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Abstract

Bayesian optimization is a principled approach
for globally optimizing expensive, black-box
functions by using a surrogate model of the
objective. However, each step of Bayesian opti-
mization involves solving an inner optimization
problem, in which we maximize an acquisition
function derived from the surrogate model to
decide where to query next. This inner prob-
lem can be challenging to solve, particularly
in discrete spaces, such as protein sequences
or molecular graphs, where gradient-based op-
timization cannot be used. Our key insight is
that we can train a parameterized policy to gen-
erate candidates that maximize the acquisition
function. This is faster than standard parameter-
free search methods, since we can amortize
the cost of learning the policy across rounds of
Bayesian optimization. We therefore call this
Amortized Bayesian Optimization. On several
challenging discrete design problems, we show
this method generally outperforms other meth-
ods at optimizing the inner acquisition function,
resulting in more efficient optimization of the
outer black-box objective.

1 INTRODUCTION

Many applications involve finding a structure or input that
maximizes a black-box target function that is expensive
to evaluate. For example, in protein sequence design,
the goal is to construct a protein that binds to a specific
target; evaluating the binding affinity is noisy and time
consuming, since in this case it involves synthesizing the
protein in a lab.

* Work completed during an internship at Google.
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Bayesian optimization (BO) is a common approach to op-
timizing a black-box target function when only a limited
number of evaluations can be used (Mockus et al., 1978;
Jones et al., 1998; Shahriari et al., 2015). BO constructs a
surrogate modelM that approximates the true function
(also known as the “oracle”) and provides uncertainty es-
timates. UsingM, BO computes an acquisition function
(AF) that balances exploration (searching new areas) and
exploitation (making local improvements) of the search
space. In each iteration, BO optimizes the current acqui-
sition function (the ”inner loop” optimization problem),
returning a set of recommendations to be evaluated in the
next round. These are evaluated by the oracle, and the
(string, reward) pairs are added to a dataset D. M is then
re-trained on D, and the cycle repeats until a budget on
the number of oracle evaluations is reached.

While BO has found numerous applications in continuous
domains (e.g., Snoek et al. (2012)), it is less prominent in
discrete problems, such as protein sequence design. There
are arguably two main reasons for this: the lack (until
recently) of good Bayesian regression models for string
inputs, and the difficulty of solving the inner AF. The
former problem has been addressed, by using techniques
from Bayesian deep neural networks (we use an ensemble
of DNNs), so we focus on the second issue: efficiently
optimizing the inner AF.

Evolutionary solvers (ES) are commonly used for black-
box optimization over string functions when the function
itself can be cheaply evaluated (Real et al., 2019; Wu et al.,
2019), as is the case with an acquisition function. The
main idea is to iteratively refine a population of strings
by randomly perturbing them and then selecting the in-
dividuals with higher reward. The classic evolutionary
algorithms choose edits randomly at each iteration and
rely on a selection procedure to find the best strings. How-
ever, this stochastic hill-climbing approach can be prone
to finding sub-optimal solutions and often requires many
iterations.



Algorithm 1 Bayesian Optimization

Input: Black-box reward function r(s)
P0 ∼ p(s) {Sample initial population}
r0 ← {r(P0)} {Evaluate rewards}
D ← {P0; r0} {Make a dataset}
for j = 1 to Touter do {Outer loop}

Train predictor modelM on dataset D
Define acquisition function AFj using predictorM
Pj ∈ argmaxs∼p(s)AFj(s) {Solve the inner loop}
rj ← {r(Pj)} {Evaluate rewards}
D ← D

⋃
{Pj ; rj} {Add new strings to the

dataset}
end for
Return Candidates from the last batch PTouter

In this work, we exploit the simple observation that the
sequence of optimization problems in the inner loop of
BO are closely related to each other. While typically each
inner loop is solved from scratch, our approach instead
learns efficient strategies for optimizing the acquisition
function by learning from previous acquisition functions.
We propose the Deep Evolution Solver (DES), where
we use a neural network to suggest edits to apply to a
given string, and train this network by policy gradient-
based reinforcement learning. We train the policy online:
simultaneously evolving the population of strings and
optimizing the parameters of the policy. This allows the
network to be both efficient and adaptive: quickly honing
in on good solutions while also adjusting based on new
data that characterizes the current acquisition function.

