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Abstract

Small datasets form a significant portion of re-
leasable data in high sensitivity domains such
as healthcare. But, providing differential pri-
vacy for small dataset release is a hard task,
where current state-of-the-art methods suffer
from severe utility loss. As a solution, we
propose DPRP (Differentially Private Data Re-
lease via Random Projections), a reconstruc-
tion based approach for releasing differentially
private small datasets. DPRP has several key
advantages over the state-of-the-art. Using
seven diverse real-life datasets, we show that
DPRP outperforms the current state-of-the-art
on a variety of tasks, under varying conditions,
and for all privacy budgets.

1 INTRODUCTION

1.1 MOTIVATION AND PROBLEM
STATEMENT

Publicly available data aids reproducibility and promotes
new discoveries. However, sharing data “as-is” can lead
to privacy breaches with severe personal and legal con-
sequences, especially in high sensitivity domains such
as healthcare [1]. The dilemma of data sharing while
protecting an individual’s privacy often leads to ad hoc
measures of data sanitization, such as removing primary
identifiers (name, date of birth, social insurance number,
etc.), and/or arbitrary binning or rounding of variables.
Such data sanitization practices are ineffective and com-
bining multiple such releases, an adversary can accumu-
late information about an individual, leading to uncon-
trolled privacy leakage or worse, a complete disclosure
[2].
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1.2 CURRENT APPROACH

Differential privacy [3] offers a solution. Formalizing the
notion of privacy as a mathematical definition, differen-
tial privacy promises any released data will not unduly
disclose any information about an individual. However,
direct application of differential privacy to “raw data”
release is non-trivial. Recently, Generative Adversarial
Networks (GANs) [4] have been studied as a potential
solution. Trained on real data, GANs learn the input
data distribution and can be used for sampling from the
learned distribution. This guarantees the sampled data
is “synthetic”, but still follows the distribution similar to
real data. But as GANs are trained unconstrained on real
data, they can implicitly or explicitly disclose sensitive
information contained in the training set [5] (Example:
A GAN trained on medical records can leak sensitive in-
formation about patients in the training set). Acknowl-
edging this issue, recent approaches have proposed com-
bining differential privacy with GANs [6, 7], where the
generated data follows the real data distribution and is
differentially private. Differentially private GANs, how-
ever, fall severely short on the utility front, especially for
small-size datasets, which form a significant portion of
releasable data in high sensitivity domains.

1.3 CHALLENGES WITH CURRENT
STATE-OF-THE-ART

The typical size of structured tabular datasets in many
high sensitivity domains such as healthcare is only a few
hundred. In special settings such as in the clinical tri-
als, the dataset size can be even smaller as collecting pa-
tient data is costly and to avoid unnecessary patient harm,
most studies are designed with minimum sample size re-
quirements.

But GANs, based on two contesting neural networks,
require large training datasets for effectively capturing
the data generating distribution. Combined with the
noise addition required for preserving differential pri-



vacy, where the noise scale is inversely proportional to
the dataset size (smaller datasets require larger noise for
a constant privacy budget, based on the trade-off between
sampling ratio, minibatch size, and the number of train-
ing iterations, see Theorem 1 of Abadi et al. [8], the
current state-of-the-art training paradigm for differen-
tially private neural networks), it leads to severe utility
loss for small datasets (our extensive empirical evalua-
tion in Section 4 supports this claim). The recent ap-
proach of using the PATE framework for differentially
private GANs [7] fares even worse as it requires splitting
the dataset into many disjoint partitions before training,
leaving little to learn from each partition in case of small
datasets1. Moreover, PATE-GAN only works with bi-
nary outcomes, limiting the use in case of multi-class
datasets. There are other “non-deep learning” meth-
ods that strive to achieve similar release goals. But,
either they can only release projections [9], aggregated
statistics/histograms [10], or are computationally infea-
sible, fail to capture higher-order interactions, and only
work with binary outcomes [11]. This leaves the GANs
trained via noisy stochastic gradient descent the current
state-of-the-art generic models for differentially private
data release, leaving a void for the availability of a suit-
able generic method that can guarantee the differentially
private release of small datasets while preserving the
dataset’s inferential utility.

