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Abstract

Nonlinear independent component analysis
(ICA) is a general framework for unsupervised
representation learning, and aimed at recover-
ing the latent variables in data. Recent practi-
cal methods perform nonlinear ICA by solving
classification problems based on logistic re-
gression. However, it is well-known that logis-
tic regression is vulnerable to outliers, and thus
the performance can be strongly weakened by
outliers. In this paper, we first theoretically an-
alyze nonlinear ICA models in the presence of
outliers. Our analysis implies that estimation
in nonlinear ICA can be seriously hampered
when outliers exist on the tails of the (non-
contaminated) target density, which happens
in a typical case of contamination by outliers.
We develop two robust nonlinear ICA methods
based on the γ-divergence, which is a robust
alternative to the KL-divergence in logistic re-
gression. The proposed methods are theoreti-
cally shown to have desired robustness proper-
ties in the context of nonlinear ICA. We also
experimentally demonstrate that the proposed
methods are very robust and outperform exist-
ing methods in the presence of outliers. Fi-
nally, the proposed method is applied to ICA-
based causal discovery and shown to find a
plausible causal relationship on fMRI data.

1 Introduction

Nonlinear independent component analysis (ICA) is a
principled framework for unsupervised representation
learning which has generated a large amount of recent
interest in learning deep neural networks. Unlike most
of unsupervised methods, nonlinear ICA is based on a
clearly defined statistical estimation task. The problem is
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rigorously formulated by defining a generative model for
the data, and the goal is to recover (or identify) the latent
source components of which data is observed as a gen-
eral nonlinear mixing. Nonlinear ICA includes a number
of potential applications such as causal analysis [Monti
et al., 2019] and transfer learning [Noroozi and Favaro,
2016].

In contrast to the success of linear ICA [Hyvärinen and
Oja, 2000], nonlinear ICA has not received so much at-
tention until recently because the problem is fundamen-
tally ill-posed in its basic form: There exist an infinite
number of decompositions of a random vector into mu-
tually independent variables [Hyvärinen and Pajunen,
1999, Locatello et al., 2019], while the identifiability
proof is established in linear ICA [Comon, 1994]. Thus,
in general, we cannot recover the source components un-
der the same conditions as linear ICA.

Novel identifiability proofs for nonlinear ICA have been
recently established [Sprekeler et al., 2014, Hyvärinen
and Morioka, 2016, 2017, Hyvärinen et al., 2019]. The
main idea is to introduce some auxiliary variables given
which the latent source components are conditionally in-
dependent. For instance, time contrastive learning di-
vides time series data into a number of time segments
and uses the time segment label as the auxiliary vari-
able [Hyvärinen and Morioka, 2016]; in permutation
contrastive learning, the auxiliary variable is the his-
tory of time-series data [Hyvärinen and Morioka, 2017].
Interestingly, a heuristic yet successful approach called
self-supervised learning [Noroozi and Favaro, 2016,
Larsson et al., 2017, Oord et al., 2018] also takes the
same approach of solving unsupervised learning prob-
lems through classification. Thus, the theory of nonlin-
ear ICA might shed light on the principles underlying
self-supervised learning.

In order to solve the nonlinear ICA problem in practice,
logistic regression has been employed [Hyvärinen and
Morioka, 2016, 2017, Hyvärinen et al., 2019], which is



based on (conditional) maximum likelihood estimation
(MLE). MLE has a number of useful properties, but it is
well-known to be vulnerable to outliers. Thus, the perfor-
mance of the existing nonlinear ICA methods might be
strongly degraded by outliers. This is a very important
problem because outliers are ubiquitous on real-world
datasets. For instance, outliers have been often observed
in functional MRI data to which ICA methods have been
applied [Monti et al., 2019].

In this paper, we first define a contaminated density
model of sources as a mixture of the (noncontaminated)
target and outlier densities, and then theoretically ana-
lyze how outliers hamper estimation in nonlinear ICA.
Our analysis implies that estimation in nonlinear ICA
might be degraded particularly when the ratio of the out-
lier density to the target density can take a very large
value. This large ratio happens when the outlier density
lies on the tails of the target density as in a typical case
of contamination by outliers.

Next, we propose two robust methods for nonlinear ICA.
Our methods also solve classification problems, but are
based on the γ-divergence [Fujisawa and Eguchi, 2008].
γ-divergence is a generalization of KL-divergence and
has a favorable robustness property expressed as the
super robustness [Cichocki and Amari, 2010, Amari,
2016]: The latent bias caused from outliers can be small
even in the case of heavy contamination. This is in
stark contrast with the density power divergence [Basu
et al., 1998], which is often proved to be robust under
small contamination of outliers. We theoretically show
that the super robustness holds in the context of nonlin-
ear ICA. Furthermore, the proposed method is proved to
have desirable robustness properties in terms of influence
function as well [Hampel et al., 2011]. We experimen-
tally demonstrate that the proposed methods are much
more robust against outliers than existing methods. Fi-
nally, our robust method is applied to causal analysis and
demonstrated to find a plausible causal relationship on
fMRI data.

2 Background

ICA is a rigorous framework for unsupervised learning,
and assumes that the dx-dimensional vectors of observed
data x(t) := (x1(t), . . . , xdx(t))>, t = 1, . . . , T are
generated from a nonlinear mixing of the source vectors
s(t) = (s1(t), . . . , sdx(t))> as

x(t) = f(s(t)), (1)

where f(s) = (f1(s), . . . , fdx(s))>, and fi denotes a
smooth and invertible nonlinear function. The goal is to
recover (or identify) the sources from data only.

