
Selling Data at an Auction under Privacy Constraints

Mengxiao Zhang
Business School

The University of Auckland
Auckland, NZ

mengxiao.zhang@auckland.ac.nz

Fernando Beltran
Business School

The University of Auckland
Auckland, NZ

f.beltran@auckland.ac.nz

Jiamou Liu
School of Computer Science
The University of Auckland

Auckland, NZ
jiamou.liu@auckland.ac.nz

Abstract

Private data query combines mechanism de-
sign with privacy protection to produce ag-
gregated statistics from privately-owned data
records. The problem arises in a data market-
place where data owners have personalised pri-
vacy requirements and private data valuations.
We focus on the case when the data owners are
single-minded, i.e., they are willing to release
their data only if the data broker guarantees
to meet their announced privacy requirements.
For a data broker who wants to purchase data
from such data owners, we propose the Single-
MindedQuery (SMQ) mechanism, which uses
a reverse auction to select data owners and
determine compensations. SMQ satisfies in-
terim incentive compatibility, individual ratio-
nality, and budget feasibility. Moreover, it
uses purchased privacy expectation maximisa-
tion as a principle to produce accurate outputs
for commonly-used queries such as counting,
median and linear predictor. The effectiveness
of our method is empirically validated by a se-
ries of experiments.

1 INTRODUCTION

The increasing reliance on data-driven technologies has
led to the formation of an economy that is built on data
trading. Many data marketplaces emerged that bring
data buyers, i.e., those who are seeking data to pur-
chase, together with data owners, i.e., those who are
willing to release data for a compensation. Examples
of data marketplaces include Datacoup, Datum, Citi-
zenMe and DataWallet, many of which enable data buy-
ers to purchase personal data from individual data owners
(Laudon, 1996; Nget, Cao, & Yoshikawa, 2017).
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Imagine a data broker who would like to query a set of
privately held data records – such as income record, en-
ergy consumption data, or online service rating – to pro-
duce aggregated statistics. This may mean that consents
must be purchased from individual data owners to access
their data. In designing a query mechanism for this task,
the data broker faces a number of challenges: The first is
privacy. By giving out their data, the data owners give up
a certain privacy. An attacker may use, say, income data
to infer confidential information such as personal identi-
ties (Brankovic & Estivill-Castro, 1999). It thus makes
sense for data owners to demand privacy protection when
their data are released. Secondly, every data owner asso-
ciates a value to their data. The value denotes the mini-
mum compensation for the individual to release the data.
Naturally, this value is hidden from the data broker. The
imbalance in the access to data valuation between data
owners and the data broker, i.e., information asymmetry,
is the second challenge faced by the data broker. Thirdly,
when using compensations to incentivise the data owners
to release their data, decisions need to be made regarding
which (and how many) data owners to procure data from,
subject to budget constraints. The utility to the data bro-
ker is determined by the accuracy of queries made on the
purchased data records. The third challenge thus lies in
optimising accuracy. These challenges make private data
query an attractive topic that sits between data analysis,
algorithmic game theory, and data security.

A paradigm of privacy trading can be found in Ghosh
and Roth (2011). The premises involve a data broker who
aims to query private data held by individuals who have
varying attitudes towards privacy. To reveal the hidden
privacy attitudes of data owners, the data broker uses an
auction where each data owner submits a bid reflecting
their privacy valuation. Based on all bids received, the
data broker decides on a level of privacy to be purchased
from the data owners. A noisy query output is then pro-
duced which preserves the purchased level of privacy.
The paradigm laid out in (Ghosh & Roth, 2011) implic-



itly makes two assumptions: (1) privacy trading may be
done in ways that resemble the trading of other com-
modities such as stocks and bonds; and (2) the data bro-
ker, by giving sufficient incentive, could purchase an ar-
bitrary amount of privacy from every data owner. Hence
it is up to the data broker to determine the level of pri-
vacy to be purchased from the data owners. A number
of work have subsequently adopted these views in other
settings (Dandekar, Fawaz, & Ioannidis, 2012; Fleischer
& Lyu, 2012; Ligett & Roth, 2012; Cummings, Ligett,
Roth, Wu, & Ziani, 2015).

Contribution. In this paper, we adopt a different view
towards private data query. Under the assumptions of
privacy trading, as the data broker applies more stringent
methods to protect data privacy, the cost (and therefore
payment) to the data owner would tend towards 0. This is
often not the case in reality. In many situations, the data
owners are “single-minded”, i.e., they would demand a
level of privacy protection and would not release their
data unless their requested level of privacy protection is
met. Moreover, once the level of privacy protection is
guaranteed, privacy is decoupled from the cost of releas-
ing the data. In other words, the payment demanded by
a data owner to release their data would not decrease as
the data broker provides more privacy protection to the
data. This paradigm can be considered as data trading
as the purchased commodity is the access to data rather
than privacy. To our knowledge, despite its simple and
relatively straightforward setup, no work has addressed
private data query under this assumption. This is the ma-
jor conceptual contribution of our work.