We use DES in the inner loop of BO and apply it to
real-world tasks of protein energy modelling. While our
primary aim is to improve the efficiency of the inner loop,
we find that DES often proposes better queries for the
outer loop as well, leading to solutions with higher reward.
Overall, DES is a promising step towards improving
BO for discrete black-box functions. We release our
implementation at https://www.github.com/
google-research/google-research/tree/
master/amortized_bo.

2 BACKGROUND

2.1 PROBLEM SETUP
Our goal is to find s∗ = argmaxs∈S f(s), where s
is a string of length L on an alphabet of size A, and
f : S → R is an unknown black-box objective. We are in-
terested in the batch optimization setting, so at each round,
we generate a population of strings P = {si}i=1..P ,
where P is the population size. Our goal is to create
a population of strings (either by editing an initial popu-

lation, or generating from scratch) such that one or more
members have high fitness, using as few calls to the f
function as possible.

2.2 BAYESIAN OPTIMIZATION

The aim of BO is to globally maximize a noisy black-box
reward function in as few evaluations of the function as
possible. It involves building a surrogate modelM that
approximates the true function and is relatively cheap to
evaluate. It proceeds by sampling the initial population
of strings and getting their rewards, next it constructs a
predictor to approximate the true reward function. BO
uses a Bayesian predictive model to define a posterior
distribution over the rewards in order to encourage better
exploration of the space. BO suggests strings by maximiz-
ing an acquisition function that takes in a point estimate
and its uncertainty; it balances the tasks of maximizing
the target value and exploring the new regions of the
space. These strings are the proposed candidates to be
evaluated in the next round. After evaluating new set of
strings through target function, we re-compute posterior
distribution over the rewards and obtain a new acquisition
function. Solving the acquisition function is typically
referred to as the “inner loop”, and evaluating the true
reward as the “outer loop”.

Gaussian processes are a common choice for the predic-
tive model in continuous domains, however they scale
poorly with the amount of data and do not operate as
well in high-dimensional spaces. However, following
(Lakshminarayanan et al., 2017), we have found that an
ensemble of neural networks works well as a substitute.
To obtain a posterior distribution, we train the predictor
on the dataset of strings and their rewards and compute
the mean µ(s) and the standard deviation σ(s) of the
predictions.

There are multiple ways to define the acquisition func-
tion. In this paper, we consider Upper Confidence
Bound (UCB) (Srinivas et al., 2009), Thompson Sam-
pling (Thompson, 1933), and Posterior Mean. UCB is de-
fined as AFUCB(s) = µ(s) + σ(s), where µ(s) and σ(s)
are the mean and the standard deviation of the predictions.
Thus, UCB favors samples with either a high predicted
reward, or a large amount of uncertainty. Thompson sam-
pling involves randomly sampling a function from the
posterior and maximizing it (c.f., (Lu & Van Roy, 2017)).
When we use the posterior Mean acquisition function, we
simply maximize the mean µ(s) of the predictive model,
without explicitly trying to explore uncertain parts of the
input space.

https://www.github.com/google-research/google-research/tree/master/amortized_bo
https://www.github.com/google-research/google-research/tree/master/amortized_bo
https://www.github.com/google-research/google-research/tree/master/amortized_bo


(a) Outer loop iteration 1 (b) Outer loop iteration 2 (c) Outer loop iteration 3

Figure 1: Training curve of the inner solver in the first three outer loop iterations of BO on the length-50 Protein 5P21
problem. While not effective initially, after a few iterations ABO becomes highly efficient at solving the inner loop.

2.3 EVOLUTIONARY ALGORITHMS

Here we outline several evolutionary algorithms that we
use as baselines both within and outside of Bayesian op-
timization. Evolutionary algorithms proceed by repeat-
edly perturbing and subsampling from a population of
candidate solutions. While certainly not exhaustive, the
baseline methods we list below have been shown to be
highly effective on the problems we consider (Belanger
et al., 2019).

