . . . do
3: xs+1

0 = xsm
4: gs+1 = 1

nT

∑
y∈YT

∇xf(y, xs+1
0 )

5: if ‖gs+1‖2 ≤ ε then return xs+1
0

6: for t = 0 to m− 1 do
7: Sample yst uniformly at random from YT

8: vst =∇xf(yst , x
s+1
t )−∇xf(yst , x

s+1
0 ) + gs+1

9: xs+1
t+1 = xs+1

t − ηvst
10: end
11: end

Note the factor of M that appears in the numerator. This
is due to the fact that M gradients are evaluated at each
iteration of the algorithm, one at each node.

5 SVRG

In this section we analyze a variant of SVRG (Johnson &
Zhang, 2013) with early stopping. The steps of the proce-
dure are shown in Algorithm 3. Each epoch begins with a
full gradient computation (Line 4). Next, the norm of the
gradient is computed, and if it falls below the threshold
ε, the algorithm terminates, returning the current iterate.
Otherwise, an inner loop runs for m steps. The first step
of the inner loop is to choose a random data point (Line
7). Then, the update direction is computed (Line 8) and
used to obtain the next parameter (Line 9).

The technical tools we use to analyze SVRG with early
stopping include existing bounds for SVRG (Reddi et al.,
2016) along with the optional stopping theorem. Together,
they yield the following bound on the expected number
of epochs until SVRG with early stopping terminates.

Proposition 18. Let Assumptions 1 and 2 hold and con-
sider the variables xs+1

t defined by Algorithm 3. Suppose
that the step-size is set to η = 1/(4Ln

2/3
T ) and the epoch

length is m = b4nT /3c. For ε > 0, define τ(ε) to be the
stopping time τ(ε) = inf

{
s ≥ 1

∣∣ ‖∇fT (xs+1
0 )‖2 ≤ ε

}
.

Then

E[τ(ε)] ≤ 1 +
40Ln

2/3
T (fT (x1

m)− f∗)
ε

.

Note that Proposition 18 counts the number of epochs un-
til an approximate stationary point is generated. A bound
on the number of IFO calls can be obtained by multiply-
ing τ by the number of IFO calls per epoch, which is
nT + 2m. This immediately leads to the following result:



Corollary 19. Let Assumptions 1 and 2 hold and suppose
the step-size η and epoch length m are defined as in
Proposition 18. Then, the expected number of IFO calls
until SVRG returns an approximate stationary point is
E [IFO (ε)] = O((n

5/3
T /ε) + nT ).

This result may be compared with Corollary 4 of (Reddi
et al., 2016), which concerns an upper bound on the IFO
calls needed for the expected (squared) norm of the gradi-
ent at a randomly selected iterate to be less than ε. Our
result concerns the expected number of IFO calls before
the algorithm terminates with an iterate that is guaranteed
to be an approximate stationary point. Note that introduc-
ing early stopping does not add any complexity, compared
to SGD. This is because the full gradient is already calcu-
lated at each iteration, and the only additional step in the
algorithm is computation of the norm.

6 GENERALIZATION PROPERTIES

Typically, the training and validation sets are made of
independent samples from a test distribution µ, and it is
of interest to estimate the model performance relative to
this test distribution. Formally, define the generalization
error fG as fG : Rd → R as fG(x) = Ey∼µ[f(y, x)]. In
this section, we consider upper bounds on the quantity

E
[∥∥∇fG(xτ(ε))

∥∥2
]
, (17)

where xτ(ε) is the iterate returned by an optimization
algorithm with early stopping. Note that this expectation
is over both the variates generated by optimization and
the random choice of the datasets YV and YT . In this
section we show how Wasserstein concentration results
can be used to bound (17), in terms of both the norm of
the gradient of the training function, and the Wasserstein
distance between µ and its empirical version used for
optimization.

To begin, note that under Assumption 4, the gradient of
the generalization error can be related to the gradient of
the training error by

E[‖∇fG(xτ(ε))‖] ≤ E[‖∇fT (xτ(ε))‖] +GE[d1(µT , µ)]

The second term on the right is the expected distance
between the empirical measure µT and the data distribu-
tion µ. Intuitively, for large values of nT the empirical
distribution should be a good approximation to the true
distribution, and the distance should be small. Investiga-
tions into the convergence rate of dp(µ, µT ) as a function
of nT has received significant attention, beginning with
(Dudley, 1969). For more background we refer the reader
to (Dereich et al., 2013),(Weed & Bach, 2017) and ref-
erences therein. For our purposes, the basic idea can be
illustrated with the following result.