Our technical contribution lies in SingleMindedQuery
(SMQ), a new private data query mechanism over single-
minded data owners as described above. We adopt the
personalised variant of the classical differential privacy
(DP) to quantify data privacy. Our goal is to perform
queries to a high accuracy while preserving every data
owner’s declared privacy requirement. The main tech-
nical novelty is a reverse auction mechanism that de-
termines whose data to purchase and how much com-
pensation should be paid. Note that unlike mechanisms
that follow the privacy trading paradigm (Ghosh & Roth,
2011), SMQ does not decide the level of privacy to be
purchased from the data owners. SMQ incentivises the
data owners so that their data valuation is truthfully re-
vealed, thereby resolving information asymmetry. Fur-
thermore, we use purchased privacy expectation maximi-
sation (PPEM) as a principle that guides SMQ to achieve
high accuracy for commonly-used queries such as count-
ing, median and linear predictor (See Lemma 2). We val-
idate empirically the effectiveness of our method using a
series of experiments.

Related work. We review research on the query of pri-
vate data. The seminal work of Ghosh and Roth (2011)
has laid down some main assumptions. The authors pro-
pose the FairQuery (FQ) mechanism to perform count
query on binary (0/1-valued) data. FQ uses a reverse
auction to obtain data owners’ privacy valuation. When
combined with a Laplace mechanism that obfuscates
query output, FQ guarantees (certain exact formulations
of) incentive compatibility, individual rationality, budget
feasibility, query accuracy, and privacy protection. These
conditions have since been key indicators of the effec-
tiveness of any query mechanism for private data. The
notion of ε-differential privacy (DP) (Dwork, McSherry,
Nissim, & Smith, 2006) has been chosen to quantify data
privacy as the parameter ε captures in some precise sense
the loss on utility a person experiences if her data is used
in an ε-DP manner. This supports an argument that a data
owner’s privacy can be regarded as a “soft constraint” to
be captured by a real-valued cost. The cost increases as
a linear function in terms of privacy loss. The FQ mech-
anism in (Ghosh & Roth, 2011) associates this cost with
the compensation paid to the data owner.

It is important to point out that, even though the data
owners have different privacy valuations, FQ would com-
pute a single level ε > 0 of DP, and compensate for ε-
DP to all data owners whose data are used. This means
that the mechanism could over-protect some data own-
ers by offering them too stringent privacy protection.
Therefore, we can consider this mechanism as “pseudo-
personalised” as it fails to account for the differences
in the data owners’ privacy valuations. Such pseudo-
personalised approach has been uptaken by Fleischer and
Lyu (2012) and Ligett and Roth (2012) which instead of
proposing auction mechanisms, design indirect mecha-
nisms, i.e., take-it-or-leave-it offers, to reveal data own-
ers’ privacy valuation.

In contrast, a “truly-personalised” private data query
mechanism enables different levels of privacy require-
ments to be applied to different data owners. Such a
mechanism has the potential to avoid over-protecting the
data owners’ privacy, thus achieving higher accuracy.
For example, Dandekar et al. (2012) design the FairIn-
nerProduct (FIP) mechanism for linear predictor queries
over real-valued data. FIP also uses a reverse auction
mechanism while enforcing different levels of privacy
protection for different data owners. Such an approach is
also adopted by (Cummings et al., 2015). There, a data
broker provides a menu of different variance levels and
asks the data owners to report the valuation under each
level. However, a crucial limitation exists in (Cummings
et al., 2015)’s mechanism as it does not explicitly state
its differential privacy level.



As mentioned earlier, all mechanisms above follow the
privacy trading paradigm where the cost to a data owner
from releasing their data is assumed to only arise from
privacy loss. This makes sense assuming (1) the data
owners fully trust the data broker to protect their pur-
chased privacy level, and (2) the data owners do not have
an intrinsic valuation to their data records. These as-
sumptions may not hold in practice. In the light of this,
we will put forward a mechanism that compensates the
data owners for their intrinsic data valuation while treat-
ing the privacy requirement as a hard constraint.

2 PRELIMINARIES

PDP Queries. We regard a dataset as a tuple ~d =
(d1, . . . , dn) ∈ Rn where n ≥ 1 and each data entry
di ∈ R. D ⊆ R? denotes the collection of all possi-
ble datasets. A query is a function ϕ : D → R, such as
median and mean. To achieve privacy protection, a ran-
domised function g is applied to the query result to obtain
the obfuscated query Φ = g ◦ ϕ.

The notion of ε-personalised differential privacy (PDP)
quantifies the level of privacy achieved by this ran-
domised function: Call two datasets ~d ∈ Rn and ~d′ ∈ Rn
i-neighbouring if they differ on exactly the ith entry.
Definition 1. (Jorgensen, Yu, & Cormode, 2015) Given
a vector ~ε = (ε1, . . . , εn) ∈ Rn, a randomised function
Φ: D → R is ~ε-PDP if for any pair of i-neighbouring
datasets ~d, ~d′ ∈ Rn where 1 ≤ i ≤ n:

Pr(Φ(~d) ∈ R)

Pr(Φ(~d′) ∈ R)
≤ eεi ,∀R ⊂ Range(Φ) (1)

In other words, suppose ~d′ is an i-neighbouring dataset
from the true dataset ~d. As the ratio above moves closer
to 1, Φ is more likely to output the same result on ~d and
~d′, hiding the true value of the ith data entry. Hence a
ε-PDP query mechanism with smaller ε leads to a higher
level of privacy protection for data entry di1.

