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Abstract

We consider the problem of whether a given
decision model, working with structured data,
has individual fairness. Following the work
of Dwork, a model is individually biased (or
unfair) if there is a pair of valid inputs which
are close to each other (according to an ap-
propriate metric) but are treated differently by
the model (different class label, or large dif-
ference in output), and it is unbiased (or fair)
if no such pair exists. Our objective is to
construct verifiers for proving individual fair-
ness of a given model, and we do so by con-
sidering appropriate relaxations of the prob-
lem. We construct verifiers which are sound
but not complete for linear classifiers, and ker-
nelized polynomial/radial basis function clas-
sifiers. We also report the experimental results
of evaluating our proposed algorithms on pub-
licly available datasets.

1 INTRODUCTION

Recent breakthroughs in artificial intelligence, especially
machine learning, have lead to AI-based systems assum-
ing a significant role in making real-world decisions —
such as decision-making systems for recidivism risk as-
sessments, credit assessments (including loan risk), hir-
ing decisions, content dissemination in social media etc.
Many of these systems are trained on, and then evalu-
ate, structured data pertaining to individuals (convicts,
borrowers, job candidates etc). Unfortunately, studies
have already shown that such systems may be prone to
discriminating against users/consumers on the basis of
characteristics such as race and gender (Angwin et al.
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2016), and this has even lead to legal mandates to ensure
fairness in such systems.

This paper tackles the problem of verifying the absence
of individual bias in a given classifier (with white-box
access) which takes structured data as input. The defi-
nition of individual fairness/bias that we use in this paper
is based on the abstract definition of individual fairness
given by (Dwork et al. 2012), which says that a model
f is fair if, for any pair of inputs x, x′ which are suffi-
ciently close (as per an appropriate metric), the model
outputs f(x), f(x′) are also close (as per another appro-
priate metric). Since using an `p-metric for “closeness”
does not take into account the structure of the data, we
define a more flexible scheme which we feel is appropri-
ate for our modality. We partition the input attributes into
subsets, each of which is associated with an appropriate
non-negative threshold, and say that two points x, x′ are
sufficiently close if the coordinate-wise absolute differ-
ence, |xi − x′i|, for each attribute, is at most the thresh-
old εj corresponding to the subset Sj to which the at-
tribute index i belongs. Then a model is fair if, for any
pair of close inputs, the model outputs are also close; for
classification models, this means that the model decision
does not change (i.e., f(x) = f(x′)), whereas for re-
gression models, this means that the absolute difference
|f(x) − f(x′)| is sufficiently small. We note that this
scheme is flexible enough to allow for (i) each attribute
to have an independent threshold (as one extreme) in-
cluding a threshold of zero for no perturbations, or (ii)
the same threshold for all attributes (the other extreme),
which is the same as using the `∞-metric for closeness
(as is usual in adversarial robustness).

Another definition of individual fairness was used
in (Aggarwal et al. 2019; Galhotra et al. 2017; Udeshi
et al. 2018) in the context of testing rather than verifi-
cation. It is a simplified and non-probabilistic form of
causal or counterfactual fairness (Kusner et al. 2017),
based on the notion of protected or sensitive attributes (in
practical scenarios, these may be gender, race/ethnicity,



religion etc.). The definition of fairness in this context
is that any two valid inputs which differ only on the pro-
tected attribute(s) must always be put in the same class.
Our definition subsumes this definition, by considering
the threshold for the protected attributes to be sufficiently
large (to allow arbitrary perturbations), and the threshold
for the non-protected attributes to be zero (to disallow
perturbations).

Challenges. The challenges of verifying individual
fairness, when compared to the existing work on ver-
ifying machine learning models, are two-fold: Firstly,
the existing work on verifying bias/fairness in machine
learning models considers notions of group fairness/bias
(Albarghouthi et al. 2017; Bastani et al. 2019). An
individual fairness property considers the worst case
(fairness for all similar input pairs, biased if there exists
a bad input pair), rather than the average case (with
high probability, some notion of parity is maintained
between different groups) considered in the group
fairness definitions. Hence, the existing techniques for
group fairness cannot be applied to verifying individual
fairness. Secondly, the other work on verification of
ML models (which mostly considers the verification of
adversarial robustness – see (Liu et al. 2019) for a sur-
vey) considers a local robustness property; the verifier
is given a nominal input and it verifies robustness in
the neighbourhood of that particular input (for example,
given a particular image, the verifier either certifies that
a small `∞-norm perturbation of that image does not
change the class label, or provides a counter-example).
However, verification of individual fairness notions
requires us to check a global robustness property (i.e.
the classifier output does not change for perturbations
of any input in the domain). This means that existing
approaches to local robustness verification are not
directly applicable to our problem.

Our contributions. To the best of our knowledge,
we present the first technique for individual fairness
verification (global robustness) for ML models.

We give a meta-algorithm/framework for solving the ver-
ification problem, as well as particular algorithms for
linear classifiers, and kernelized classifiers with polyno-
mial/rbf kernels. Our algorithms are sound but incom-
plete (see section 4.1), with the linear classifier case be-
ing an exception in that it is exact (both sound and com-
plete) if we allow for worst-case exponential time.