1.4 PROPOSED SOLUTION

In light of the issues discussed above with current state-
of-the-art differentially private models, we now propose
our solution. Our method extends non-private image
compression and reconstruction techniques exploiting
low-rank approximation [12, 13] to differentially private
release of small, tabular datasets. Our method is a model-
free approach, offering one-shot reconstruction, we call it
DPRP (Differentially Private Data Release via Random
Projections). DPRP’s formulation, the ability for one-
shot reconstruction, and a minimal amount of hyperpa-
rameter tuning contribute to its superior utility. Specifi-
cally, DPRP takes the original dataset (X) as input, com-
putes the Singular Value Decomposition (SVD) of the
covariance matrix XC of X , and then uses the right sin-
gular vector (V̂ T ) in conjunction with a random projec-
tion P across the columns to reconstruct X ′ ≈ X . For
preserving differential privacy, we ensure that V̂ T and P

1PATE-GAN’s utility is directly proportional to the number
of disjoint data partitions as every partition is used to train a
separate discriminator. A dataset with 100 observations split
into 10 partitions will result in each discriminator training on 10
observations. This issue is compounded when we have slight
class imbalance as some partitions will not have members of
some classes, making the associated discriminator incapable of
learning that class distribution.
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Figure 1: DPRP schema: Using X , we create a ran-
dom projection P across the columns, and the covari-
ance matrix XC . We decompose the covariance matrix
using SVD. Using noisy right singular vector (V̂ ′) from
the decomposition along with noisy P ′, we reconstruct
X ′ ≈ X . Details on noise addition (M1,M2) for dif-
ferential privacy and the reconstruction are explained in
detail in Section 3, Algorithm 1.

are differentially private (the only instances of real data
needed for reconstruction). Complete details of DPRP
are presented in Section 3, and the overall schema of
DPRP is shown in Figure 1. To summarize, our main
contributions are as follows.

1. We propose DPRP, a model-free, reconstruction
based approach for releasing differentially private
small datasets, a utility bottleneck for state-of-the-
art generative models.

2. Being a model-free approach, DPRP is easy to
implement, computationally cheap, and offers a
one-shot reconstruction. DPRP also avoids exten-
sive hyperparameter optimization, often required in
deep generative models.

3. Finally, our extensive empirical evaluation on seven
diverse real-life datasets shows that DPRP outper-
forms state-of-the-art differentially private genera-
tive models by a significant margin.

2 PRELIMINARIES

Here we introduce preliminary concepts central to the
rest of our work.

2.1 DIFFERENTIAL PRIVACY

Differential privacy [3] provides us with formal and
provable privacy guarantees with the intuition that a ran-
domized algorithm behaves similarly on similar input
datasets, where we define the dataset similarity using



the notion of neighbouring datasets. That is the datasets
which differ on any one row, formally
Definition 1. (Differential privacy [3]) A randomized
mechanismM : Dn → Rd preserves (ε, δ)-differentially
privacy if for any pair of neighbouring databases (x, y ∈
Dn) such that d(x, y) = 1, and for all sets S of possible
outputs:

Pr[M(x) ∈ S] ≤ eεPr[M(y) ∈ S] + δ

Intuitively, Definition 1 states that for any pair of two
neighboring datasets, x, y, a randomized mechanism
M’s outcome does not change by more than a multiplica-
tive factor of eε and the guarantee fails with probability
no larger than δ. If δ = 0, we have pure-ε differential
privacy.

Differential privacy has many intriguing properties such
as the post-processing, which tells us if an algorithm pro-
tects an individual’s privacy via differential privacy, no
external adversaries acting only on the algorithm’s out-
put can increase the privacy loss. Formally,
Theorem 1. (Post processing [14]) LetM : Dn → Rd
be a randomized mechanism that is (ε, δ)-differentially
private. Let f : Rd → Rd′ be a deterministic function.
Then f ◦M : Dn → Rd′ is (ε, δ)-differentially private.

2.2 RANDOM PROJECTIONS

Random projection is a method to project original d-
dimensional data to a k-dimensional subspace (k 6= d
usually) through the origin, using a random k × d ma-
trix. The idea for random projections originates from the
much-celebrated Johnson-Lindenstrauss Lemma [15].
Lemma 1. (Johnson-Lindenstrauss Lemma [15]) Let
ν ∈ (0, 1/2). Let Q ⊂ Rd be a set of n points and
k = 20 logn

ν2 . There exist a Lipschitz mapping f : Rd →
Rk, such that for all u, v ∈ Q, we have

(1− ν)||u− v||22 ≤ ||f(u)− f(v)||22 ≤ (1 + ν)||u− v||22

In essence, the lemma states if the points in a vector
space are randomly projected to a suitable space of high
enough dimensions, the approximate distance between
them is preserved. To projectX(n×d) to a k-dimensional
subspace, we create a random matrixR(d×k) and take the
product, that is XR. There are several methods to create
R, but here we focus on a simple Gaussian R, where the
entries are drawn from N (0, 1/

√
k) [16].