The PE mechanism generates ~ε-PDP queries (Jorgensen
et al., 2015): For ~d′, ~d ∈ Rn, let I~d⊕~d′ := {1 ≤
i ≤ n | d′i 6= di}. Fix a query ϕ. Set σϕ(~d, r) :=

maxϕ(~d′)=r

{∑
i∈I~d⊕~d′

−εi
}
∀r ∈ R. Given a dataset

~d, the PE mechanism Φϕ(~d) generates output r ∈ R with
probability

Pr
(

Φϕ(~d) = r
)

=
exp( 1

2σϕ(~d, r))∑
r′∈Range(Φ) exp( 1

2σϕ(~d, r′))

1PDP is generalised from the classical differential privacy
(Dwork et al., 2006) to accommodate the diversity in peo-
ple’s privacy attitudes (Acquisti & Grossklags, 2005; Berendt,
Günther, & Spiekermann, 2005).

We will implement our query using the PE mechanism,
as it can be applied to arbitrary real-valued queries and
adds a relatively smaller amount of random noise as com-
pared with other existing methods who claim to achieve
~ε-PDP (Alaggan, Gambs, & Kermarrec, 2016; Li, Xiong,
Ji, & Jiang, 2017).

Procurement mechanism. We consider a market that
consists of a single buyer and multiple sellers denoted by
s1, s2, . . . , sn. The following assumptions are made on
every seller si, 1 ≤ i ≤ n:

(A1) We assume that once an appropriate amount of
compensation is given, si is willing to sell her good to
the buyer. The required level of compensation depends
on the inherent valuation θi that si puts on the good. This
is a real value in the range Θ := [θ, θ] where constants
0 ≤ θ ≤ θ are the lower- and upper-bound, respectively;
θi represents the loss si suffers when she sells the good.

(A2) The valuation θi of si is a random sample from a
distribution with cumulative probability function Fi and
density function fi. The distribution is assumed to be
regular. In other words, the function fi(v)/(1− Fi(v)),
i.e., the probability that θi = v conditioned on θi > v, is
monotonically non-decreasing on v ∈ Θ. This assump-
tion is commonly made in mechanism design literature
and is satisfied by most distributions (Börgers, 2015).

We further assume that F1 = · · · = Fn and θ1, . . . , θn
are i.i.d. random variables. The valuation vector ~θ :=
(θ1, . . . , θn) ∈ Θn has joint distribution and density
functions F and f , respectively. While the functions F
and f are common knowledge among the buyer and sell-
ers, the valuation θi is only known by si and hidden from
anyone else. Therefore, it is crucial for the buyer to in-
centivise the sellers to reveal their true valuations.

A procurement mechanism acts on behalf of the buyer to
select a subset of sellers and decides on the amount of
compensation for each seller. A direct mechanism, de-
fined below, is a form of procurement mechanism where
the buyer makes decisions solely based on the sellers’
reported valuations (Börgers, 2015):

Definition 2. A direct mechanism Ψ consists of a pair
of functions (q, p) where q : Θn → {0, 1}n is called
allocation function and p : Θn → Rn is called pay-
ment function. For any ~ψ ∈ Θn, the tuples q(~ψ) :=

(q1(~ψ), . . . , qn(~ψ)) and p(~ψ) := (p1(~ψ), . . . , pn(~ψ))
are called allocation vector and payment vector, resp.

Intuitively, the buyer first receives reported valuation
ψi ∈ Θ from each si to form a vector ~ψ = (ψ1, . . . , ψn).
The mechanism computes qi(~ψ) and pi(~ψ). When
qi(~ψ) = 1, the buyer “selects” si and purchases the good
from si with a compensation pi(~ψ).



We need a procurement mechanism that leads to certain
desirable actions of the sellers. At the time of submit-
ting a valuation ψi, the seller si makes decision with
only the private information θi and knowledge regarding
the distribution F . In other words, the outcome of the
mechanism is made based on ex-interim utility expecta-
tions (Conitzer, 2009). It therefore makes sense to adopt
Bayesian Nash utility in the solution concept of mecha-
nism design (Mas-Colell, Whinston, Green, et al., 1995):

Set ~ψ−i := (ψ1, . . . , ψi−1, ψi+1, . . . , ψn) ∈ Θn−1

as the reported valuation vector of the sellers other
than si. We abuse the notation writing pi(ψi, ~ψ−i)

for pi(~ψ) and qi(ψi, ~ψ−i) for qi(~ψ). Set f−i as the
density function of the joint probability distribution of
(θ1, . . . , θi−1, θi+1, θn). We define

Qi(ψi) :=

∫
Θn−1

qi(ψi, ~ψ−i)f−i(~ψ−i) d~ψ−i (2)

Pi(ψi) :=

∫
Θn−1

pi(ψi, ~ψ−i)f−i(~ψ−i) d~ψ−i (3)

as the expected allocation and the expected payment
when the reported valuation of si is ψi, resp. And her
expected utility is Ui(ψi|θi) := Pi(ψi)− θiQi(ψi).