2 RELATED WORK

In recent times, the software engineering community
has addressed the problem of testing Individual fairness.
THEMIS (Galhotra et al. 2017) used random testing to

generate test cases. AEQUITAS (Udeshi et al. 2018)
used random testing for global search and performs per-
turbation close to a sample which showed discrimina-
tion. (Aggarwal et al. 2019) used a combination of sym-
bolic execution and model explainability techniques to
systematically explore the decision space in a model in-
stead of random testing. None of the above techniques
guarantees absence of individual bias.

Previous work on the verification of fairness in machine
learning models has considered notions of group fairness
such as disparate impact (Albarghouthi et al. 2017; Bas-
tani et al. 2019). There have also been works consider-
ing the verification of the adversarial robustness property
(and other similar properties) for machine learning mod-
els. Robustness does not have any notion of protected at-
tributes. However, from an algorithmic perspective, our
work is related to these, albeit using a different metric
than the usual `p-balls, and considering global robustness
rather than local (as in the survey (Zhang et al. 2019)).

These verification approaches can be broadly classified
into (i) verification using tailor-made satisfiability mod-
ulo theory (SMT) or mixed integer linear programming
(MILP) based approaches, and (ii) verification using con-
vex relaxations. The former approach leads to sound
and complete verification of certain classes of machine
learning models — such as linear models, decision trees
(including tree ensembles), neural networks with piece-
wise linear activation functions etc. (Katz et al. 2017;
Ehlers 2017; Bunel et al. 2018; Tjeng et al. 2019),
but at the cost of a worst-case exponential (or super-
exponential) running time. The latter approach (con-
vex relaxations) leads to efficient verifiers for properties
such as (local) adversarial robustness for machine learn-
ing models (Kolter et al. 2018; Dvijotham et al. 2018;
Raghunathan et al. 2018; Gowal et al. 2018; Singh et
al. 2018; Wang et al. 2018a; Wang et al. 2018b; Wang
et al. 2018c; Zhang et al. 2018; Gehr et al. 2018; Mir-
man et al. 2018; Qin et al. 2019; Fazlyab et al. 2019;
Salman et al. 2019; Singh et al. 2019), but at the cost of
sacrificing completeness. Another advantage is that such
techniques can also be used for non-linear models, even
though much of the existing work focuses on linear and
piece-wise linear models.

Perhaps the work most closely related to ours (from
a technical perspective) is that of (Raghunathan et al.
2018), who verify the (local) adversarial robustness of
a given feed-forward neural network with ReLU activa-
tions by relaxing adversarial robustness to a polynomial
optimization problem and then using semidefinite relax-
ations to give lower bounds.



3 PRELIMINARIES

We consider models with a known prediction function
f : Rn → R. We assume that we have white-box ac-
cess to f ; i.e. we have access to all the parameters and
hyper-parameters which together give a closed-form ex-
pression for f . A regression model uses the output of
f directly as the predicted value of the regression vari-
able. A binary classifier h : Rn → {±1} is of the form
h(x) = sign(f(x)). We will often refer to the prediction
function f as the classifier itself, with the understanding
that the predicted label for x will actually be the sign of
f(x). We assume that f is smooth, or at least continu-
ously differentiable twice (C2).

The model f takes as input a real vector with n fea-
tures, where the domain of feature xi is Domi := {x ∈
R or Z | li ≤ x ≤ ui}. That is, each feature can be
either continuous (in R) or discrete (in Z), and takes
values in a fixed interval [li, ui]. This characterization
of input features is suitable for us since, in this work,
we are chiefly considering decision models (classifica-
tion/regression) on structured data. We say that an input
sample is valid if the domain constraints for all features
are satisfied.

If f : Rn → R is a decision model, the abstract definition
of individual fairness, given by (Dwork et al. 2012), is as
follows: Given appropriate distance functions — d(·, ·)
on Rn (the domain of f ) andD(·, ·) on R (the co-domain
of f ) — as well as thresholds ε ≥ 0 and δ ≥ 0, the model
is individually fair if, for any pair of inputs x, x′ such that
d(x, x′) ≤ ε, we have D(f(x), f(x′)) ≤ δ.

The intuition behind this notion of individual fairness is
that small or non-significant perturbations of a sample x
to x′ (i.e. the perturbations where d(x, x′) ≤ ε) must not
be treated “differently” by a fair model. The choice of
the input distance function d(·, ·) identifies the perturba-
tions to be considered non-significant, while the choice
of the output distance function D(·, ·) limits the changes
allowed to the perturbed output in a fair model.

For classification models f : Rn → [k], it is appropriate
to use the discrete metric D(y, y′) := I[y = y′] with the
threshold δ = 0 on the model output since, in a fair clas-
sification model, we would want to prevent any change
in the class label due to small perturbations of the input.
For regression models, a simple choice would be the ab-
solute errorD(y, y′) := |y−y′|, with the threshold δ > 0
chosen appropriately based on the scale of the regression
variable.

Our notion of closeness in the input domain must take
into account the structure of the data, and be general
enough to give non-trivial and useful results (fairness

certificates/bias instances) for a variety of structured
datasets and models. So we proceed as follows. Let the
input features be indexed as [n] := {1, . . . , n}. We par-
tition [n] into disjoint sets S1, . . . , St, with correspond-
ing thresholds ε1, . . . , εt ≥ 0 chosen based on domain-
specific knowledge of the dataset. A perturbation of
x ∈ Rn to x′ is considered non-significant if for all
j ∈ [t], and for all i ∈ Sj , we have |xi − x′i| ≤ εj .