Single Mutant Walker Single Mutant Walker (Wu
et al., 2019) is a hill-climbing algorithm that takes the
best string from the previous batch and constructs all
possible single-character mutants of that string. If the
resulting population is larger than the population size,
it randomly subsamples the mutants to get back to the
required population size. This new population is then
evaluated on the reward function.

Regularized evolution To create a new string, Regular-
ized evolution (Real et al., 2019) selects two parent strings
from the population, performs cross-over between them,
and then mutates the string. This process is repeated to
create each string for the next population. Parents are
selected via tournament selection by sampling a subset
of 10 strings from the population without replacement
and selecting the string with highest reward. To perform
the cross-over, we copy one of the parent strings, switch-
ing between two parents with probability 0.1. Finally,
each position in the string is mutated with probability 0.1.
The oldest strings in the population are removed from
consideration.

Note that Single Mutant Walker and Regularized evolu-
tion use selection to improve the average reward. Regu-
larized Evolution also uses cross-over, which allows it to
swap a potentially large part of the string with a single
move. Our DES method uses a much simpler, policy-
based local search algorithm to maximize the acquisition
function, with only simple character-level mutations; ex-

Figure 2: Example of a target function, reward predicted
by the ensemble of neural nets, and Upper Confidence
Bound acquisition function for Protein Ising model prob-
lem. The x-axis show the randomly sampled sequence of
strings that differ by one character. All the functions are
highly multi-modal, i.e., they have sharp changes indicat-
ing that strings that differ by a few characters can have
drastically different rewards.

panding the set of possible mutations used by our solver
is an interesting topic for future work.

3 METHODS

Here we discuss the idea of Amortized Bayesian Opti-
mization, where we re-use the parameters of the inner
solver for the subsequent iterations of BO. Since our
learned solver is based on an evolutionary algorithm,
which predicts the edits (mutations) for each string in a
population, we call it the deep evolutionary solver (DES).
The inner loop is shown visually in Figure 3. For the
jth outer loop step, once the acquisition function is maxi-
mized, the resulting population of strings Pj is evaluated
on the true objective and added to the dataset D, which
is used to train the Bayesian surrogate model (an MLP
ensemble in this case).
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Figure 3: An illustration of the DES inner loop. DES
iteratively mutates a population according to a policy
network. The network parameters θ are updated online via
REINFORCE. The strings that maximize the acquisition
function are used to update the surrogate, and the updated
parameters are used to initialize the policy network for
the next round.

3.1 DEEP EVOLUTION SOLVER

Taking inspiration from evolutionary algorithms, we con-
struct a solver that continually evolves a population of
strings. On a high level, the solver works as follows.
We start with a population of randomly sampled strings
P0 = {si ∼ AN}i=1..P . Then, we perturb the strings
with edits sampled from a policy network and obtain the
next string population P1 = {s′i}i=1..P . Finally, we run
the strings through an oracle to obtain the new rewards
{r(s′)}s′∈P1 . We repeat the process for T iterations.

Policy network We propose to use a policy network
πθ(s) to predict a distribution over edits to apply to a
given string. The network perturbs a string by sequentially
sampling K edits from the policy. Thus, an action is a se-
quence a = {ek}1:K , where each ek specifies a location
and a desired letter. The likelihood of an action is given
by the distribution πθ(a|s) =

∏K
k=1 πθ(ek|s, e1...ek−1).