The celebrated revelation principle asserts that to find the
optimal procurement process, it is sufficient to restrict
to direct mechanisms where the data owners truthfully
report their valuation in the Bayesian Nash equilibrium
(see (Börgers, 2015)). Formally, we would like to design
a direct mechanism Ψ with the following properties:

(1) Incentive compatibility (IC): This property ensures
that each seller truthfully reports her valuation, as she
expects to gain the maximum utility by doing this, i.e.,

Ui(θi|θi) ≥ Ui(ψi|θi),∀i ∈ {1, . . . , n},∀θi, ψi ∈ Θ
(4)

(2) Individual rationality (IR): This property ensures
that every seller is willing to participate in the mecha-
nism, as her gain of participating is not less than that
of non-participation. Here, we assume that the utility of
non-participation is zero, i.e.,

Ui(θi|θi) ≥ 0,∀i ∈ {1, . . . , n},∀θi ∈ Θ (5)

It is also reasonable to assume that the buyer has a limited
budget B ≤ θn, and thus we need the following.

(3) Budget feasibility (BF): The expected compensation
received by all sellers should not exceed budget B, i.e.,

n∑
i=1

∫
Θn

pi(~ψ)f(~ψ) d~ψ ≤ B (6)

Remark: The definition of BF here is interim BF, which
merely considers the expected value of total payment.
This may seem counter-intuitive – as the buyer would
really like to ensure ex post BF, i.e.,

∑n
i=1 pi(

~ψ) ≤ B.
It has turned out that these two notions are equivalent, as
shown by the following lemma.

Lemma 1. (Börgers, 2015) For any direct mechanism
that is individually rational, incentive compatible and in-
terim budget feasible, there is a direct mechanism with
the same allocation rule that is individually rational, in-
centive compatible and ex post budget feasible.

3 PRIVACY-AWARE DATA OWNERS

We consider a data marketplace that involves a group of
data owners, each of whom holds a private (real-valued)
data entry, and a data broker who would like to collect
these data entries. Denote the data owners by s1, . . . , sn
and si’s data entry by di. Every si has a data valuation
θi ∈ R for her data entry. In this way, the data owners
and broker are respectively the sellers and buyer in the
market with data entries as goods. We make some further
assumptions regarding every data owner si:

(A3) si is a single-minded data owner, i.e., the data owner
si has a privacy requirement εi ∈ R. To release the data,
si requires the data broker to meet εi-PDP for any query
made on the collected dataset.

(A4) The data entry di, once released, is verifiable and
thus data owners cannot misreport their data. This as-
sumption is reasonable because in some data market-
places such as Datacoup, the data brokers do not directly
collect data from data owners, but rather, they seek for
data access permission from data owners and the data
are provided by certain intermediary service.

(A5) No correlation exists between θi and the data value
di. This means that the output of the allocation function
does not reveal any information about the private data.

(A1)–(A5) naturally infer the following definition:

Definition 3. A privacy-aware data owner si is formally
a tuple si := (di, θi, εi), where di ∈ R is si’s data entry,
θi ∈ Θ is si’s data valuation, and εi ≥ 0 is her privacy
requirement.

Remark: The definition above is different from the one
in (Ghosh & Roth, 2011) where instead of the value εi, a
data owner si is associated a cost function ci(ε) ∈ R that
captures the amount of loss si experiences when the data
broker “purchases” ε amount of privacy. In particular, the
cost function is defined as ci(ε) = ε · vi where vi ∈ R
is a privacy valuation. When using ci to denote the min-
imum compensation si requires to release the data entry



di, in our setting, a privacy-aware data owner would have
a stepwise cost function defined as

ci(ε) =

{
θi if 0 ≤ ε ≤ εi
∞ otherwise

(7)

In particular, ci(0) may be non-zero as it represents si’s
valuation to the data entry rather than privacy. This cru-
cial difference makes the analysis in (Ghosh & Roth,
2011) not applicable to our setting.

4 DATA QUERY MECHANISM

A data query mechanism A combines a procurement
mechanism Ψ with a PDP query Φ (See Fig. 1). Suppose
S = {s1, . . . , sn} is a set of privacy-aware data own-
ers. Given a query ϕ : D → R and a budget B > 0, the
mechanism A first applies Ψ which purchases data en-
tries from a subset of data owners and constructs a sam-
pled dataset; the PDP query Φ is then applied to return a
final query result A(S). As argued in Section 2, we will
apply the PE mechanism as Φ.

Figure 1: An illustration of a data query mechanism

We denote the ground-truth dataset (d1, . . . , dn) by ~dgt

and the sampled dataset by ~dc. The next definition cap-
tures the query accuracy of A.

Definition 4. A query mechanism A is (α, δ)-probably
approximately correct (PAC) if for any ~dgt, Pr(|A(~dc)−
ϕ(~dgt)| ≥ α) ≤ 1− δ.

For brevity we write qi for the allocation result
qi(ψi, ~ψ−i) ∈ {0, 1} of si given the reported valuation
~ψ. As each data owner is single-minded, si’s privacy
requirement εi must be met in case qi = 1. One can
thus view εiqi as the amount of privacy “purchased” by
the procurement mechanism. We next establishes a con-
nection between the query accuracy and the total amount∑n
i=1 εiqi of purchased privacy.