Nonlinear ICA has been hampered by the fact that the
problem is seriously ill-posed and the original sources
cannot be recovered (i.e., not identifiable) under the
same independence assumption as linear ICA, although
some empirical success has been achieved by heuris-
tic methods [Wiskott and Sejnowski, 2002, Harmel-
ing et al., 2003]. Recently, novel identifiability proofs
have been established together with practical algo-
rithms [Sprekeler et al., 2014, Hyvärinen and Morioka,
2016, 2017, Hyvärinen et al., 2019]. Time contrastive
learning (TCL) [Hyvärinen and Morioka, 2016] divides
time series data {x(t)}Tt=1 into K time segments, and
then a time segment label u(t) = k, k = 1, . . . ,K is
assigned to x(t) in the k-th segment. A nonlinear fea-
ture h(x) = (h1(x), . . . , hdx(x))> modelled by a neu-
ral network is learned via multinomial logistic regression
to the artificial supervised dataset {(u(t),x(t))}Tt=1. For
the identifiability, when the conditional density of s
given a time segment label u is conditionally indepen-
dent and belongs to an exponential family as,

log p?(s|u) =

dx∑
j=1

λu,jq
?
j (sj)− logZ(λu), (2)

where q?j is a scalar function, λu,j denotes a param-
eter depending on the time-segment label u, λu :=
(λu,1, . . . , λu,dx)>, and Z(λy) is the partition function,
then Theorem 1 in Hyvärinen and Morioka [2016] states
that the learned h(x) asymptotically equals to q?(s) =
(q?1(s1), . . . , q?dx(sdx))> up to a linear transformation.

A more general theory without the exponential fam-
ily assumption (2) was established in Hyvärinen et al.
[2019]. Suppose that some auxiliary data u(t) =
(u1(t), . . . , udu(t))> is available in addition to x(t). For
instance, the time segment label in TCL can be inter-
preted as auxiliary data, and another existing method,
permutation contrastive learning, employs the past in-
formation of x(t) (e.g, u(t) = x(t − 1)) [Hyvärinen
and Morioka, 2017]. In the general theory, a nonlinear
feature h(x) is learned by solving the following binary
classification problem based on logistic regression:

D := {(x(t),u(t)}Tt=1 vs. Dp := {(x(t),up(t))}Tt=1,
(3)

where up(t) is a random permutation of u(t) with re-
spect to t, that is, a time-shuffled version u(t). Eq.(3)
indicates D is drawn from the joint density of x(t) and
u(t), while the underlying density ofDp can be regarded
as the product of marginal densities of x(t) and u(t).
Under the even more general conditional independence
assumption,

log p?(s|u) =

dx∑
i=1

q?(si|u)− logZ(u), (4)



where Z(u) denotes the partition function and q? is a
twice differential function, it was proved that the learned
h equals to s up to an invertible function when p?(s|u) is
sufficiently diverse and complex [Hyvärinen et al., 2019,
Theorem 1].1

In practice, the nonlinear ICA methods above employ lo-
gistic regression to learn h(x), which is based on the
(conditional) maximum likelihood estimation (MLE).
MLE has a number of useful properties such as asymp-
totic efficiency [Wasserman, 2006]; on the other hand, it
is well-known to be vulnerable against outliers. Very re-
cently, Khemakhem et al. [2019] proposed an alternative
nonlinear ICA method, which is based on maximizing a
lower bound of the likelihood of a density model. Thus,
these nonlinear ICA methods might be sensitive to out-
liers. Next, we first theoretically investigate how outliers
hamper estimation in nonlinear ICA, and then propose
robust practical methods.

3 Influence of outliers in nonlinear ICA

This section theoretically investigates the influence of
outliers in existing methods for nonlinear ICA, which
motivates us to develop robust methods.

3.1 Contaminated density model by outliers

Here, we assume the following contaminated conditional
density model of s given auxiliary variables u:

p(s|u) = (1− ε(u))p?(s|u) + ε(u)δ(s|u), (5)

This equation means that the original sources in p?(s|u)
are contaminated by outliers generated from the outlier
density δ(s|u). Here, ε(u) is a contamination ratio in
[0, 1). We call p?(s|u) the target density throughout this
paper because it generates the target sources which we
want to recover from data x. The density model (5) is
very general and called heterogeneous contamination be-
cause ε(u) can be dependent on u. Next, we investigate
how estimation in nonlinear ICA is hampered under the
outlier model (5).

3.2 Influence of outliers in conditionally
exponential case

We first consider the method in Hyvärinen et al. [2019,
Section 4.3], thus focusing on the following condition-
ally independent and exponential family density, which
generalizes the exponential family (2) in TCL with one-

1The complexity and diversity of p?(s|u) is expressed by
the Assumption of Variability in Hyvärinen et al. [2019].

dimensional discrete variable (i.e, time-segment label):

log p?(s|u) =

dx∑
j=1

λj(u)q?j (sj)− logZ(λ(u)), (6)

where λ(u) := (λ1(u), . . . , λdx(u))> and u denotes
the auxiliary variables. Then, to investigate how the out-
lier density δ(s|u) hampers estimation in nonlinear ICA,
we establish the following theorem:

Theorem 1. First, the following assumptions are made:

(A1) Data x is generated from (1) where f is invertible.