Since we sample K edits sequentially, we allow the net-
work to edit the same position twice and to set the position
to the same character as in the original string. Therefore,
the string will make at most K edits to the string, but
could make fewer. Although we use single-character edits
in this work, the framework is agnostic to the specific

Algorithm 2 Deep Evolution Solver

Input: Acquisition function F (s)
Randomly sample string population P1 = {si}
Evaluate fitness of the strings {F (si)}
for t = 1 to Tinner do

for all si ∈ Pt do
s′i = si
for k = 1 to K do
eik ∼ πθ(eik|s′i) {Sample edit from the policy}
s′i = Mutate(s′i, e

i
k) {Apply edit to the string}

end for
Let ai = (ei1, ...e

i
K)

Let pi = πθ(ai|si) =
∏K
k=1 πθ(e

i
k|si)

R(si, ai) = F (s′i) − F (si) {Fitness improve-
ment}

end for
Pt+1 = {s′i} {Form a new string population}
∇θL = 1

|Pt|
∑|Pt|
i=1 [R(si, ai)∇θπθ(ai|si)]

θ = θ − α∇θL {SGD on policy parameters}
end for
Sort and return top P strings from P1:Tinner

mutation functions over a string (e.g., transpositions).

After applying the edits to a a batch of strings, we evaluate
the rewards of the new strings and update the parameters
of the the policy using policy gradient, using the differ-
ence in score between the perturbed child and the parent
as the reward . Then, we continue to mutate the same
population of strings in an online fashion. Evolving the
population and training the policy simultaneously has a
number of advantages over episodic training. First, online
training requires a single run of the evolutionary solver
and has comparable run-time and number of calls to the
reward as the stochastic solvers. In contrast, previous
approaches such as (Schuchardt et al., 2019) use episodic
training, requiring that the solver is re-run many times to
train the policy. Second, if using the solver in a stand-
alone fashion, we don’t need to determine the number of
steps in advance.

REINFORCE gradient estimator We aim to improve
the average reward of the strings in the batch by maximiz-
ing the following function:

L(θ) = Es∼p(s)Ea∼πθ(a|s)[R(s, a)] =

1

|P|

|P|∑
i=1

Ea∼πθ(a|si)[R(si, a)] (1)

where R(si, a) = F (s′i) − F (si); s′i = mutate(si, a) is
the string perturbed using action a; F (s) is the current ac-
quisition function; and p(s) is the distribution over strings.



We use the REINFORCE (Williams, 1992) gradient esti-
mator to update the parameters of the policy:

∇θL(θ) =
1

|P|

|P|∑
i=1

Ea∼πθ(a|si)[R(si, a)∇θπθ(a|si)]

(2)
Here, we used the fitness of the original string F (si) as
a baseline for the REINFORCE estimator: R(si, a) =
F (s′i)−F (si). By computing the difference between the
original and perturbed strings, we force the model to learn
the edits to improve the fitness of each individual string.
We found the method to work consistently across different
problems without the addition of a learned baseline as in
actor-critic methods.

Modelling string edits We define an edit as a combina-
tion of the position in the string and the new character to
place into this position. We model the distribution over
edits as the following joint distribution:

πθ(e|s) = πθ(char, pos|s) = πcθ(char|pos, s)πpθ (pos|s)
(3)

Both distributions πcθ(char|pos, s) and πpθ (pos|s) are mod-
elled as categorical distributions. We factorize the distri-
bution instead of modelling the joint distribution directly
to avoid taking the softmax over a potentially big search
space L× |A|, where L is the length of the string and |A|
is the size of the alphabet.

Policy network implementation We implement the
policy as a convolutional neural network that takes a pop-
ulation of the strings in a one-hot encoding with dimen-
sionality |P| × L× |A|. The network output consists of
two parts: logits for distribution over positions of size
|P| × L and logits for distribution over characters gener-
ated separately for each position of size |P| × L× |A|.

Selection Typically, evolutionary algorithms perform
an additional step of selecting the set of best strings from
the previous population. In contrast, we do not use selec-
tion and rely on a learned policy to suggest edits that will
improve the reward for each string.

3.2 AMORTIZED BAYESIAN OPTIMIZATION

Surrogate model For our Bayesian surrogate model,
we use an ensemble of 10 shallow feed-forward neural
networks, similar to Belanger et al. (2019). We use mean
of the ensemble as an estimate for the reward and the
standard deviation for the uncertainty estimate.

Algorithm We begin with an initial population of
strings and evaluate them with the true reward function.