3 DPRP

We first introduce DPRP, our proposed method for re-
leasing differentially private small datasets. Then we
proceed to state and prove DPRP’s formal privacy guar-
antees.

3.1 DPRP OVERVIEW

DPRP takes inspiration from non-private image com-
pression and reconstruction techniques [12, 13] based on
the low-rank approximation, and further extends the idea
for the differentially private reconstruction of small tab-
ular datasets. DPRP constitutes a model-free approach,
whereby no parameter estimation of any sort is required,
leading to minimal hyperparameter tuning and no iter-
ative learning process. Due to its reconstruction based
nature, DPRP works extremely well on small datasets (a
performance bottleneck for current state-of-the-art). We
present DPRP succinctly as Algorithm 1 and provide a
line by line walkthrough for the readers.

Algorithm 1: DPRP: Differentially Private Re-
construction of Input Data

Input: Dataset:X; Privacy parameters: ε, δ;
Privacy budget allocation: b1% for
random projection P , 1− b1% for
SVD(XC); Number of dimensions for
random projection P : k1; Number of
values from right singular vector to keep
from SVD(XC): k2

Output: Differentially private dataset: X ′

1 R ∼ N (0, 1/
√
k1)d×k1

2 P = XR

3 P ′ = P +M1;M1 ∼ N (0, σ2
1)n×k1 // With

budget b1%

4 XC = XTX

5 V̂ ′Σ̂′V̂ ′
T

= SVD(XC+M2);M2 ∼ N (0, σ2
2)d×d

// With budget 1− b1%

6 V ′k2 = V̂ ′[1, · · · , k2] // First k2 columns

7 X ′ = P ′(V̂ ′k2
T
R)+V̂ ′k2

T

To start, the user provides the dataset Xn×d as an in-
put to DPRP, along with the overall privacy budget, ε, δ;
the allocation of the privacy budget, that is the share of
the privacy budget for making the random projection P
differentially private (b1%) and the share of the privacy
budget for the differentially private SVD (1 − b1%); di-
mensionality of random projection, P , k1; and the num-
ber of values from the right singular vector from V̂ to use
for the reconstruction, k2.

Line 1 - 2 (Creating random projection): We start
with creating the random projection, where we cre-
ate a random matrix Rd×k1 with entries drawn from
N (0, 1/

√
k1) and create the projection Pn×k1 = XR.

We have to remember that up to this point, we have not
made any differential privacy claims, so P still contains
sensitive information from X .



Line 3 (Differential privacy of P ): To ensure differential
privacy of P , we add a noise matrix M1 (P ′ = P +M1).
Specifically, M1 ∼ N (0, σ2

1) for some σ1. Where σ1 is
chosen using Theorem 2.

Line 4-6 (Differential privacy of SVD(XC)): For the re-
construction ofX , we only need the right singular vector
of decomposed X . But as X contains sensitive informa-
tion, so will the right singular vector from decomposed
X . Making the right singular vector differentially private
is non-trivial. We do not directly add noise to the right
singular vector as it can lead to an overly noisy result and
the right singular vector does not directly relate to the
“per-user” principle of differential privacy. We follow a
different approach [17], where we first calculate the co-
variance matrix (XC = XTX), and then add noise to
ensure the differential privacy of the covariance matrix
(X ′C = XC + M2), where M2 ∼ N (0, σ2

2) and σ2 is
chosen according to Theorem 2. Then we perform the
singular value decomposition on X ′C and choose the first
k2 values from the right singular vector (V ′k2 ).

Line 7 (Noisy reconstruction): Now, for the main part,
we perform our noisy reconstruction ofX . “+” refers to
the Moore-Penrose pseudoinverse. It is noteworthy that
only noisy P ′ and V̂ ′k2 are required for the reconstruc-
tion, which we have earlier made differentially private,
in addition to a random matrix R, which does not have
any real data, leading to a differentially private recon-
struction, X ′.

We discuss some aspects of Algorithm 1 in Section 3.3.
But, first, we provide the differential privacy guarantees
of our reconstruction, as it remains to be shown that
adding noise (M1,M2) to (P,XC), and reconstructing
X results in a differentially private output.

3.2 PRIVACY GUARANTEES OF DPRP

Before we state our main privacy guarantees, we start
with two supporting Lemmas.