We consider the following commonly-used query func-
tions: Linear predictor captures a wide range of po-
tential queries over real numbers that include k-nearest

neighbours, Nadaranya-Watson weighted average, ridge
regression and support vector machines (Dandekar et al.,
2012). It is defined as ϕ(~dgt) :=

∑n
i=1 widi, where

wi 6= 0 is the weight of the data owner si. If di ∈ {0, 1}
and wi = 1 for all i ∈ {1, . . . , n}, the query is called
a count query. More generally, a linear predictor can be
used in a recommender system where wi represents the
similarity between a user si and a new user; ϕ(~dgt) is
then the prediction about the new user’s data value. We
also consider median query which aims to find the me-
dian value among mutually distinct positive integers. In
the next lemma, the query ϕ belongs to one of the three
types defined above.
Lemma 2. For any integer 1 ≤ α ≤ n/4 and δ ∈
(0, 1), if the query mechanism A is (α, δ)-PAC, then
α ≥ n

4
∑n

i=1 εiqi
· (ln δ − ln(1− δ)).

Proof. We prove the equivalent form, ifA is (α, δ)-PAC,
then

∑n
i=1 εiqi ≥

n(ln δ−ln(1−δ))
4α . We first consider

count query. Recall that this case assumes each data en-
try di is a 0/1-value. We assume for a contradiction that∑n
i=1 εiqi <

n(ln δ−ln(1−δ))
4α and the query mechanism

is (α, δ)-PAC. Let R = {r ∈ R | |r − ϕ(~dgt)| < α}. By

the definition of (α, δ)-PAC, Pr
(

Φ
(
~dgt

)
∈ R

)
≥ δ.

Sort the data owners so that εiqi are in ascending order,
i.e., ε1q1 ≤ ε2q2 ≤ . . . ≤ εnqn. Consider the first 4α
data owners (Note that 4α ≤ n). Clearly,

4α∑
i=1

εiqi <
n(ln δ − ln(1− δ))

4α

4α

n
= ln δ − ln(1− δ).

Let ~d0 := (di)i∈I0 and ~d1 := (di)i∈I1 where Ij = {1 ≤
i ≤ 4α | di = j} for j ∈ {0, 1}. Without loss of general-
ity, assume that |~d0| > 2α. Let I ′ ⊆ I0 that contains ex-
actly 2α elements, and define a dataset ~d′ := (b1, . . . , bn)
where bi = 1 if i ∈ I ′, and bi = di otherwise. It follows
that ϕ(~d′) = ϕ(~dgt) + 2α.

It is straightforward to verify by definition of PDP that

Pr
(

Φ(~d′) ∈ R
)
≥ exp

(
−
∑
i∈I′

εiqi

)
Pr
(

Φ(~dgt) ∈ R
)

> exp (−(ln δ − ln(1− δ)))× δ =
1− δ
δ
· δ = 1− δ

Since ϕ(~d′) = ϕ(~dgt) + 2α, by the triangle

inequality, we have Pr
(
|Φ(~d′)− ϕ(~d′)| > α

)
≥

Pr
(
|Φ(~d′)− ϕ(~dgt)| < α

)
> 1 − δ, which contradicts

the (α, δ)-PAC assumption.

The proof is similar for the case when ϕ is the gen-
eral linear predictor where the data entries are real val-
ues. The only difference is that we define the set I ′ as



{1, . . . , 2α} and the dataset ~d′ by bi = di + 1
wi

for all
i ∈ I ′ and bi = di otherwise. The case when ϕ is a me-
dian query (over mutually distinct integers) can be found
in Appendix A.

5 SINGLEMINDEDQUERY (SMQ)

Fixing the confidence level δ (> 1 − δ), Lemma 2
asserts that

∑n
i=1 εiqi ∈ Ω(n/α) is necessary for

any query mechanism to achieve (α, δ)-PAC. This sug-
gests the total amount of purchased privacy

∑n
i=1 εiqi

plays a significant role in determining query accuracy.
Moreover, since we concern with ex-interim utility, the
term qi here should be considered in expectation, i.e.,∫

Θ

∑n
i=1 εiqi(

~ψ)f(~ψ) d~ψ. In our query mechanism,
we thus aim to maximise purchased privacy expectation
(PPEM) in order to obtain accurate query results, i.e., we
aim to solve the following optimisation problem:

maximise
∫

Θ

n∑
i=1

εiqi(~ψ)f(~ψ) d~ψ

such that (4), (5) and (6) are satisfied

(8)

In the rest of the paper, we describe our data query mech-
anism, namely SingleMindedQuery (SMQ), to solve
Problem (8). Note that the problem can be regarded
as a knapsack auction problem (see (Ensthaler & Giebe,
2014)): TreatB as the capacity of the knapsack, εi as the
value and θi as the weight of the ith item (1 ≤ i ≤ n).

Definition 5. A simple direct mechanism Ψ consists of
allocation rule qi(~ψ) and payment rule pi(~ψ) as follows,

qi(~ψ) = Qi(ψi) :=

{
1 if ψi ≤ θ∗i
0 otherwise

(9)

pi(~ψ) = Pi(ψi) := ψiQi(ψi) +

∫ θi

ψi

Qi(s) ds (10)

In a simple direct mechanism, each data owner si has a
take-it-or-leave-it offer with si’s valuation bounded by a
threshold θ∗i . If the reported ψi is smaller than the thresh-
old, the data owner will be selected and get a compensa-
tion pi(~ψ), which is higher than ψi.