This population is randomly sampled from the uniform
distribution over the character alphabet. For each prob-
lem, we use the same starting population for all BO runs
to make a fair comparison of the inner solvers. We train
the neural net ensemble on the starting population and
their rewards and obtain the acquisition function for the
first iteration.

Next, we run the inner solver to find the string that max-
imizes the acquisition function. The inner solver is ini-
tialized with a random population each time. At the end
of the inner loop, we sort the strings from the entire run
of the evolutionary solver by the value of the acquisition
function and use the best strings as the candidates for
the next iteration of BO (without duplicates). We eval-
uate the candidates with the true reward, and add them
to the dataset. In the next iteration of the outer loop, we
re-train the regressor on the updated dataset and solve a
new acquisition function.

Amortization We implement Amortized Bayesian Op-
timization, where we re-use the policy trained in the pre-
vious iterations of the outer loop for the next iteration.
We apply this trick to the policy weights of DES and refer
to it as “warm-start”. We compare it to DES where the
policy network parameters are randomly initialized after
every outer loop iteration and refer to this as “cold-start”.

4 EXPERIMENTAL RESULTS

4.1 DATASETS

We test our approach on two kinds of string optimization
problems, motivated by protein sequence design. In both
cases, the length L is fixed, and ranges from 20 to 100,
and the alphabet size A is fixed at 20.

Alternating Chain We initially consider a synthetic
problem of generating a string of alternating numbers.
The string with the highest reward consists of exactly two
numbers alternating with each other. Despite its simplic-
ity, this problem is difficult for evolution-type solvers,
since it is easy to find substrings of alternating numbers,
but it is hard to find a global solution. We experiment
with string lengths 20, 50, and 100, and alphabet size 20.

Protein Contact Map Potts Model We also apply our
approach to finding a protein sequence that minimizes
the folding energy. The energy is computed by a Potts
model derived from contact maps in the Protein Data
Bank (Berman et al., 2000), as in (Belanger et al., 2019).
We test on string lengths 20, 50 and 75 on Protein 5P21.
See 4 for an illustration of the structure of the Potts model.



Figure 4: Example of a contact map used in Protein Ising
model problem: 5P21 (length 50).

4.2 EXPERIMENT SETUP

We evaluate the performance of the baseline evolutionary
algorithms (EA) when used as stand-alone solvers, and
compare them to BO; in the BO case, we consider using
these baseline EA solvers for the inner loop, as well as
cold-start and warm-start versions of our DES solver. (We
do not use DES as an outer loop solver, since it is too
sample inefficient.) We assume that calling the oracle is
expensive, and set a fixed budget on the number of oracle
evaluations for all solvers. Thus, we compare stand-alone
solvers only for the same number of iterations as we used
for the BO outer loop.

We focus on the scenario when we don’t have any infor-
mation about the problem in advance, meaning that we
cannot use pre-trained models. Instead, in DES we train
the policy online, together with evolving the population.
To ensure fairness with the baselines, each solver begins
with the same initial population of strings.

4.3 TRAINING DETAILS

We used the same hyperparameters for all problems, vary-
ing only the number of edits per step of DES. We used
K = 10 edits per step for length L = 20 strings, K = 20
for L = 50, and K = 70 for L = 75 and L = 100. We
re-run each experiment with three random seeds and show
the mean and standard deviation across multiple runs.

We use a population size of 500 in both the inner loop
and the outer loop. As a first step in the BO experiments,
we randomly sample a set of 500 strings and train an
ensemble of regressors on this set. Then, we run the
inner solver, which maintains a population of 500 strings
that are mutated over 300 steps of the inner loop. As
a last step of the inner solver, we choose the best 500
samples under the surrogate throughout the entire course
of the inner solver run. We evaluate these candidates
with the oracle function, add these to the set of evaluated
strings, and repeat the BO process. In total, we perform
15 iterations of the BO outer loop. To match the number
of oracle calls across methods, we run stand-alone solvers

for 15 iterations. (Thus the total number of oracle calls is
15× 500 = 7500.)