Lemma 2. [18] For two neighbouring datasets X and
X ′ that only differ in one observation, i, with ||Xi −
X ′i|| ≤ Z, and a random Gaussian matrix P with en-
tries drawn from N (0, σ2

p), where σp = 1/
√
k1. With

probability at least 1− δ, we have

||XP −X ′P ||F ≤ Zσp√
k1 + 2

√
k1 log(1/δ) + 2 log(1/δ)

Proof. Proof is from [18], provided here for complete-
ness2. Since X and X ′ only differ on one row i, we can

2We reproduce the proof as the source document is unstable

write
(XP −X ′P )mn = 0,m 6= i (1)

and

(XP −X ′P )ij =< Xi, Pj > − < X ′i, Pj >

=< Xi −X ′i, Pj > (2)

where Pj is the jth column of P and < ., . > denotes the
inner product. Let z = Xi −X ′i . We have

< z, Pj >∼ N (0, ||z||2σ2
p) (3)

using the scaling properties of Gaussians(i.e. for con-
stants a, b; X = N (0, σ2

x), Y = N (0, σ2
y), we have

aX + bY = N (0, a2σ2
x + b2σ2

y).

Let Yj = N (0, 1) and χ2
k1

denote a chi-squared random
variable with k1 degrees of freedom. We can bound the
matrix norm as

||XP −X ′P ||F =

√√√√ k1∑
j=1

< z, Pj >2

=

√√√√ k1∑
j=1

(||z||σpYj)2

= ||z||σp
√
χ2
k1

(4)

second equality follows from X ∼ N (0, σ2), X/σ ∼
N (0, 1). Using Lemma 1 from [19], we can get the fol-
lowing tail bound on a random variable X , drawn from a
χ2 distribution with k1 degrees of freedom

Pr[X ≥ k1 + 2
√
k1x+ 2x] ≤ exp(−x) (5)

setting x = log(1/δ) completes the proof.

Lemma 3. [20] The mechanism M(D) = f(D) + G,
whereG is a random Gaussian matrix with entries drawn
fromN (0, σ2

1), satisfies (ε, δ) - differential privacy, if δ <
1
2 , where σ2

1 = 2∆2(f)2(log(1/2δ) + ε)/ε2 and ∆2(f)
is the sensitivity

With the support of the two lemmas above, we are ready
to state our main Theorem.

Theorem 2. Algorithm 1 is (ε, δ)- differentially private,
for ε > 0, 0 < δ < 1/2.

Proof. DPRP has two main components where we add
noise (to the random projection P and the covariance
matrix XC). We conduct the proof in two parts by se-
quentially proving the differential privacy of each of the
parts. Starting with proving user-level differential pri-
vacy for the random projection, P .



Theorem A P ′ is (ε1, δ1)-differentially private if we add
noise from N (0, σ2

1); where

σ1 = Zσp

√
k1 + 2

√
k1 log(2/δ1) + 2 log(2/δ1)√

2(log(1/2δ1) + ε1)/ε1

Proof. Proof is from [18], summarized next for com-
pleteness. Replacing ∆2(f) in Lemma 3 with RHS from
Lemma 2, and with δ/2, we get

σ1 = Zσp

√
k1 + 2

√
k1 log(2/δ1) + 2 log(2/δ1)√

2(log(1/2δ1) + ε1)/ε1 (6)

which guarantees differential privacy of P ′ if we add a
noise matrix M1 with noise drawn from N (0, σ2

1), i.e.
P ′ = P + N (0, σ2

1) (privacy guarantees follow from
Lemma 3). Here k1 are the number of dimensions for
the random projection and Z is the bound on the L2 sen-
sitivity of the input.

Theorem B V̂ ′ is (ε2, δ2)- differentially private if we
add noise to XC from N (0,Z2

√
2 ln 1.25/δ2/ε2)

Proof. For providing differential privacy for XC and
subsequently extending it to its singular value decom-
position and hence V̂ , we follow the steps of [17], where
we add Gaussian noise to each entry ofXC . Specifically,

X ′C = XC +M2 (7)

where M2 is a d × d symmetric matrix whose upper tri-
angular values are chosen from

N (0,Z2
√

2 ln 1.25/δ2/ε2) (8)

and lower triangular entries are copied from their up-
per triangular counterparts. Here Z is the L2 sensitiv-
ity required for the Gaussian mechanism3. Differential
privacy guarantees for the above follow directly from
[17] and as differential privacy is closed under post-
processing [14], we can perform the decomposition on
X ′C to get V̂ ′ without any additional privacy loss.

Using sequential composition[14], we get the Algorithm
1 as (ε, δ)- differentially private, where ε = ε1 + ε2 and
δ = δ1 + δ2.

3.3 DISCUSSION

In the light of the Algorithm 1 and Theorem 2, we
use this section to highlight some important aspects of

3Based on the L2 norm, can be ensured by appropriate scal-
ing of input.