Note: For notational convenience, we allow the thresh-
olds εj to take a special value∞, which implies that xi
and x′i can differ arbitrarily for all i ∈ Sj . From a algo-
rithmic perspective, the constraint on |xi − x′i| would be
removed for all such indices i. Also, if εj = 0 for any
j ∈ [t], we can eliminate the variables x′i for all i ∈ Sj
to reduce the dimensionality of the problem.

We formally define the individual bias of a decision
model as follows:

Definition 1 (Individual bias). A model f : Rn → R
is said to be individually biased if there exists a pair of
valid inputs x and x′, with |f(x)− f(x′)| > δ, such that
|xi − x′i| ≤ εj for all i ∈ Sj , and for all j = 1, . . . , t.
Such a pair (x, x′) is called an individual bias instance
of the model f .

A linear (binary) classifier is h(x) = sign(f(x)), where
f is of the form f(x) = w>x + b for some w ∈ Rn
and b ∈ R. The decision boundary of a linear classifier
is an affine hyperplane. A linear regression model is just
f(x) = w>x+ b, without the sign function.

A kernelized (binary) classifier is h(x) = sign(f(x)),
where f is of the form f(x) =

∑M
i=1 wiyiK(xi, x),

S := {(xi, yi) : i = 1, . . . ,M} is a subset of the training
set, wi is the weight assigned to the sample (xi, yi) ∈ S,
and K(·, ·) is the Kernel function.

One of the commonly used kernels is the degree-d poly-
nomial kernel, where K(x, y) = (ax>y + b)d for some
a, b ∈ R. The prediction function of such a classifier
f(x) =

∑M
i=1 wiyi(ax

>
i x+ b)d can then be written as a

degree-d polynomial in the variables x1, . . . , xn. A poly-
nomial kernel allows for a “curved” non-linear decision
boundary rather than the “straight” hyperplane boundary
of a linear classifier.

Another commonly used kernel function is the radial ba-
sis function (RBF, also known as gaussian) kernel, with
K(x, y) = exp(−γ · ‖x − y‖2). In an RBF kernelized
classifier, high confidence negative decision regions can
be seen around the negative data points, whereas high
confidence positive decision regions can be seen around
the positive data points.

A set S ⊆ Rn is said to be a convex set if for any two
points x, y ∈ S and any 0 ≤ λ ≤ 1, the point λx+ (1−



λ)y ∈ S. If S is a convex set, a function f : S → R
is said to be a convex function if for any x, y ∈ S and
0 ≤ λ ≤ 1, f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y). On
the other hand, a function is said to be concave if we have
the inequality f(λx+ (1−λ)y) ≥ λf(x) + (1−λ)f(y)
for all x, y ∈ S and 0 ≤ λ ≤ 1.

Notation [n] denotes the set {1, 2, . . . , n}. If x ∈ Rn,
x−i denotes the tuple (xj)j 6=i ∈ Rn−1 and for S ⊆ [n],
xS is shorthand for the tuple (xi)i∈S . If S is a set, then(
S
k

)
denotes the set of all subsets T ⊆ S with |T | = k. If

|S| = n, then
∣∣∣(Sk)∣∣∣ =

(
n
k

)
= Θ(nk). We use Rm×n to

denote the space of allm×n real matrices, and Sn(R) to
denote the space of all real symmetric n× n matrices. If
f is a function, f � 0 denotes that f is non-negative or
positive semi-definite (p.s.d); that is, f(x) ≥ 0 for all x
in the domain of f . If A is a matrix, then A � 0 denotes
that the matrix is positive semi-definite (p.s.d). We use
Nnd := {α ∈ Nn | |α| := α1 + . . .+ αn ≤ d} to denote
the set of multi-indices corresponding to the exponents
of n-variate monomials with degree ≤ d.

4 VERIFYING INDIVIDUAL BIAS

4.1 A META-ALGORITHM

Ideally, a verifier for the individual bias property would
solve the following decision problem (after fixing the at-
tribute domains Dom1, . . . ,Domn, the feature partitions
S1, . . . , St, and the thresholds ε1, . . . , εt and δ): “For
a given model f , does there exist an individual bias in-
stance?” (YES/NO). This problem would be undecid-
able, by Rice’s theorem (Hopcroft et al. 1990), if we al-
low f to be an arbitrary partial recursive function. Even
if we restrict the choice of f to common non-linear func-
tion classes, the problem would still likely be NP-hard
(since we show that it is NP-hard when f is a polyno-
mial with deg(f) ≥ 2).

We focus on the following guarantees for the verifier V
(with our desired property for the model f being individ-
ual fairness/no bias):

1. Soundness: If the verifier V outputs NO BIAS,
then the model f is actually unbiased.

2. Completeness: If the verifier V outputs a bias in-
stance, then the model f is actually biased. Also,
the verifier V will always terminate with either NO
BIAS or a valid bias instance.

To circumvent the hardness of exact (sound and com-
plete) verification, we try to get verifiers with soundness,
but not completeness. That is, an output of NO BIAS by
the verifier V will always be correct (f will actually be

unbiased). But V may fail to terminate within finite time
with the correct output NO BIAS or a bias instance, even
when the classifier is actually unbiased or a valid bias in-
stance exists, respectively. It may also keep finding only
spurious bias instances, which we do not output.