The uncertainty estimates come from an ensemble of ten
feed-forward networks of three layers (32, 8, 4 units) with
ReLu activations. In every iteration of the outer loop, we
train an ensemble for 10 epochs with batch size of 50 and
learning rate 0.01 with mean squared error loss.

For DES, we use a policy network of one convolutional
layer. We used a depth 300, a 1D kernel of size 5, and a
stride of 1 applied along the positions in the string. The
convolution is followed by a ReLU and a linear layer to
compute the policy. We add positional encoding (Vaswani
et al., 2017) to the one-hot representation of the input
string. We found that it is important to preserve the posi-
tional information of the string, since we use the policy to
predict the distribution over characters for each position
separately. We use the ADAM (Kingma & Ba, 2015)
optimizer with learning rate 10−3.

4.4 COMPARISON WITH OTHER SOLVERS

Fig. 5 demonstrates results on the Alternating Chain
and Protein Contact Map problems using the Thompson
Sampling acquisition function. We see that BO is more
sample efficient than applying EA directly to the objec-
tive, and that our warm-started Deep Evolution Solver
inside of BO often outperforms, or is competitive with
other solvers. More experiments across a range of set-
tings can be found in the supplementary material. Tables
1 and 2 demonstrate the results on other string lengths and
for other acquisition functions. Generally, DES performs
better than other methods for string lengths 50 and higher.
On smaller problems (length 20), our approach is com-
parable to other solvers. We additionally include results
of the deep evolution solver run against a Gaussian pro-
cess regressor as an alternative to an ensemble. At each
round, we select GP hyperparameters using 5 fold cross
validation across RBF, Matérn, and quadratic kernels. We
find that GPs do not scale well to our setting given the
large number of data points (10,000 over the course of
training), and focus on the faster ensemble approach.

4.5 ABLATIONS

Fig. 6 shows the performance for a range of inner-loop
steps on the Protein length-50 problem. As expected, the
cold-start policy gradient and regularized evolution inner-
solvers improve with more steps. With DES, while it
reaches the highest overall performance, it degrades when
allowed too many (1000) steps. This suggests that without
further regularization, it can overfit to earlier iterations.

Fig. 7 varies the number of edits K that we sample from
the policy for each string in one iteration of the inner loop



(a) Alt Chain 50 (b) Alt Chain 100 (c) Protein 20 (d) Protein 50

Figure 5: Cumulative maximum reward throughout the training on (a-b) Alternating Chain problem, and (c-d) Protein
problem. Red is BO with our warm-started DES solver.

ALTERNATING CHAIN LENGTH 20 LENGTH 50 LENGTH 100

DEEP EVOL: # EDITS 10 30 70

ACQUISITION FUNCTION UCB THMPSN POST UCB THMPSN POST UCB THMPSN POST

SINGLE MUTANT 14.67 14.67 14.67 23.67 23.67 23.67 30.33 30.33 30.33
REGULARIZED EVOL 14.67 14.67 14.67 24.33 24.33 24.33 33.33 33.33 33.33
BO + SINGLE MUTANT 15.33 8.00 13.67 19.33 8.66 22.00 15.00 15.00 15.67
BO + REGULARIZED EVOL 16.67 10.50 15.00 30.67 14.00 35.00 22.67 14.67 25.00
BO + DEEP EVOL (COLD) 18.00 12.67 19.00 33.00 17.33 26.33 18.67 22.50 13.67
BO + DES 16.67 14.00 16.33 42.00 41.33 39.00 78.33 47.67 41.00
BO GP + DES 13.67 - 16.34 32.67 - 24.67 33.67 - 42.67

Table 1: Max cumulative reward for Alternating Chain averaged over three runs with different random seeds. Bayesian
optimization solvers are performed with 300 steps in the inner loop and 15 iterations of the outer loop. Single Mutant
Walker and Regularized Evolutation baselines were run for 15 iterations to match the BO experiments.

on (a) the Alternating Chain length-100 problem (b) the
Protein length-50 problem. More edits per step allows
the policy to make larger moves, which helps on the Pro-
tein problem, however it can also make the optimization
problem more difficult as demonstrated on the Alternating
Chain problem, since it has to take noisy policy gradients
through a sequence of many edits.