Lemma 3. Assuming that θ∗i is independent from the re-
ported valuation ψi for all 1 ≤ i ≤ n, a simple direct
mechanism Ψ is incentive compatible and individually
rational.

Proof. For IR, suppose θi ≤ θ∗i . Then Qi(θi) = 1. By
(10), Pi(θi) equals

θiQi(θi) +

∫ θi

θi

Qi(s) ds = θi +

∫ θ∗i

θi

1 ds = θ∗i , (11)

and Ui(θi|θi) = Pi(θi) − θiQi(θi) = θ∗i − θi ≥ 0. If
θi > θ∗i , Qi(ψi) = 0 which implies Pi(θi) = 0 and
Ui(θi|θi) = 0. In either case, the expected utility of re-
porting the valuation truthfully is non-negative.

The IC condition can be proved easily by considering the
two possible cases ofψi > θi andψi < θi. The full proof
is in Appendix B.

We would like to define a simple direct mechanism to
solve (8). It remains to find the appropriate threshold ~θ∗.
For the following lemma, by an optimal threshold, we
mean a vector ~θ∗ = (θ∗1 , . . . , θ

∗
n) whose corresponding

allocation and payment rules as defined in (9) and (10),
respectively, is an optimal solution for (8).
Lemma 4. The optimal solution to the following optimi-
sation problem (12) is an optimal threshold.

max
Θ

n∑
i=1

εiFi(θ
∗
i )

such that
n∑
i=1

θ∗i Fi(θ
∗
i ) = B

θ ≤ θ∗i ≤ θ ∀i ∈ {1, . . . , n}

(12)

Proof. By substituting (2) the objective function of (8)

becomes
∑n
i=1

∫ θ
θ
εiQi(ψi)fi(ψi) dψi, which, by (9), is

n∑
i=1

∫ θ∗i

θ

εifi(ψi) dψi =

n∑
i=1

εiFi(θ
∗
i ).

IC and IR are satisfied due to Lemma 3 and the fact that
θ∗i is chosen by solving (12), which is independent from
ψi. BF is equivalent to

∑n
i=1 θ

∗
i Fi(θ

∗
i ) ≤ B which can

be derived using (3) and (10). Moreover, it is easy to see
that (6) is binding, i.e.,

∑n
i=1 θ

∗
i Fi(θ

∗
i ) = B. Otherwise,

we can always increase the value of θ∗i and select more
data owners. See full proof at Appendix C.

To solve problem (12), take the Lagrange function

L( ~θ∗, λ, µ1, . . . , µn, γ1, . . . , γn) :=

n∑
i=1

εiFi(θ
∗
i )

− λ
n∑
i=1

(θ∗i Fi(θ
∗
i )−B)− µi(θ∗i − θ)− γi(θ − θ∗i )

∀i ∈ {1, . . . , n}, (13)

where λ, µi and γi are Lagrange multipliers. Setting the
first order derivative to 0, we get:

εifi(θ
∗
i )−λ(Fi(θ

∗
i )+θ∗i fi(θ

∗
i ))+µi−γi = 0 ∀1 ≤ i ≤ n

(14)



The desirable threshold vector ~θ∗ is the solution to the
system that contains (14) and the following conditions:

µi(θ − θ∗i ) = 0 ∀i = 1, . . . , n

γi(θ
∗
i − θ) = 0 ∀i = 1, . . . , n

n∑
i=1

θ∗i Fi(θ
∗
i )−B = 0

λ, µ1, . . . , µn, γ1, . . . , γn ≥ 0

(15)

Our procurement mechanism Ψ takes ~ψ and ~ε as inputs.
It first solves the system above and obtains a threshold
vector ~θ∗. Ψ then selects data owners based on this vec-
tor: For 1 ≤ i ≤ n, select the data owner si if si’s
reported valuation ψi is lower than θ∗i . In this case, make
a payment of θ∗i to si. Otherwise, si is not chosen and
the payment is 0. We propose an algorithm to implement
the procurement mechanism as shown in Alg. 1.

Algorithm 1 Procurement mechanism Ψ

Solve the system (14),(15) to obtain θ∗i for 1 ≤ i ≤ n.
for i ∈ {1, . . . , n} do

if ψi ≤ θ∗i then
set qi := 1 and pay pi := θ∗i ;

else
set qi := 0 and pay pi := 0.

end if
end for

The next theorem follows from Lemma 4, Karush-Kuhn-
Tucker theorem (see (Luenberger, 1997)), and the con-
vexity of Problem (12). See full proof at Appendix D.

Theorem 1. The procurement mechanism Ψ guarantees
to find the optimal solution of Problem (8).

After data procurement, the data entries of selected data
owners form a dataset ~dc, and PE mechanism is applied
to it. SMQ can meet the hard privacy constraints of all
data owners. For each si, the achieved privacy is denoted
as ε′i. For those who are not selected, ε′i = 0 < εi; for the
selected ones, ε′i ≤ εi is guaranteed by PE mechanism.

6 EXPERIMENT SETUP

Through the experiments, we aim to evaluate the per-
formance of SMQ in terms of its query accuracy under
different query types, budgets, and dependence relation-
ships between ~θ and ~ε. We consider three query types,
count, median and linear predictor. As performance met-
ric, we compare the mean and 95% confidential interval
(CI) of the returned query results against the true query
answer ϕ(~dgt), and use root mean squared error (RMSE)
to measure the error.