For developing our algorithms, we formulate the individ-
ual bias verification problem as a (non-convex) optimiza-
tion problem, and use provably-correct global optimiza-
tion approaches (such as mixed integer linear program-
ming) to perform the verification.

The rationale behind this approach is as follows: If we
wish to find a bias instance x, x′, the required “close-
ness” constraints |xi − x′i| ≤ εj (for all i ∈ Sj , for
all j ∈ [t]) on x and x′ are linear constraints (since
|z| ≤ ε ⇐⇒ −ε ≤ z ≤ ε), which are easy
to handle in an optimization framework (perhaps the
only easier form of constraint is an interval constraint
z ∈ [α, β]). The domain constraints on each xi are of
the form xi, x

′
i ∈ [li, ui] ∩ (R or Z). A problem is that

the integrality constraint for discrete attributes is compu-
tationally expensive, but this can be mitigated to some
extent by the judicious use of relaxations.

We can then say that the model f is individually biased if
and only if an input pair x∗, x′∗ with |f(x∗)− f(x′∗)| >
δ belongs to the set of pairs x, x′ constrained as above.
In fact, since x and x′ are interchangeable, we can as-
sume f(x∗)− f(x′∗) < −δ for a bias instance. With all
these considerations, we can formulate an optimization
problem for individual bias verification.

D∗ := min f(x)− f(x′)

s.t. |xi − x′i| ≤ εj , ∀i ∈ Sj , ∀j ∈ [t]

xi, x
′
i ∈ [li, ui] ∩ (R or Z), ∀i ∈ [n]

(1)

If the verifier solves the optimization problem (1) and
finds a solution (x∗, x′∗) with objective function value
D∗ < −δ, then that solution will be a valid individual
bias instance that the verifier can output. On the other
hand, if the verifier finds a certifiable lower bound which
implies D∗ ≥ −δ, then the verifier can correctly output
NO BIAS. However, the requirement of certifiable lower
bounds precludes the use of many common optimization
techniques based on gradient descent or interpolation.

Relaxation To avoid the hardness of the integral con-
straints, it is possible to relax some of the categorical
features to allow fractional values. This makes sense
especially for features such as age; which take a large
ordered set of values, and where a fractional value is “in-
terpretable”. It is easy to see that this relaxation pre-
serves the NO BIAS certification; that is, a classification
model is actually unbiased w.r.t. the original attribute do-



mains if it is unbiased w.r.t. the relaxed domains, since
we are only expanding the set of valid inputs for bias in-
stances. But this approach may generate spurious coun-
terexamples which we can only reject, and then continue
to try to find valid counterexamples. In addition to the
domain relaxations, we may also choose to use relax-
ations of the optimization problem that end up yielding
non-tight lower bounds (without valid counterexamples).
In general, we may end up doing this indefinitely without
actually finding a valid counterexample (even if it exists)
— thus, a verifier that uses a relaxation will not be com-
plete. The specific relaxations that we use in each case
will be discussed in later sections.

The key idea of our work is to demonstrate that we can
use the optimization approach described above (with ap-
propriate relaxations and solution methods) to solve the
individual bias verification problem for some interesting
and useful classes of models, under reasonable assump-
tions. The details of this, as well as specific techniques
and methods, will be given in subsequent sections for
each type of classifier that we consider, i.e. linear, ker-
nelized polynomial, and RBF. We first give a general
meta-algorithm for the individual bias verification prob-
lem (see Algorithm 1).

The intuition behind this meta-algorithm is just combin-
ing the optimization problem formulation (1) and domain
relaxations. We allow the user to choose a subset D of
the discrete attributes, which should take small sets of
values (e.g. boolean attributes). The optimization proce-
dure will fix xD and x′D to specific value combinations
using equality constraints, and repeat for all such feasible
value combinations. The discrete attributes which are not
in D may be (not necessarily) relaxed to take fractional
values. In this way, we can find a set of lower bounds
` for f(x) − f(x′) which we examine to see if there is
any possibility of bias (` < −δ). The details of the op-
timization procedure will vary depending on the type of
f (no optimization procedure can solve such a problem
in a certifiably optimal way for general f ), and will be
described in later sections.

Note that if no domain relaxations are used and the op-
timization procedure is guaranteed to always find tight
bounds (e.g. mixed integer linear programming), then
the resulting verifier will be sound and complete. Other-
wise, the resulting verifier will be sound but incomplete
(e.g. sum-of-squares).

4.2 LINEAR AND POLYNOMIAL MODELS

4.2.1 Linear Models

We first give an elementary instantiation of the meta-
algorithm for linear models, f(x) = w>x + b. This is

Algorithm 1 A meta-algorithm for individual bias veri-
fication.

1: procedure VERIFY-INDIVIDUAL-BIAS(f , (Sj)[t]
(εj)[t], δ, D, (Domi)[n])

2: Input: Classification model f (white-box),
discrete attributes D, feature par-
titioning S1, . . . , St, thresholds
ε1, . . . , εt and δ, attribute domains
Dom1, . . . ,Domn.

3: Output: Either (i) Valid bias instance (x, x′)
or (ii) NO BIAS.