More results on these experiments can be found in the
supplementary material. Ultimately, this shows that a
fruitful area of future exploration would be to find robust
regularizers and mutation types for the inner-loop solvers.

4.6 BENEFITS OF AMORTIZATION

In this section, we demonstrate why Amortized BO with
warm-started solver is beneficial. Fig. 1 compares inner-
loop optimization using DES and Regularized Evolution
for the first three rounds of BO on the length-50 Protein
5P21 problem. In the first outer loop iteration, DES starts
with a randomly initialized policy and therefore improves
the reward more slowly than Regularized Evolution. In
the next iteration, warm-started DES and Regularized
Evolution optimize the acquisition function at roughly
the same rate. In the third iteration, DES reaches a high-
valued solution of the acquisition function in less than 50
iterations, while Regularized Evolution fails to achieve a

similar value after 200 iterations of the inner loop. This
shows that the warm-started policy can be an efficient op-
timizer for subsequent iterations, reducing the number of
inner loop steps required to solve the acquisition function.

4.7 BENEFITS OF A LEARNED INNER-LOOP
SOLVER

Successful inner-loop optimization can correlate with
outer-loop efficiency. As shown in Section 4.4, DES can
also improve the outer loop, finding samples with higher
reward. However, in many cases the cost of evaluating the
acquisition function is assumed to be negligible in com-
parison to evaluating the true reward. A natural question
therefore is whether one can simply run an evolutionary
solver for a large number of iterations and reach the same
reward. In other words, does DES improve optimizer
efficiency alone, or can it also find better solutions to the
acquisition function? To test this we run Single Mutant
Walker for up to 10,000 iterations in the inner loop.

As shown in Fig. 8a, on the Protein problem, Single
Mutant Walker achieves the approximately same reward
regardless of the number of steps in the inner loop, while
DES finds candidates with a higher reward. In other
words, a greedy hill-climbing policy has the potential to
get stuck in a local optimum. At the other extreme, pure



PROTEIN CONTACT MAP LENGTH 20 LENGTH 50 LENGTH 75

DEEP EVOL: # EDITS 10 20 70

ACQ. FUNCTION UCB THMPSN POST UCB THMPSN POST UCB THMPSN POST

SINGLE MUTANT 2.260 2.259 2.259 1.028 1.028 1.028 0.859 0.859 0.859
REGULARIZED EVOL 2.056 2.056 2.056 0.897 0.897 0.897 0.735 0.735 0.735
BO + SINGLE MUTANT 2.206 2.219 2.204 1.073 0.996 1.074 0.984 0.994 0.999
BO + REG. EVOL 2.238 2.154 2.205 1.030 0.989 1.032 0.812 0.809 0.817
BO + DEEP EVOL (COLD) 2.234 2.100 2.224 1.065 1.031 1.063 0.560 0.560 0.560
BO + DES 2.186 2.175 2.254 1.134 1.109 1.092 1.225 0.812 1.099
BO GP + DES 2.267 - 2.228 0.653 - 0.891 0.560 - 0.560

Table 2: Max cumulative reward for Protein Contact map problem, averaged over three runs with different random
seeds. Bayesian optimization solvers are performed with 300 steps in the inner loop and 15 iterations of the outer loop.
Single Mutant Walker and Regularized Evolution baselines were run for 15 iterations to match the BO experiments.

(a) 100 iterations (b) 300 iterations (c) 500 iterations (d) 1000 iterations

Figure 6: Cumulative maximum reward throughout the training depending on the number of inner loop steps on Protein
Contact Map problem of length 50. For BO, we show cumulative maximum reward of the outer loop. We used Upper
Confidence Bound acquisition function for these experiments.