(A2) The target density p?(s|u) is conditionally inde-
pendent and belongs to the exponential family (6).

(A3) For all s and u, δ(s|u)
p?(s|u) is finite.

(A4) In the limit of infinite data, p(x|u) is universally
approximated as

log
p(x|u)

c(x)e(u)
= w(u)>h(x), (7)

where w(u) := (w1(u), . . . , wdx(u))> is a
vector-valued function, and c and e some scalar
functions.

(A5) There exist m + 1 points u0,u1, . . . ,um such
that the following matrices are full rank: Λ̄ :=∑m
i=1 λ̄(ui)λ̄(ui)

> and
∑m
i=1 w̄(ui)λ̄(ui)

>,
where λ̄(u) := λ(u) − λ(u0) and
w̄(u) := w(u)−w(u0).

Then, regarding sufficiently small ε(u) for all u, in the
limit of infinite data,

q?(s) +Q(s) = Ah(x) +α, (8)

where A is a dx by dx invertible matrix, α is a dx-
dimensional vector, and with ω̄(u) := Λ̄−1λ̄(u), 1dx =
(1, 1, . . . , 1)> and εmax := maxi=0,1,...,m ε(ui),

Q(s) :=

m∑
i=1

{
ε(ui)

δ(s|ui)
p?(s|ui)

− ε(u0)
δ(s|u0)

p?(s|u0)

}
ω̄(ui)

+O(ε2max)1dx . (9)

The proof is deferred to Section A in the supplementary
material. Assumption (A5) implies that the conditional
density (6) and w(u)>h(x) in (7) are sufficiently di-
verse with respect to the auxiliary variables u. For in-
stance, if λ(u) and and w(u) are constant vectors (i.e.,
λ̄(u) = 0 and w̄(u) = 0), then Assumption (A5) never
holds. Such a full-rank assumption is found in the pre-
vious theory of nonlinear ICA as well [Hyvärinen et al.,
2019] even if in slightly different forms.



In the case of no outliers, (8) is essentially the same iden-
tifiability result as Theorem 3 in Hyvärinen et al. [2019]
as well as Theorem 1 in Hyvärinen and Morioka [2016]
for TCL: ε(u) = 0 leads to Q(s) = 0, and therefore
h(x) equals to q?(s) up to a linear transformation. This
linear indeterminacy could be removed by applying some
linear ICA method in postprocessing.

On the other hand, when there are outliers, i.e. ε(u) 6= 0,
Theorem 1 indicates that estimation for the exponential
family might be hampered by Q(s). In particular, the
elements in Q(s), which gives the estimation error in-
duced by the outliers, can be significantly nonzero. This
can be the case if the density ratio δ(s|u)

p?(s|u) in (9) is very
large. That can happen when δ(s|u) lies on the tails of
p?(s|u) (i.e., very small p?(s|u), yet large δ(s|u)). This
shows the need for the development of robust nonlinear
ICA methods.

We also note that in the no-outliers case (i.e., p(x|u) =
p?(x|u)), Assumption (A4) can be written as

log
p?(x|u)

c(x)e(u)
= w(u)>h(x). (10)

To satisfy (10), Hyvärinen et al. [2019] performs
binary logistic regression where the log-odds ratio,
log p?(x,u)

p?(x)p(u) , is approximated by w(u)>h(x) where
p?(x) =

∫
p?(x,u)du. However, Eq.(10) (or Assump-

tion (A4)) is a more general expression than the odds ra-
tio: We do not necessarily need to accurately estimate
the noncontaminated log-odds ratio as it is sufficient, in
order to perform nonlinear ICA, that the numerator is the
conditional density p?(x|u) or joint density p?(x,u) up
to the product of nonzero scalar functions of x and u.
This is the key property used in our robust method pro-
posed in Section 4.1.

3.3 Influence of outliers in non-exponential case

We performed a similar contamination analysis as The-
orem 1 under the general (non-exponential) conditional
independence condition (4) as well. We present the de-
tails in Section B of the supplementary material because
of space constraints. The conclusion is slightly more
complicated yet fundamentally similar as Theorem 1:
Estimation in nonlinear ICA can be hampered when ei-
ther of the four ratios, δm(s|u)

p?(s|u) , δl(s|u)
p?(s|u) , δ(s|u)

p?(s|u) and
δl,m(s|u)
p?(s|u) , are very large where δl(s|u) := ∂δ(s|u)

∂sl
and

δl,m(s|u) := ∂2δ(s|u)
∂sl∂sm

for l 6= m. In addition to the ba-
sic outlier case above, these ratios might be large when
smooth δ(s|u) exists on the tails of p?(s|u). Therefore,
again, it would be useful to develop a robust method in
the general non-exponential case as well.

4 Robust contrastive learning

Our goal is to robustify nonlinear ICA methods. In light
of the results above, the key is to estimate p?(x|u)

c(x)e(u) in (10)
in spite of the contamination. (This is the case for the
non-exponential family case as well, see Section B in the
supplementary material for more details). To this end,
this section proposes two robust methods for nonlinear
ICA based on the γ-cross entropy [Fujisawa and Eguchi,
2008]. Then, we show that the desired robust estimation
is possible by the proposed methods even under heavy
contamination by outliers.