4: Let L = ∅.
5: Construct the set Vp:

Vp := {(v, v′) | v, v′ are feasible for xD, x′D
and |vi − v′i| ≤ εj ∀i ∈ D ∩ Sj ∀j ∈ [t]}

6: for all (v, v′) ∈ Vp do
7: Let:

D∗ := min f(x)− f(x′)

s.t. |xi − x′i| ≤ εj , ∀i ∈ Sj ∩D, ∀j ∈ [t]

xi, x
′
i ∈ [li, ui], ∀i 6∈ D

xD = v and x′D = v′

8: Find a lower bound ` ≤ D∗.
9: If ` < −δ, try to find a certificate x∗, x′∗ for

the lower bound ` (i.e. f(x∗)− f(x′∗) = `),
which may not always exist.

10: Add (`, x∗, x′∗) to L.

11: if ` ≥ −δ for all lower bounds in L then
12: Output NO BIAS.
13: else if There exists a lower bound ` < −δ with a

valid certificate in L then
14: Output bias instance (x∗, x′∗).

the only case where the optimization problem involved
is actually convex, and thus the relaxed problem (with
continuous attributes) can be solved with soundness and
completeness in polynomial-time. In all other cases, the
optimization problem is non-convex.

If f is a linear (affine) regression model of the form
f(x) = w>x + b, the objective function of the problem
(1), f(x) − f(x′) = w>x − w>x′, is linear. The con-
straints are also linear (|xi−x′i| ≤ εj can be replaced by
the pair of linear constraints xi−x′i ≤ εj , x′i−xi ≤ εj),
with integrality constraints for the categorical features.
Hence the problem (1) can be solved as a mixed-integer
linear program (MILP). MILP solvers can solve the prob-
lem exactly, modulo computational issues, with worst-
case exponential time, and are also fairly efficient in



practice for reasonable problem dimensions (= 2n in this
case). Thus, we get a sound and complete verifier.

Suppose f(x) = sign(g(x)), g(x) = w>x + b, is a
linear classification model. Now, the objective func-
tion is no longer linear, but since we use δ = 0 for
classification, we can take advantage of the fact that
f(x) − f(x′) = 0 ⇐⇒ g(x) · g(x′) ≥ 0 to get
a quadratic objective function for minimization. Since
g(x)·g(x′) = x>ww>x′+b·(w>x+w>x′)+b2, we can
rewrite it in the form g(x) ·g(x′) = (x x′)>Q(x x′)+b ·
(w w)>(x x′) + b2, where Q is a positive semi-definite
quadratic form in 2n variables (x x′). Hence the prob-
lem can be solved exactly by mixed-integer quadratic
programming (MIQP) solvers, again practically efficient
but with worst-case exponential time, to yield a sound
and complete verifier.

4.2.2 Kernelized Polynomial Models

In a kernelized classification/regression model with a
polynomial kernel, the kernel function used is of the form
K(x, y) = (a x>y + b)d, where a, b ∈ R are constants
and d is the degree of the polynomial kernel. Then,

f(x) =

M∑
i=1

wiyiK(xi, x) =

M∑
i=1

wiyi (a x>i x+ b)d

That is, the model f can be viewed as a degree-d poly-
nomial in the variables x1, . . . , xn. Thus, the func-
tion we wish to lower bound, f(x) − f(x′), is also a
degree-d polynomial in 2n variables. Let g(x, x′) :=
f(x) − f(x′). Minimizing g over a linear constraint set
(li ≤ xi, x′i ≤ ui for all i, xi = vi, x

′
i = v′i for all i ∈ D,

−εj ≤ xi − x′i ≤ εj for all i ∈ Sj and for all j), as in
Algorithm 1, is a polynomial optimization problem over
a basic closed semi-algebraic set. If we have discrete at-
tributes which we do not fix during optimization (i.e. not
in D), but which we do not want to relax, this can be
done using polynomial constraints as well. A constraint
x(xi − 1) · · · (xi − k) = 0 would ensure that xi takes
values in {0, 1, . . . , k}. The drawback is that such con-
straints will be very expensive computationally unless k
is very small (e.g. k = 2 for boolean values).

We can find lower bounds for such polynomial optimiza-
tion problems using various methods, including sum-of-
squares relaxations, geometric programming etc. In this
paper, we consider the method of finding lower bounds
for polynomial optimization problems using sum-of-
squares relaxations (proposed independently by Lasserre
and Parrilo, based on the earlier work of Shor (Shor
1987)). We use the particular semidefinite programming
(SDP) relaxation from (Lasserre 2015) to solve our opti-
mization problem. To the best of our knowledge, this is

the first work where sum-of-squares is applied to verify
global robustness properties for ML models.

We now give some intuition about the sum-of-squares
method for polynomial optimization. The problem is
to minimize the given polynomial function g subject to
polynomial inequality constraints. The s.o.s algorithm
in this case tries to find the largest real number γ such
that the shifted polynomial g−γ can be written as a spe-
cific type of polynomial (a polynomial in the quadratic
module (Lasserre 2015) generated by the constraint poly-
nomials). Finding this polynomial can be thought of as
finding a vector of monomial coefficients which satisfies
appropriate semi-definite constraints. To keep the opti-
mization problem finite-dimensional (i.e. the number of
monomials is finite), we have to put an upper-bound d on
the degree of this polynomial. This results in the degree-
d sum of squares relaxation. With some additional as-
sumptions (always satisfied in our setting), a non-trivial
theorem in real algebraic geometry (Putinar’s Positivstel-
lensatz (Lasserre 2015)) then guarantees that γ is a lower
bound for the polynomial g on the feasible set.