(a) Alt Chain 100 (b) Protein 50

Figure 7: Max achieved reward in the Bayesian optimization inner loop depending on number of edits per step of
Deep Evolution Solver. The line and the shaded area show mean and standard deviation over three random seeds. (a)
Alternating chain, length 100, Thompson sampling, 300 steps of inner loop. (b) Protein 5P21, length 50, Thompson
sampling, 300 inner loop steps.

random sampling will eventually find the global optimum,
but it may take an infeasible amount of time. DES has
the potential to get the best of both worlds: finding high-
reward solutions in a relatively short amount of time.

4.8 ACCURACY OF THE SURROGATE MODEL

An essential determiner of BO efficiency is the ability
of the regressor to fit the true reward function. Fig. 8b
shows the mean squared error of the regressor from the
previous iteration of BO and applied to the new candidate

sequences produced by the inner loop. Starting from the
4th iteration, the regressor test error is small, indicating
that the ensemble has learned to accurately generalize on
the target reward function.

5 RELATED WORK

BO for discrete spaces Baptista & Poloczek (2018)
identify the difficulty of applying BO to discrete combina-
torial spaces. In response, they propose a new acquisition



(a) SingleMutantWalker Iterations (b) Regressor Error

Figure 8: (a): Single Mutant Walker as the inner solver in the Bayesian optimization inner loop. Even with a large
number of steps in the inner loop, Single Mutant Walker is not able to improve the reward. (b): BO regressor error on
new candidate sequences propose by the inner solver.

function that is amenable to using semi-definite program-
ming to maximize the inner-loop. Their approach is only
applicable when the surrogate takes the form of Bayesian
linear regression. Kandasamy et al. (2019) use a Gaussian
process with hamming distance kernel to fit a surrogate on
discrete spaces. They use evolutionary solvers to optimize
the acquisition function. Oh et al. (2019) apply graph ker-
nels to BO over graphs, and use a greedy hill climbing
local search to maximize the acquisition function. Wilson
et al. (2018) apply the reparameterization trick to maxi-
mizing acquisition functions. Kim & Choi (2019) study
the regret between the acquisition function global optima
and the local optima found by local optimizers, such as
LGBFS, in the continuous BO setting. They note that this
bound becomes tighter as the local optimizers are allowed
to restart in more places.

Latent variable models for protein design Killoran
et al. (2017) use a Generative Adversarial Network (GAN)
to generate strings resembling existing strings with the
highest fitness. Gomez-Bombarelli et al. (2018) train a
variational autoencoder (VAE) to fit the available strings,
and apply BO in the latent space to produce the next round
of samples. In particular, they use GP regression in the
latent space to predict the fitness; they then use gradient
optimization in the latent space, and decode the optimal
latent point back to a string. However, this can result in
the VAE being asked to decode in parts of space where
it is not well-trained, resulting in low-quality decodings.
Brookes et al. (2019) design biological sequences using
the cross entropy method, which fits a generative density
model to the top sequences seen so far. They use a VAE
as the generative model.

Improving evolutionary search with RL Schuchardt
et al. (2019) train an RL agent to learn to mutate a string,
and perform selection and cross-over. They treat the entire
run of the evolutionary solver as one episode and repeat
the evolutionary search 500 times before updating the

policy. In contrast, our approach learns a policy from a
single run of evolutionary solver, using the same number
of oracle evaluations and a similar wall-clock run time as
other evolutionary solvers.

Paliwal et al. (2019) predict a distribution over binary
strings to produce an initial population of strings. The
“mutants” are generated by sampling random strings from
the same distribution and performing cross-over between
newly sampled and high-performing strings in the popu-
lation. In contrast, we directly learn the distribution over
mutations to apply to a given string.

6 CONCLUSION AND FUTURE WORK

We have introduced Amortized Bayesian Optimization,
which transfers knowledge across the sequence of inner-
loop acquisition functions by learning a parameterized
inner-loop optimizer online, resulting in a faster inner-
loop optimization for Bayesian optimization and better
solutions. The inner-loop solver (DES) uses a parameter-
ized a transition policy for local search, but it is possible
to amortize solving the inner loop using other kinds of
generative models. Finding adaptable and robust inner-
loop solvers is a promising area that could dramatically
improve the application of Bayesian optimization to dis-
crete spaces.
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