Before going to the details, let us clarify the notations
as follows: p(x|u) denotes the contaminated condi-
tional density of x given u from (5), while p?(x|u)
and δ(x|u) are the (noncontaminated) target and out-
lier conditional densities, respectively. We can fur-
ther obtain two marginal densities from p(x|u) and
p?(x|u) as p(x) :=

∫
p(x|u)p(u)du and p?(x) :=∫

p?(x|u)p(u)du. In the rest of this paper except for
the influence function analysis, we suppose that p(u) is
contaminated by an outlier density but the contaminated
model is not explicitly defined because a specific form is
not required in the analysis of this paper.

4.1 Nonlinear ICA with robust binary classification

Our first method performs nonlinear ICA by solving
a binary classification problem under the γ-cross en-
tropy [Fujisawa and Eguchi, 2008, Hung et al., 2018].
Let us express a class label by y, and y = 1 and
y = 0 correspond to datasets D and Dp in (3) which are
drawn from p(x,u|y = 1) = p(x,u) and p(x,u|y =
0) = p(x)p(u), respectively. Moreover, symmetric class
probabilities are assumed (i.e., p(y = 0) = p(y = 1) =
1
2 ). Then, the γ-cross entropy for binary classification is
defined as

dγ(p(y|x,u), r(x,u); p(x,u)) :=

− 1

γ
log

∫∫ 1∑
y=0

{
r(x,u)y(γ+1)

1 + r(x,u)γ+1

} γ
γ+1

p(y,x,u)dxdu,

(11)

where r(x,u) denotes a model (e.g., a neural network)
and positive function. As proven in Fujisawa and Eguchi
[2008], the γ-cross entropy has a number of remarkable
properties. For instance, dγ(p(y|x,u), r(x,u); p(x,u))
approaches to the cross entropy in logistic regression as
γ → 0. Notably, the γ-cross entropy has a robustness
property on parameter estimation in the presence of out-
liers [Fujisawa and Eguchi, 2008, Kawashima and Fuji-
sawa, 2018]. Next, we show that the robustness property
holds in the context of nonlinear ICA.



Robustness in nonlinear ICA: First, we establish the
following theorem to understand under what conditions a
good estimation is possible for nonlinear ICA even under
heavy contamination of outliers:

Theorem 2. Assume that

ν :=

∫∫ {
r(x,u)γ+1

1 + r(x,u)γ+1

} γ
γ+1

ε(u)δ(x,u)dxdu (12)

is sufficiently small. Then, it holds that

dγ(p(y|x,u), r(x,u); p(x,u)) +O(ν)

= J [r(x,u); (1− ε(u))p?(x,u), p(x)p(u)], (13)

where

J [r(x,u); (1− ε(u))p?(x,u), p(x)p(u)]

:= − 1

γ
log

[
1

2

∫∫ {
1

1 + r(x,u)γ+1

} γ
γ+1

p(x)p(u)dxdu

+
1

2

∫∫ {
r(x,u)γ+1

1 + r(x,u)γ+1

} γ
γ+1

(1− ε(u))p?(x,u)dxdu

]
.

Furthermore, under the assumption that p(x), p(u) and
r(x,u) are positive for all x and u, J [r(x,u); (1 −
ε(u))p?(x,u), p(x)p(u)] is minimized at

r?(x,u) =
(1− ε(u))p?(x|u)

p(x)
. (14)

The proof is deferred to Section C in the supplemen-
tary material. Eq.(13) indicates that under the condition
that ν is sufficiently small (this condition will be dis-
cussed below), minimization of the γ-cross entropy ap-
proximately equals to minimization of J [r(x,u); (1 −
ε(u))p?(x,u), p(x)p(u)] whose minimizer is given
by (14). Crucially, (14) is a special case of the ideal
universal approximation condition (10) without outliers
where c(x) = p(x) and e(u) = 1/(1 − ε(u)). Thus,
Theorem 2 implies that we can obtain a consistent esti-
mation result as in (14) almost as if outliers did not exist.
Another notable point is that ε(u) is never assumed to
be small in itself and therefore, heavy contamination of
outliers is also within the scope of our method.

Next, we analyse the constant ν in Theorem 2 to under-
stand when it can be considered to be sufficiently small.
Let us define the supports of p?(s|u) and δ(s|u) as
Sp?u := {s | p?(s|u) > 0} and Sδu := {s | δ(s|u) > 0},
respectively. Then, the following proposition gives an
important insight:

Proposition 1. Let us denote the domains of u and x by
U and X , respectively. We assume that (i) the integrals
in ν are defined over U and X , (ii) data x is generated

from (1) with an invertible nonlinear mixing function f ,
(iii) Sp?u ∩ Sδu = ∅, and (iv) p(s) > 0 on Sδu. For γ > 0,

ν ≤ O
(

sup
x,u
|r(x,u)− r?(x,u)|

)
.

The proof is given in the supplementary material. The
most important condition is Sp?u ∩ Sδu = ∅, which im-
plies that p?(s|u) and δ(s|u) are separated or non-
overlapping on S. For instance, when p?(s|u) and
δ(s|u) are the uniform densities on [0, 1]dx and [2, 3]dx

respectively, their supports are nonoverlapping in this
sense.

Therefore, Proposition 1 implies that ν in Theorem 2
can be sufficiently small in the neighborhood of r?(x,u)
when δ(s|u) and p?(s|u) are clearly separated. Such a
density separation happens approximately when δ(s|u)
is non-zero only in the tails of p?(s|u), which is indeed
typical contamination by outliers. Thus, our condition
on ν should be realistic in many practical situations, and
Theorem 2 can be expected to hold.