Theorem 20 ((Dereich et al., 2013), Theorem 1). For
d ≥ 3, let µ be a measure on Rd, such that J =

Ey∼µ
[
‖y‖3

]1/3
< ∞, and let µN be an empirical ver-

sion of µ constructed from N samples. Then there is a
constant κd such that

E
[
d2 (µ, µN )

2
]
≤ κdJN−3/d.

The constant κd is explicitly given in ((Dereich et al.,
2013), Theorem 3). Note the dependence on the dimen-
sion d on the right hand side of this bound, which im-
plies a very slow convergence of the empirical distance
in high dimensions. Despite this, the bound is asymp-
totically tight, for large values of N . An example of a
distribution that displays convergence of order N−1/d is
the uniform distribution on [0, 1)d (for a proof see The-
orem 2 in (Dereich et al., 2013)). In a machine learning
context, this would correspond to a regression problem
where there is no relation between the input and output.
We note however, that stronger rates of convergence can
be obtained for restricted classes of measures, and that for
smaller values of N the convergence rate can be more fa-
vorable. This is explored in (Weed & Bach, 2017) where
they improve the bounds for a number of classes of dis-
tributions. For instance, when µ is a discrete distribution,
the following holds:
Theorem 21 ((Weed & Bach, 2017), Proposition 13). Let
µ be a measure that is supported on at most m points
within the unit sphere in Rd, and let µN be an empirical
version of µ constructed from N samples. Then

E
[
d2 (µ, µN )

2
]
≤ 84

√
m

N
.

Depending on the properties of the testing distribution,
either one of Theorems 20 or 21 can be used to investigate
the dependence of the generalization error on the data set
size nT . This would involve having some prior knowledge
about the nature of the testing set.

In the remainder of this section, we consider combining
the concentration bounds with the optimization bounds
proved for SVRG. Note that the basic ideas can be applied
just as well to SGD or DSGD.

For SVRG, it is natural to express the bound in terms
of the number of training examples, and we obtain the
following
Corollary 22. Let Assumption 4 and the conditions
of Proposition 18 hold. Further assume J =

Ey∼µ
[
‖y‖3

]1/3
< ∞ and the training set YT is an em-

pirical version of µ. If xτ (ε) is the output of Algorithm 3,
then

E[‖∇fG(xτ(ε))‖2] ≤ 2ε+ 2G2κdJn
−3/d
T .



Alternatively, if µ is a supported on at mostm points, then

E[‖∇fG(xτ(ε))‖2] ≤ 2ε+ 168G2

√
m

nT
.

Together with bounds on the expected running time, this
result could potentially let one balance between the re-
sources needed to minimize the training function, and the
resources needed to gather training data. In order to mini-
mize the right hand side, one can either choose a smaller
ε, leading to longer running times, or choose a large nT ,
leading to more sampling.

Note that Corollary 22 is accounts for data distribution
properties (via the 3rd moment J , or via the number of
points in the discrete case) and does not depend on the
number of iterations used in SGD. This result could be
compared with (Hardt et al., 2016), where the authors
proved a bound on the generalization gap for function
values in terms of the number of iterations T and the
number samples in the training set. There, the bound
is increasing with T . An interesting avenue for future
work would be to investigate the combination of the two
approaches.

7 DISCUSSION

This work presented an analysis of several stochastic
gradient-based optimization algorithms that use early
stopping. Our focus was on procedures that return the first
point satisfying a stopping criterion, and we analyzed the
expected running time and number of gradient evaluations
needed to meet this criterion.

For SGD, we analyzed the use of early stopping with a
validation function, and obtained a bound on the expected
number of gradient evaluations needed to find approxi-
mate stationary points. The analysis allows for biases in
the update direction, subject to a geometric drift condi-
tion on the error terms. We specialized this analysis to
bound the expected running time of decentralized SGD,
a distributed variant of SGD. We modeled DSGD as a
biased form of SGD, with a bias term that is controlled
in part by the mixing coefficient of the communication
graph. Next, we turned to a variant of nonconvex SVRG
that employs early stopping, obtaining a bound on the
expected number of IFO calls and gradient evaluations
used by the algorithm. Lastly, we considered how Wasser-
stein concentration bounds can be leveraged to bound the
generalization performance of the iterate returned by the
algorithms, expressed in terms of the number of samples
used to define the input datasets, and properties of the
data distribution.

We would like to highlight two avenues for future work.
Our analysis of SGD has a condition on the step-size that

depends on the epoch length m (Corollary 11). It is an
interesting question whether this requirement can be re-
moved. Secondly, in our analysis of SVRG, introducing
early stopping let to a convergence bound that is essen-
tially the same as the rate obtained using randomization.
For SGD, the expected number of IFO calls increases
quadratically with the epoch length, and we leave it as an
open question whether this is feature can also be relaxed.
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