Datasets ~dgt. We use three real-world datasets, including
Adults dataset2, MovieLense 1M dataset (Harper & Kon-
stan, 2016), and Residential energy consumption sur-
vey (RECS) dataset (EIA, 2009). Adults dataset con-
sists of 32, 561 entries, each representing an adult liv-
ing in the US (Dua & Graff, 2017). It has 15 attributes,
including age, income, education, marital status, etc.
The RECS dataset has 12, 084 records, each record with
940 attributes, including identifier, region, division, etc.
The MovieLense 1M dataset contains the information of
6, 040 audience, 3, 952 movies and 1, 000, 209 ratings.

Privacy parameters ~ε and data valuations ~θ. The three
datasets contain no information about privacy attitudes of
the data owners, so we generate two sets of random num-
bers, representing data valuations θi and privacy require-
ments εi, respectively. εi is a small non-negative number,
hence, we restrict the privacy parameter to be bounded
by 1. The ~ε and ~θ are correlated uniformly distributed
random variables in the range (0, 1). They are gener-
ated based on a correlation coefficient ρ. As a smaller εi
denotes a more stringent privacy requirement, negative
values of ρ expresses positive correlation. We consider
three different dependence relationships between ~θ and
~ε: (1) independence, where ρ := 0, (2) partial positive
correlation, where ρ := −0.5, and (3) perfect positive
correlation, where ρ := −1. In scenario (1), ~θ and ~ε
are irrelevant. In other words, having a high privacy re-
quirement does not necessarily mean that this data owner
attaches high valuation on her private data. In contrast,
in scenarios (2) and (3), a data owner with high privacy
requirement tends to have high data valuation.

Budget B. The broker has a budget B ≤ θn
for data procurement. We investigate the perfor-
mance of the SMQ under different budgets, B =
{0.1θn, 0.2θn, . . . , 0.9θn}.

Query types ϕ. For count query, we use the income
attribute of the Adults dataset, gender attribute of the
MovieLense 1M dataset and the total site electricity us-
age of the RECS dataset. The count queries ask: How
many adults have income higher than 50 k? How many
female audiences? And how many households consume
more than 10 thousand kwh?

For median query, we use the age attribute of the Adults
dataset and the MovieLense 1M dataset and the total site
electricity usage (integer-valued) of the RECS dataset.

For the linear predictor, we use the data in the last
row to represent sn+1 and the data in the other rows
to represent existing data owners. We choose the data
of one attribute as ~dgt = (d1, . . . , dn) and the data

2https://archive.ics.uci.edu/ml/datasets/Adult



of the other attributes as the profile, denoted as Y =
(y1, . . . , yn, yn+1), where yn+1 is the profile of sn+1,
and used to calculate the similarities. Here, we use a
common measure, cosine similarity, to quantify the sim-
ilarity between si and sn+1, i.e., for each i ∈ {1, . . . , n},
wi := cos sim(si, sn+1) = yi·yn+1

‖yi‖‖yn+1‖ . We use the
Adult dataset, the MovieLense 1M dataset and the RECS
dataset, to predict whether a new individual’s income
is higher than 50 k, whether a new individual likes the
movie and whether a new household consumes more
than 10 thousand kwh, respectively.

In SMQ, the set Rangeϕ(~dc) is constructed differently
for different query types. For instance, Rangeϕ(~dc) can

be enumerated as
∑

i:si∈S
qi∑

i:si∈Sc
qi
t in a count query; as t in a

median query; and as
∑

i:si∈S
wi∑

i:si∈Sc
wi
t in a linear predictor,

where t ∈ Range(ϕ) and Sc is the set of the selected
data owners.

Baselines. For count and median queries, we compare
SMQ with FQ (Ghosh & Roth, 2011). For linear predic-
tor, we compare with FIP (Dandekar et al., 2012).

FQ. FQ achieves 1
n−k -DP and pays equally for all k se-

lected data owners. FQ first computes privacy valuation
vi := θi/εi for each si. It then selects the k data owners
with the least vi where k is the largest integer satisfy-
ing kvk ≤ B. FQ then pays each selected data owner
min {B/k, vk+1/(n− k)} as compensation. The query
answer is r :=

∑k
i=1 di+(n−k)/2+Lap(n−k), where

Lap(n− k) is Laplace noise with variance (n− k).

We also adjust the original FQ formulation for median
queries. The mechanism follows the same allocation rule
and pricing rule as those for count queries. The query
answer is r := ϕ(~dc) + Lap(∆ϕ(n − k)), where ∆ϕ is
the sensitivity of ϕ on ~dc (Dwork et al., 2006).

FIP. FIP firstly sorts vi in ascending order. If there exists
an si∗ whose weight wi∗ satisfies wi∗ >

∑
i : S\{si∗} wi,

FIP only selects si∗ . Otherwise, FIP selects the first k
data owners subject to B, i.e., B∑k

i=1 wi
≥ vk∑n

i=k+1 wi
and

pays pi = wi min
{

B∑k
i=1 wi

, vk+1∑n
i=k+1 wi

}
for each se-

lected data owner. Assuming the range of the dataset is
known as [d, d], FIP returns r :=

∑k
i=1 widi + 1

2 (d +

d)
∑n
i=k+1 wi + Lap

(
(d− d)

∑n
i=k+1 wi

)
.