Influence function analysis: Next, we investigate the
robustness of our nonlinear ICA method based on the al-
ternative approach of influence functions (IF), which is
an established measure in robust statistics [Hampel et al.,
2011]. To this end, let us define the following two con-
taminated density models: With the marginal densities,
p̄(x) =

∫
p̄(x,u)du and p̄(u) =

∫
p̄(x,u)dx,

• Contamination model (A):

p̄(x,u) = (1− ε)p?(x,u) + εδ̄x̄(x)p?(u),

where p?(u) =
∫
p?(x,u)du, ε ∈ [0, 1) is a con-

tamination ratio and δ̄z is the Dirac delta function
having a point mass at z.

• Contamination model (B):

p̄(x,u) = (1− ε)p?(x,u) + εδ̄x̄(x)δ̄ū(u).

Contamination model (A) indicates only input data x is
contaminated by outliers x̄, while both input and auxil-
iary data are contaminated by x̄ and ū in Contamination
model (B).

We suppose that a model rθ(x,u) is parameterized by
θ, and define θ̂ and θ̂ε as solutions of the following es-
timating functions over the (uncontaminated) target and
contaminated densities, respectively:

∂

∂θ
dγ(p?(y|x,u), rθ(x,u); p?(x,u))

∣∣∣∣
θ=θ̂

= 0 (15)

∂

∂θ
dγ(p̄(y|x,u), rθ(x,u); p̄(x,u))

∣∣∣∣
θ=θ̂ε

= 0, (16)



where p?(x,u|y = 1) = p?(x,u), p?(x,u|y = 0) =
p?(x)p?(u), p̄(x,u|y = 1) = p̄(x,u) and p̄(x,u|y =
0) = p̄(x)p̄(u). Then, IF is defined by

IF(x̄, ū) = lim
ε→0

θ̂ − θ̂ε
ε

. (17)

Eq.(17) means that IF measures how θ̂ is influenced
by outliers (x̄, ū) under the small contamination, and a
larger IF implies that θ̂ is more sensitive to outliers.

A desirable property of θ̂ in terms of IF is the
B-robustness: θ̂ is said to be B-robust when
supx̄,ū ‖IF(x̄, ū)‖ <∞ [Hampel et al., 2011]. Another
useful property is the redescending property, which de-
fined as lim‖x̄‖,‖ū‖→∞ ‖IF(x̄, ū)‖ = 0. The redescend-
ing property ensures that θ̂ has no influence from even
strongly deviated data x̄ (and/or ū).

The following proposition implies that our method based
on the γ-cross entropy can have the redescending prop-
erty and be B-robust under certain conditions:
Proposition 2. Assume that the Hessian matrix of the
γ-cross entropy over the contaminated densities (i.e.,
dγ(p̄(y|x,u), rθ(x,u); p̄(x,u)) in (16)) is invertible,
and rθ(x,u) satisfies

sup
x,u

∥∥∥∥Sθ(x,u)
∂ log rθ(x,u)(γ+1)

∂θ

∥∥∥∥ <∞ (18)

lim
‖x‖→∞

[
Sθ(x,u)

∂ log rθ(x,u)(γ+1)

∂θ

]
= 0, (19)

where Sθ(x,u) := {Lθ(x,u)(1− Lθ(x,u))}
γ

1+γ with
Lθ(x,u) := 1

1+rθ(x,u)(γ+1) . Then, under Contamina-
tion model (A), both the B-robustness and redescending
property hold for θ̂. On the other hand, under Contami-
nation model (B), θ̂ is B-robust.

The proof is given in Section E of the supplementary ma-
terial. Assumptions (18) and (19) are mild in practice
because Sθ(x,u) exponentially and quickly approaches
0 even when |rθ(x,u)| diverges as ‖x‖, ‖u‖ → ∞
as in neural networks. Thus, Proposition 2 indicates
that our method could have the redescending and B-
robustness properties under the contamination model (A)
even when rθ(x,u) is modelled by a neural network
with an unbounded activation function. Furthermore, the
B-robustness still holds to the contamination model (B)
whose contamination is more complicated than the con-
tamination model (A). Thus, our influence function anal-
ysis also supports that the γ-cross entropy is promising
for nonlinear ICA in the presence of outliers.

Robust permutation contrastive learning (RPCL):
As a special case, we propose a robust variant of per-
mutation contrastive learning (PCL) [Hyvärinen and

Morioka, 2017] which we call robust permutation con-
trastive learning (RPCL). The original PCL supposes
that sources are temporally dependent (e.g., s(t) and
s(t− 1) are statistically dependent), and then makes use
of the temporal dependencies for nonlinear ICA by re-
garding past information as the auxiliary variable u(t) =
x(t− 1).

RPCL estimates a model r(x,u) based on the following
empirical γ-cross entropy for binary classification:

d̂γ(p(y|x,u), r(x,u); p(x,u))

:= − 1

γ
log

[
1

2T

n∑
t=1

{(
r(x(t),u(t))γ+1

1 + r(x(t),u(t))γ+1

) γ
γ+1

+

(
1

1 + r(x(t),up(t))γ+1

) γ
γ+1

}]
,

where up(t) denotes a random permutation of u(t)
with respect to t. Based on the universal ap-
proximation assumption in Hyvärinen and Morioka
[2017, Theorem 1 and Eq.(12)] or Section B in
the supplementary material, we restrict a model r

as r(x(t),u(t)) = exp(
∑dx
i=1 ψi(hi(x(t)), hi(u(t)))

h(x) = (h1(x), . . . , hdx(x))> is a neural net-
work. Following Hyvärinen and Morioka [2017],
ψi(hi(x), hi(u)) was also modelled by |ai,1hi(x) +
ai,2hi(u) + bi| − (āihi(x) + b̄i)

2 + c, where
ai,1, ai,2, bi, āi, b̄i, c are parameters to be estimated from
data. A minibatch stochastic gradient method is em-
ployed to optimize all parameters.