Suppose g∗ is the actual tight lower bound for g (i.e.
it is achieved by some point which is our certifi-
cate/minimizer). However, when the chosen relaxation
degree d is too small, we might not be able to represent
g− g∗ as a polynomial of the required form, and the best
degree ≤ d representation obtained by the optimizer will
give a worse (smaller) lower bound. In this case, the ver-
ification algorithm must increase d successively to find
better lower bounds. It is known that for all such poly-
nomial optimization problems P and any ε > 0, there
will be some finite dP,ε such that the degree-dP,ε re-
laxation lower bound will be ε-close to the actual lower
bound (convergence of s.o.s), but there are no known
upper bounds for dP,ε (to the best of our knowledge).
Hence an s.o.s-based verification algorithm remains in-
complete (unlike the MILP/MIQP approaches), even in
cases where all integrality constraints are applied (no do-
main relaxations), due to this non-zero gap in the s.o.s
lower bounds.

We omit a full description of the sum-of-squares relax-
ations, but the book by Lasserre (Lasserre 2015) is a
good reference which includes all the details and proofs.
A brief technical description of the relaxations (sans
proofs) is given in the supplementary material.

Using the sum-of-squares relaxations, and the fact that
semidefinite programs can be solved up to exponential
accuracy in polynomial time (w.r.t the number of vari-
ables and constraints of the SDP), we get the following:

Theorem 1. There is a polynomial-time algorithm
(which runs in time nO(2d)) that outputs ` ± O(1/2n),
where ` is a lower bound for g(x, x′) := f(x) − f(x′),



subject to a linear constraint set as in Algorithm 1.

The ±O(1/2n) error comes from the error in solving
semi-definite programs, which cannot be avoided even
when using exact arithmetic (since SDPs with rational
coefficients need not have rational solutions).

This implies that we have a sound but incomplete al-
gorithm to solve the relaxed individual bias verification
problem for polynomial kernel classifiers, by plugging in
the sum-of-squares relaxation algorithm from Theorem 1
into the meta-algorithm (Algorithm 1) from Section 4.1.

The salient points of our technique for polynomial ker-
nelized classifiers are give below:

• We use the sum-of-squares relaxation technique to
find a lower-bound approximation of g(x, x′).
• The lower-bound approximation ensures that when

our verifier is always correct when it says NO BIAS.
However, it can yield spurious counter-examples /
loose lower bounds at any particular level (of relax-
ation degree).
• The approximations are refined by taking sum-of-

squares relaxations of higher degree, which makes
the s.o.s lower bound closer to the actual lower
bound of g(x, x′).
• This refinement process may not terminate (only a

convergence result is known), yielding an incom-
plete verifier.

4.3 RBF Kernelized Classifiers

The Radial Basis Function (RBF) kernel is of the form
K(x, y) = exp(−γ‖x − y‖22), for a fixed parameter γ.
So the kernelized classifier is of the form

f(x) =
∑
i∈S+

ϕi(x)−
∑
i∈S−

ϕi(x)

where ϕi(x) := wi exp(−γ‖x − xi‖22). We use S+ to
denote the subset of indices i with yi = 1, and S− to
denote those with yi = −1. We will abuse the notation to
write xi ∈ S+ and i ∈ S+ as appropriate, and similarly
for S−. Suppose that all the non-zero model weights
satisfy 0 < c < wi < C for some bounds c and C. Let
g(x, x′) := f(x)− f(x′).

Let ε > 0 be a very small constant (compared to c).
Suppose that, when searching for bias instances, we only
want to find pairs x, x′ where g(x, x′) < −2ε. Then, we
can completely avoid looking at regions with |f(x)| ≤ ε
and |f(x′)| ≤ ε (by triangle inequality). We can di-
rectly exploit the above fact when δ > 0 (with ε = δ/2)
since our desired condition for bias is g(x, x′) < −δ.
Things are not as straightforward when δ = 0 (with clas-
sification models), but we argue that, under reasonable

assumptions, we can fix a sufficiently small (but non-
zero) ε, say ε = 10−8, such that finding a lower bound
g(x, x′) ≥ −2ε rather than g(x, x′) ≥ 0 does not ex-
clude any valid and interesting bias instances. Specif-
ically, the assumption is that we consider the non-zero
model weights (wi > c) to not be too small compared to
ε, and we are not interested in bias instances where the
attribute values have small positive magnitude of the or-
der of ε (such attribute values are unlikely to occur in real
world data), and based on the bounds that we specify, we
are not considering points x which are very far from all
the support vectors. Hence we can argue that, for a very
small ε > 0, we have |f(x)| ≥ ε for all valid x which
we wish to consider as a bias instance.

Theorem 2. Given a kernelized classifier (with the RBF
kernel) f : Rn → R with M support vectors, and for
a fixed, sufficiently small, ε > 0, there is an algorithm
FIND-BIAS-RBF which runs in time poly(n,M) that ei-
ther (i) returns a bias instance x, x′ with g(x, x′) :=
f(x) − f(x′) < −2ε, or (ii) returns a lower-bound
L ≥ −2ε such that, for all valid data points 1, we have
g(x, x′) ≥ L.

We mention that we chose ε = 10−8 in our experi-
ments based on the above considerations, because the
datasets we used had ≈ 10 − 20 features, and we de-
cided (rather unilaterally) that bias instances with feature
values� 10−3 were not interesting.