As neither FQ nor FIP collects data owners’ privacy re-
quirements, to meet the privacy requirements in median
and count queries, we need to ensure that FQ does not
select data owners who have εi ≤ 1/(n − k). Also, FIP
sets the privacy level εi := wi/

∑
i:∈S\Sc wi, which is

used for both SMQ and FIP, in order to make a fair com-
parison between these two mechanisms.

Figure 2: CI and RMSE of SMQ and FQ for count query. The
top three rows show the mean and 95% CI of the query answers
of SMQ and FQ, where each row denotes a different dataset,
and each column denotes a dependence relationship between ~θ
and ~ε. The last row shows RMSE for different datasets. The
horizontal axis indicates budget between 0.1θn and 0.9θn.

For each query type, we test two mechanisms under dif-
ferent budgets and different dependence relationships be-
tween ~θ and ~ε. Under each experiment setup, 500 tri-
als are carried out, and the average, the 95% CI and the
RMSE for each mechanism are reported. The experiment
setups are summarised in Table 1.

Table 1: Experiment Setups

Query ϕ Count, median, linear predictor
Dataset ~dgt Adults, RECS, MovieLense 1M
Data valuations ~θ ~θ ∼ U(0, 1)
Privacy parameters ~ε ~ε ∼ U(0, 1)
Correlation ρ {0,−0.5,−1}
Budget B {0.1θn, 0.2θn, . . . , θn}
Mechanism SMQ, FQ, FIP mechanisms

7 RESULTS

Experiment 1: Count query. We apply SMQ and FQ
to count queries on the three datasets. The two mecha-
nisms demonstrate considerably different results on their
allocation and payments. While FQ tends to select data
owners with the lowest privacy valuations (regardless of
their privacy requirements), SMQ tends to choose those



data owners who have larger εi. This is because θ∗i is de-
termined by εi and are different across data owners. Fur-
thermore, FQ compensates the selected data owners uni-
formly while SMQ sets a price of pi = θ∗i which varies
among data owners.

We compare the mechanisms in terms of accuracy under
different budgets and different dependence relationships
between ~θ and ~ε; See Fig. 2. As B increases, CI narrows
down and RMSE displays a descending trend for both
SMQ and FQ. SMQ outperforms FQ in terms of accu-
racy for all datasets by a large margin. The CI for SMQ
is significantly narrower and the RMSE for the SMQ is
significantly lower than those for FQ across all cases.

The results also show that SMQ’s performance improves
as a stronger dependence relationship exists, whilst FQ’s
performance worsens, as CI becomes narrower and the
RMSE becomes smaller for SMQ when ρ decreases from
0 to −0.5 and −1. Those for FQ show an opposite trend.
When ρ becomes smaller, the negative correlation be-
tween θi and εi is higher. In other words, when θi is
large, εi is small, which makes vi large. As a result,
under the same budget, the number k is smaller and the
variance n− k of Laplace noise is larger, which worsens
the performance of FQ.

Experiment 2: Median query. We implement SMQ and
FQ on median queries. The allocation and payment re-
sults are similar to those for count queries. In terms of
accuracy, SMQ significantly outperforms FQ for median
queries. As shown in Figure 3, the error for SMQ is neg-
ligible comparing to FQ. For the Adults and the Movie-
Lense 1M datasets, the RMSE for the SMQ is zero. As
for the RECS dataset, since the range is comparatively
larger, the results are less accurate, but much better than
the results for FQ. Also, under different value of ρ, SMQ
returns reliable results while FQ performs even worse
when ρ becomes smaller.

Experiment 3: Linear predictor. We implement SMQ
and FIP for linear predictors. The allocation results of
FIP is similar to FQ, where the data owners with low
privacy valuations are chosen. The results show that for
the Adult dataset, the number of data owners chosen by
SMQ is larger than that by FIP, while this number is sim-
ilar for the other two datasets. Consistent with the previ-
ous experiments, SMQ outperforms FIP in most cases
with respect to accuracy, with the exception of when
B > 0.5θn. As shown in Figure 4, for the Adult dataset,
the CI is narrower and the RMSE is smaller for SMQ .
For the MovieLense 1M dataset and RECS dataset, when
the budget is low, the performance of SMQ is better than
FIP. When the the budget is high, SMQ outputs slightly
less accurate results.

Figure 3: CI and RMSE of SMQ and FQ for median query.
All setting are the same as in Fig. 2.

Figure 4: CI and RMSE of SMQ and FIP for linear predictor.
The top row shows the mean and 95% CI of the query answers
of SMQ and FIP. The second row shows RMSE

8 CONCLUSION

We consider private data query problem where the data
are held by single-minded data owners. We propose the
data query mechanism SMQ that satisfies IC, IR, BF and
~ε-PDP for every i ∈ {1, . . . , n}. The empirical results
show that SMQ effectively improves the query accuracy
with the same budget than existing mechanisms. An as-
sumption in the work assumes that all data owners truth-
fully announce their privacy protection requirements. As
future work, we will explore the data broker problem
where hidden information comes from data valuation and
privacy protection requirements. We also could study
the problem with more sophisticated query types, e.g.,
queries whose output are beyond real values.
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