4.2 Nonlinear ICA with robust multiclass
classification

We have considered so far an approach based on binary
logistic regression. However, it is also possible to use
multinomial logistic regression as done in TCL. From
the viewpoint of an auxiliary variable u this can be seen
to correspond to a case where the auxiliary variable u ∈
{1, . . . ,K} is one-dimensional and discrete, e.g., class
label or time segment label.

Thus, we next propose a second robust method, intended
for this special case. To this end, we solve a multiclass
classification problem based on the γ-cross entropy:

dγ(p(u|x), r(u,x); p(x))

:= − 1

γ
log

∫ 
∑K
u=1 r(u,x)γp(u|x)(∑K
u′=1 r(u

′,x)γ+1
) γ
γ+1

 p(x)dx,

(20)

where we supposed that p(u = 1) = p(u = 2) =
· · · = p(u = K) = 1

K . Regarding multiclass classi-



fication, a robustness property similar to what we had
in Theorem 2 holds by modifying the above discussion
on binary classification (11) or following Kawashima
and Fujisawa [2018]. The result is that again when
p?(s|u) and δ(s|u) are clearly separated, minimization
of dγ(p(u|x), r(u,x); p(x)) would enable us to estimate
p?(x|u), which is an ideal estimation result and a special
case of p?(x|u)

c(x)e(u) in (10). Details are given in Section F of
the supplementary material.

Robust time contrastive learning (RTCL): As a
practical method for such multinomial classification, we
propose robust time contrastive learning (RTCL) which
is a robust variant of TCL [Hyvärinen and Morioka,
2016] based on the γ-cross entropy (20). Both TCL and
RTCL are intended for the conditional independent ex-
ponential family case (2), and suppose time series data
(artificially or manually) divided into K time segments,
and the auxiliary variable u ∈ {1, . . . ,K} is the time
segment label. RTCL employs the following empirical
γ-cross entropy:

d̂γ(p(u|x,u), r(x, u); p(x))

:= − 1

γ
log

 1

T

T∑
t=1

∑K
k=1 δu(t),k r(u(t),x(t))γ(∑K
u′=1 r(u

′,x(t))γ+1
) γ
γ+1

 ,
where u(t) ∈ {1, . . . ,K} are the observations of time-
segment labels, and δu(t),k denotes the Kronecker delta.
Based on the universal approximation assumption (A4)
in Theorem 1, for u = 1, . . . ,K, we restrict r as
r(x, u) = exp(w>u h(x) + bu) where h(x) denotes non-
linear ICA features modelled by a neural network, and
wu and bu are parameters for weights and bias, respec-
tively. In practice, all parameters are optimized by a
minibatch stochastic gradient method.

4.3 Relation with Hyvärinen et al. [2019]

In order to clarify the relations between the existing non-
linear ICA methods, we make the following remarks.
Our main theory (Theorem 2) provides a robustified ver-
sion of the method in Hyvärinen et al. [2019]. Since
PCL [Hyvärinen and Morioka, 2017] can be seen as a
special case of Hyvärinen et al. [2019], our theory also
leads to a special case called RPCL which robustifies
PCL. On the other hand, TCL [Hyvärinen and Morioka,
2016] uses a different framework, multi-class classifica-
tion, and thus we proposed another method called RTCL
that robustifies TCL. It should be noted that while the
generative model in Hyvärinen et al. [2019] contains
TCL as a special case, the estimation method proposed
in Hyvärinen and Morioka [2016] is different and not a
special case of the estimation method by Hyvärinen et al.

[2019]; that is why our robustified versions are also dis-
tinct for TCL and the auxiliary variables method.

In addition to Theorem 1 and Section 3.3, non-robustness
of the previous methods in Hyvärinen et al. [2019] can
be understood in terms of Theorem 2 analysing the γ-
cross entropy as well. Hyvärinen et al. [2019] employ
binary logistic regression for nonlinear ICA whose cross
entropy is obtained as the limit of γ = 0 in the γ-cross
entropy. When γ = 0, the robustness condition in Theo-
rem 2 is never satisfied: It can be easily confirmed from
the definition (12) that ν is a nonzero constant and can-
not be sufficiently small in γ = 0. Thus, the nonlinear
methods in Hyvärinen et al. [2019] can be more sensitive
to outliers. Section F in supplementary material includes
a similar discussion in the case of multiclass classifica-
tion: Non-robustness of TCL can be also shown in terms
of the γ-cross entropy.

Influence function analysis in Proposition 2 also reveals
the outlier weakness of the previous methods. In the limit
of γ = 0 (i.e., logistic regression), a class of models for
rθ(x,u) satisfying (18) and (19) is very limited because
necessarily Sθ(x,u) = 1. For instance, when rθ(x,u)
is a neural network with an unbounded activation func-
tion, Assumptions (18) and (19) would not hold. This
implies that estimation of previous methods with neural
networks can be hampered by outliers.