We now give a sketch of both the algorithm and the
proof of correctness. A detailed pseudocode is left for
the supplementary material. We note that this algorithm
(FIND-BIAS-RBF) is slightly different compared to the
meta-algorithm in Section 4.1. However, it can still be
plugged into the meta-algorithm to verify individual bias
of a given kernelized RBF classifier. The main differ-
ences are: (i) In the case of finding a valid bias instance
(x, x′), the algorithm FIND-BIAS-RBF does not give an
exact lower bound ` as in the meta-algorithm (we can
only say that ` < −2ε), and (ii) The case where the
FIND-BIAS-RBF algorithm gives a lower bound ≥ −2ε
is treated as the NO BIAS case (which differs from the
meta-algorithm when δ = 0). But we still get a cor-
rect output in case (i), and have already justified that a
very small ε will make sure that all valid examples are
covered in case (ii); with only minor assumptions on the
minimum magnitudes of the model weights and the at-
tribute values.

The intuition behind the FIND-BIAS-RBF algorithm is as
follows. A kernelized RBF classifier f is a linear com-
bination of n-dimensional gaussian densities, where for
each support vector xi (with label yi), you have a gaus-

1Assuming that we do not have valid feature values as small
as ≈ n

√
ε.



sian with mean (i.e. centered at) xi with covariance ma-
trix 1

2γ I . This gaussian is scaled by a factor 0 < wi < C,
which is equivalent to scaling the variance of each (i.i.d.)
co-ordinate by w2

i < C2. Then, we can write

ϕi(x) = N
(
xi,

w2
i

2γ I
)

(x)

where we again abuse the notation and use N (µ,Σ) to
denote the gaussian probability density function (pdf)
with mean µ and covariance matrix Σ.

Now, for any x, x′ such that f(x) < −ε and f(x′) > ε
(which would imply that g(x, x′) < −2ε), there must
exist a support vector xr ∈ S+ such that ϕr(x′) ≥ ε/M ,
and a support vector xs ∈ S− such that ϕs(x) ≥
ε/M . That is, any individual bias instance (pair of in-
puts) that we care about (w.r.t. our fixed ε) must be
in the intersection of B`2 (xr, Dr) and B`2 (xs, Ds) for
some support vectors xr ∈ S+ and xs ∈ S−, where
Dr :=

√
1
γ log

(
Mwr

ε

)
(and Ds is defined similarly),

which means that it must also be in the intersection of
B`∞ (xr, Dr) and B`∞ (xs, Ds). We then minimize the
objective function P (x, x′) = 1

2

(∑
u∈S+ wu‖x′−xu‖2

+
∑
v∈S− wv‖x−xv‖2

)
, subject to the linear constraints

that x, x′ ∈ B`∞(xr, Dr) ∩ B`∞(xs, Ds).

It is easy to see that minimizing P (x, x′) subject to these
constraints (for a particular pair xr and xs) is a convex
quadratic program, which can be solved in poly(n) time.
This has to be done for all xr and xs. This requires
≤ M2 iterations, and so the entire algorithm runs in
poly(n,M) time. If no appropriate bias instance is found
in these iterations, we output the lower bound L ≥ −2ε,
which is the smallest value of g(x∗, x′∗) among those
found in each iteration.

5 EXPERIMENTAL RESULTS

5.1 SETUP

All our experiments are carried out on a cloud virtual ma-
chine with 32 Intel Xeon E5-2683 v4 (2.10 GHz) proces-
sors, 128 GB RAM and no dedicated GPU. The machine
runs Ubuntu 16.04, and has Python 3.6.8 (Anaconda) in-
stalled, along with all the default Anaconda packages.
Each experiment is run with at most 32 parallel jobs
(python processes) on this machine.

Tools We use the cplex and quadprog Python pack-
ages to solve the quadratic programs, and SDPA to solve
the sum-of-squares relaxation SDPs.

Table 1: Experimental results of the proposed algorithms
for the relaxed problem.

DS Model Accuracy Bias Time taken
Train Test

GC

GC Linear1 0.767 0.76 Yes 226.2s
GC Linear2 0.756 0.748 No 229.0s
GC Poly1 0.650 0.704 No 78.4m
GC Poly2 0.658 0.7 No 77.3m
GC Rbf1 0.992 0.664 Yes 9.5s
GC Rbf2 1.0 0.7 No 27.7m

AD
AD Linear1 0.822 0.821 Yes 47.3s
AD Linear2 0.823 0.821 No 48.7s
AD Poly1 0.826 0.824 Possible 10.4s
AD Poly2 0.826 0.823 Possible 10.9s
AD Rbf1 0.828 0.827 Yes 114.5s
AD Rbf2 0.905 0.811 Yes 546.8s

FD

FD Linear1 0.660 0.654 Yes 0.163s
FD Linear2 0.660 0.654 No 0.101s
FD Poly1 0.602 0.610 Possible 18.1s
FD Poly2 0.590 0.607 Possible 17.1s
FD Rbf1 0.928 0.669 Yes 16.1s
FD Rbf2 1.0 0.665 Yes 32.7s

CR

CR Linear1 0.943 0.86 Yes 106.8s
CR Linear2 0.953 0.88 No 79.1s
CR Poly1 0.906 0.93 No Bias 33.8s
CR Poly2 0.863 0.9 No Bias 31.8s
CR Rbf1 1.0 0.85 Yes 9.2s
CR Rbf2 1.0 0.56 No 389.4s

Table 2: Experimental results of testing bias using ran-
dom sampling.