5 Numerical experiments on artificial data
This section numerically investigates the robustness of
RTCL and RPCL with comparison to existing nonlinear
ICA methods on artificial data.

5.1 Robust time contrastive learning
Data generation, nonlinear ICA methods, evaluation:
We slightly modified the experimental setting of TCL2

in Hyvärinen and Morioka [2016] and experimental de-
tails are given in Section G of the supplementary mate-
rial. Source vectors with time segment length 512 was
first generated from (5): Following (2), given a time seg-
ment label, the target density p?(s|u) was conditionally
independent Laplace distributions with means 0 and dif-
ferent scales across time segments. Regarding the out-
lier density δ(s|u), two types of densities were used: An
independent Laplace distribution, and a mixture of two
mean-modulated Gaussians. We set ε(u) = ε for all time
segments u. The total numbers of segments and of data
samples were K = 256 and T = 512 × 256, respec-
tively. The dimensionality of data is dx = 10 in Table 1,
while dx = 5 in Table 2. Finally, data x was generated
as a nonlinear mixing of the (contaminated) sources by
three-layer (Table 1) or two-layer (Table 2) neural net-
works.

2https://github.com/hirosm/TCL



Table 1: RTCL and TCL on artificial data. Averages of the absolute correlations are computed over 10 runs. The
outlier densities are the independent Laplace density and the modulated mixture of two Gaussians in the top and
bottom panels, respectively. A larger value indicates a better result. The best and comparable methods judged by the
t-test at the significance level 5% are described in boldface.

Laplace TCL RTCL (γ = 0.1) RTCL (γ = 0.3) RTCL (γ = 0.5) RTCL (γ = 1)
ε = 0.01 0.891(0.009) 0.929(0.022) 0.974(0.009) 0.981(0.022) 0.988(0.023)
ε = 0.03 0.822(0.036) 0.860(0.030) 0.920(0.015) 0.948(0.015) 0.976(0.015)
ε = 0.05 0.793(0.025) 0.814(0.023) 0.867(0.018) 0.898(0.024) 0.946(0.024)
ε = 0.1 0.738(0.034) 0.768(0.026) 0.814(0.009) 0.848(0.008) 0.895(0.013)

Gaussian TCL RTCL (γ = 0.1) RTCL (γ = 0.3) RTCL (γ = 0.5) RTCL (γ = 1)
ε = 0.01 0.952(0.007) 0.981(0.008) 0.990(0.007) 0.992(0.007) 0.993(0.008)
ε = 0.03 0.872(0.009) 0.904(0.008) 0.946(0.006) 0.962(0.007) 0.978(0.008)
ε = 0.05 0.852(0.010) 0.855(0.010) 0.905(0.007) 0.932(0.006) 0.957(0.007)
ε = 0.1 0.824(0.012) 0.815(0.015) 0.836(0.014) 0.871(0.017) 0.909(0.025)

Table 2: RTCL and iVAE on artificial data. Averages of
the absolute correlations are computed over 10 runs.

Laplace iVAE RTCL (γ = 1)
ε = 0 0.931(0.055) 0.969(0.040)
ε = 0.05 0.844(0.081) 0.965(0.020)
ε = 0.1 0.800(0.108) 0.924(0.035)

ICA features h(x) both in RTCL and TCL were mod-
elled by a three layer neural network where the number
of hidden units was 4dx, but the final layer was dx. `2
regularization was employed with the regularization pa-
rameter 10−4. All parameters were optimized by the
Adam optimizer [Kingma and Ba, 2015]. We also ap-
plied iVAE [Khemakhem et al., 2019] to the artificial
data, which is a nonlinear ICA method based on the vari-
ational encoder. The performance was measured by av-
erages of the absolute value of the Pearson correlation
coefficient to the test sources without outliers.

Results: The top panel in Table 1 quantitatively in-
dicates that RTCL is more robust against outliers than
TCL. As the contamination ratio ε increases, the perfor-
mance of TCL deteriorates. On the other hand, RTCL
keeps high-correlation values even for larger γ. When
the outlier density δ(x|u) is the mixture of two mean-
modulated Gaussians, RTCL still performs well (bottom
panel in Table 1). Furthermore, Table 2 shows that iVAE
is also sensitive to outliers, while RTCL reliably recov-
ers the sources. This is presumably because iVAE is also
related to MLE, which is sensitive to outliers.

5.2 Robust permutation contrastive learning

Data generation, nonlinear ICA methods, evalua-
tion: We followed the experimental setting of PCL

in Hyvärinen and Morioka [2017] and details can be seen
in Section G of the supplementary material. First, the
temporally dependent T sources were generated from
log p?(s(t)|s(t−1)) = −

∑dx
i=1 |si(t)−ρsi(t−1)|+C

where C denotes a constant and the auto-regressive co-
efficient ρ was fixed at 0.7. The total number of sources
was T = 65536. Then, we randomly replaced the
sources by outliers based on a constant contamination
ratio ε, which were generated from the independent
Laplace density. Data x was generated as the nonlin-
ear mixing of the sources with outliers by a three-layer
neural networks.

ICA features h(x) both in RPCL and PCL were mod-
elled by a three-layer neural network as in the experi-
ments of RTCL. We optimized the parameters in RPCL
and PCL using the Adam optimizer. We used the same
performance was measured as previous experiments.

Results: Table 3 clearly shows that the correlation for
PCL quickly decreases as the contaminating ratio ε in-
creases. On the other hand, RPCL works significantly
better than PCL even for large ε. Thus, our methods
based on the γ-cross entropy are promising.

6 Application to causal discovery of
Hippocampal fMRI data

To demonstrate its applicability on a realworld dataset,
we apply RTCL to causal discovery [Pearl, 2000] on
resting-state fMRI data, which often contains outliers
due to measurement issues such as head movement and
variability in vascular health across a cohort of sub-
jects [Poldrack et al., 2011]. Our dataset corresponds
to resting state fMRI data collected from a single sub-
ject (caucasian male, 45 years old) over 84 successive
days [Poldrack et al., 2015]. Here, each day is treated as



Table 3: RPCL and PCL on artificial data. Averages of the absolute correlations are computed over 10 runs.

PCL RPCL (γ = 0.5) RPCL (γ = 1) RPCL (γ = 5) RPCL (γ = 10)
ε = 0.01 0.917(0.028) 0.935(0.010) 0.942(0.023) 0.934(0.026) 0.911(0.027)
ε = 0.05 0.904(0.022) 0.917(0.015) 0.926(0.008) 0.932(0.024) 0.899(0.030)
ε = 0.1 0.854(0.053) 0.884(0.034) 0.888(0.029) 0.912(0.026) 0.886(0.023)
ε = 0.15 0.803(0.058) 0.819(0.056) 0.838(0.048) 0.851(0.056) 0.866(0.031)

a distinct experimental condition. Section H in the sup-
plementary material visualizes the presence of outliers
in the time series data for the Parahippocampal brain re-
gion.

We follow a nonlinear-ICA-based method for causal dis-
covery [Monti et al., 2019]. Let us consider the problem
of causal discovery for bivariate data x = (x1, x2)>.
The goal of causal discovery is to determine whether x1

causes x2 or x2 causes x1 (i.e., x1 → x2 or x2 → x1), or
to conclude that no acyclic causal relation exists. If the
true causal direction is x1 → x2, the nonlinear structural
equation model (SEM) [Pearl, 2000] can be written as
x1 = f1(n1) and x2 = f2(x1, n2), where n1 and n2 are
latent disturbances and assumed to be statistically inde-
pendent each other. As discussed in Monti et al. [2019],
the nonlinear SEM above has a clear connection to the
data generative model (1) in nonlinear ICA. Roughly, the
disturbance variables (n1, n2)> in SEM correspond to
the latent sources (s1, s2)> in ICA up to their permuta-
tion. Thus, regarding the recovered sources by nonlinear
ICA as estimates of (n1, n2)>, we could determine the
causal direction by performing a series of independence
tests with the observations of x = (x1, x2)>. For in-
stance, under the assumption that the true causal direc-
tion is x1 → x2, we need to verify that x1 ⊥⊥ n2 while
x1 6⊥⊥ n1, x2 6⊥⊥ n1 and x2 6⊥⊥ n2 [Monti et al., 2019,
Property 1] by applying some independent test where⊥⊥
(or 6⊥⊥) denotes statistical independence (or dependence).
Here, we employed Hilbert-Schmidt independence crite-
ria [Gretton et al., 2005] for independence test. This ap-
proach for bivariate data can be extended to multivariate
causal discovery by using a traditional constraint-based
method such as the PC algorithm.

Fig. 1 shows the causal structures obtained via TCL
by Monti et al. [2019], and RTCL. Both methods used
a five layer neural network. Blue arrows denote edges
which are plausible given the anatomical connectivity,
while red arrows are not compatible with the known
anatomical structure. We note that in the case of RTCL,
the erroneous edges (highlighted in red) actually corre-
spond to indirect causal effects. For example, see the
edge between the Cornu Ammonis 1 (CA1) node and the
entorhinal cortex (ERc) node. While a direct connection
between these nodes is anatomically implausible, there

Figure 1: Estimated directed acyclic graphs based on
TCL (left panel) and RTCL (right panel, γ = 2.5). For
RTCL, the γ value was selected based on classification
accuracy for validation data.

is an indirect effect which is mediated by the subicu-
lum (Sub) node. This is in stark contrast with the results
provided by TCL, where erroneous edges (highlighted
in red) are not compatible with the anatomical structure
(e.g., the TCL edge between CA1 and PHc cannot be ex-
plained as an indirect causal effect).

A similar experiment was performed by using iVAE,
which also led to improvements in the recovery of the
associated DAG [Khemakhem et al., 2019]. To compare
with those results, we note that for RTCL, both erroneous
edges are directed to the entorhinal cortex (ERc) region,
which serves as the main interface between neocortex
(PRc, PHc, ERc) and hippocampal (CA1, DG, Sub, ERc)
regions. Thus, ERc region might cause these erroneous
edges in RTCL to connect the two subfields, implying
the presence of possible cyclic associations. In contrast,
iVAE incorrectly inferred a causal effect from CA1 to
DG which is not anatomically plausible [Khemakhem
et al., 2019, Fig.4].

7 Conclusion3

We first analyzed the behaviour of the nonlinear ICA es-
timators given by Hyvärinen et al. [2019] in the presence
of outliers, and then proposed two robust methods for
nonlinear ICA. We showed by theoretical analysis that
our methods have robustness properties in the context of
nonlinear ICA. The robustness was further empirically
shown in simulations, and applicability to real-data was
also demonstrated through causal discovery.

3The acknowledgements are included in the supplementary
material.
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