Model Time Taken Result

GC Lin1 1.812 mins Not found
GC Lin2 2.088 mins Not found
GC Poly1 1.756 mins Not found
GC Poly2 1.646 mins Not found
GC Rbf1 4.039 mins Not found
GC Rbf2 4.737 mins Not found

5.2 BENCHMARKS

5.2.1 Datasets

We use four publicly available datasets to benchmark
our algorithms, listed in Table 3. Note that the Adult
dataset which we use is a publicly available dimension-
reduced variant (Modified Adult Dataset (DiCE)) of the
full dataset. In all cases, we report the time taken for
the individual bias verification step on an already trained
model. The times which we report are obtained from the
Python time.perf counter() function.

In all the datasets, we replace textual categorical at-
tributes by appropriate integer values as appropriate. We
also we do a 75% − 25% stratified split on each dataset
before using it for training.



Table 3: The datasets used for experiments

Dataset # Features # Rows (Train)

German Credit (GC) 20 750
Adult (AD) 8 24420
Fraud Detection (FD) 9 825
Credit ISLR (CR) 10 300

For the perturbation bounds, we use a counterfactual for-
mulation where a subset of the attributes in each dataset
are selected as protected/sensitive, with arbitrary pertur-
bations allowed (ε1 = ∞), and the rest of the attributes
are fixed (ε2 = 0). The protected attributes are: sex-
marital-status for German Credit, race for Adult, ethnic-
ity for Fraud Detection, and gender, ethnicity for Credit.

5.2.2 Models

All the models are trained using the scikit-learn
framework. The linear models are trained using scikit-
learn logistic regression, with L2 regularization and the
default parameters. The DD Linear2 models are trained
after setting the protected attribute values to 0 through-
out the training data (masking). The rbf kernelized mod-
els are trained using the support vector machine clas-
sifier (sklearn.svm.SVC) with the rbf kernel. The
DD Rbf1 models are trained with C = 1000 and γ =
10−4. The DD Rbf2 models are trained with C = 1
and γ = 0.5, and after masking the protected attribute.
The polynomial kernelized models are trained using SVC
with the degree-2 polynomial kernel. The DD Poly1
models are trained with C = 1., γ = 0.001, and r = 0.
The DD Poly2 models are trained with the same hyper-
parameters, but after masking the protected attribute.

5.3 EVALUATION OF VERIFICATION

We show the results of evaluating our proposed verifica-
tion algorithms on the models described above and show
the results in Table 1. It can be seen that the time taken
for verification — even for reasonably complex models
on real-world datasets — is within fairly acceptable lim-
its, even with the worst case exponential time. It can also
be seen that the sum-of-squares relaxations scale quite
badly as the dimension of the data increases, which is as
expected.

Wherever Table 1 shows Bias = Yes, it indicates that the
verifier gave a valid bias instance as the output. Bias
= No indicates that the verifier proved No Bias. Bias
= Possible indicates that the verifier did not prove a
lower-bound ≥ 0, but neither did it find a valid bias
instance. An example of a bias instance found for the

model AD Lin1 is (age: 60, work: Private, edu: Bach-
elors, marital-status: Married, occupation: Professional,
race: White, sex: Male, hours-per-wk: 8). The model
predicts the income as ≥ 50k. Changing race from
“White” to “Other” flips the income prediction to< 50k.

5.4 COMPARISON WITH TESTING

We performed an experiment by running the random test-
ing algorithm (THEMIS) with 50,000 samples and verifi-
cation algorithm to compare the time taken by the verifi-
cation algorithm and testing for finding counter-example
and determine that our algorithm provides NO BIAS be-
fore the testing algorithm exhaust the test case generation
in a specific time. The result is presented in Table 2. The
result shows that random testing can take comparable or
worse time than our verification algorithm, even without
generating a single counterexample (bias instance).

6 CONCLUSION AND DISCUSSION

We have considered a notion of individual fairness for
structured data, and the problem of verifying the lack of
individual bias in a given decision model. We have given
a meta-algorithm for solving this problem, as well as spe-
cific algorithms for linear models and kernelized models
with polynomial/RBF kernels. To the best of our knowl-
edge, this is the first work that considers the verification
of individual fairness for ML models.

Analysis of Model Bias Our algorithms output either a
no-bias certificate or a bias instance (input pair), but this
may be insufficient by itself in real-world investigations
of model bias. To further the analysis, our solution of-
fers two possibilities out-of-the-box. One possibility is to
tighten the constraints on the input features, invoking the
verifier every time, to find different input regions where
the model is fair. Another possibility is to impose ad-
ditional linear constraints (domain-knowledge-based) on
the bias instances, which does not affect the optimiza-
tion formulations. Note that we are not reporting any
experimental results for the above analyses. Another im-
portant problem is to find regions where bias exists for
every input in that region, but this is not possible using
our verifier alone.

Future Work In future, we plan to extend this work in
the following dimensions — 1) verifying wider classes
of ML models, 2) extending our techniques to work with
other individual & group fairness definitions, and 3) ex-
ploring different abstraction-refinement schemes such as
counter-example driven refinement.
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