DPRP. We begin with re-emphasizing the significance of
the simplicity of DPRP in the time of highly complex
deep learning methods. Specifically, DPRP does not re-
quire any iterative procedure or any parameter estima-
tion, DPRP offers a one-shot reconstruction with supe-
rior utility compared to the current state-of-the-art deep
generative models for small datasets. Based on standard,
simple matrix operations, it is easy to implement DPRP,
making it readily accessible and deployable in real-world
scenarios.

Compared to the extensive hyperparameter optimization
required in deep generative models, DPRP requires min-
imal hyperparameter tuning. DPRP requires fine-tuning
of the privacy budget allocation to the random projec-
tion and singular value decomposition; the number of di-
mensions in the random projection P ; and the number of
values from right singular vector V̂ to be used for the re-
construction. DPRP’s utility depends on the values of the
hyperparameters above, most importantly on the value of
k1, as k1 has a direct impact on our noise scale, where
from Eqn. (6), we can observe that large k1 can diminish
noise (σp = 1/

√
k1) impact. Hence, for empirical evalua-

tion, we use k1 as our main hyperparameter. For the rest,
we show that even using sensible defaults, DPRP out-
performs current state-of-the-art generative models by a
wide margin.

In regards to the utility, reconstruction by itself (without
differential privacy) is near optimal with the reconstruc-
tion error proportional to the compression ratio (that is
the number of values from the right singular vector V̂ )
[13]. We incur additional utility loss by transitioning
into the differential privacy paradigm, however, in our
extensive empirical evaluation on seven diverse real-life
datasets, we show that our method provides significantly
better utility compared to the current state-of-the-art.

4 EXPERIMENTS

In this section, we present empirical evidence on seven
real-life datasets to support our earlier claims that for
small datasets, DPRP outperforms state-of-the-art differ-
entially private generative models, both in terms of utility
and privacy, while simultaneously being computationally
cheap.

4.1 DATASETS

For evaluating the performance of DPRP and its com-
parison with state-of-the-art generative models, we use
seven real-life, publicly available datasets from the UCI
machine learning repository. Datasets are carefully se-
lected to evaluate DPRP on small sized datasets of vary-
ing dimensionality, a utility bottleneck for current state-



of-the-art differentially private generative models. Table
1 shows the basic dataset characteristics. Any missing
values are replaced by their respective column-wise av-
erages.

Dataset Attributes Instances Type
Coimbra BC 10 116 Binary
Wisconsin BC 32 569 Binary
Indian Liver 10 583 Binary
Dermatology 33 366 Multiclass
Cervical Cancer 36 858 Binary
Caesarian 5 80 Binary
HCC 49 165 Binary

Table 1: Datasets used for DPRP evaluation. Type spec-
ifies the output type (binary classification vs multi-class
classification).

4.2 PRIVACY PARAMETERS

For privacy parameters, δ is kept fixed at 0.0001 with ε
varied as required and reported in the following sections.
For DPRP, we have (ε1, ε2, δ1, δ2), which compose for
our overall privacy budget. We dedicate 80% of our pri-
vacy budget to (ε1, δ1), that is, the privacy parameters
for the differentially private random projection P ′ and
15% for (ε2, δ2), that are the privacy parameters for dif-
ferentially private right singular vector V̂ ′ (obtained via
differentially private SVD). We reserve 5% of the pri-
vacy budget to select good values for k1, which can be
done in more than one way, where one can directly ac-
count for hyperparameter search, similar to [8], or use
the exponential mechanism to probabilistically select a
best setting with score being the outcome, we use the for-
mer. Privacy budget allocation is an interesting property
of DPRP, we study this in detail in Section 4.8.

4.3 DPRP

DPRP being a reconstruction based, model-free ap-
proach, does not have a very complicated setup, making
it accessible to a wider audience. DPRP can be imple-
mented using any statistical or machine learning work-
flow. Before inputting to DPRP, all datasets are normal-
ized by their respective row-wise L2 norm. For the ini-
tial parameters, in addition to selecting the best k1, for
choosing the number of values k2 from the right singular
vector, we use k2 = 0.6d. That is, our initial reconstruc-
tions are based on optimal P ′ and constrained V̂ ′. We
further investigate this phenomenon in Section 4.7.

4.4 COMPETITORS

For comparison, we consider two state-of-the-art differ-
entially private GANs. The DPGAN [6] and the DP-

CGAN [21]4. For the underlying GAN model, we use the
Wasserstein GAN [22]. Minibatch size is kept fixed at 50
and 100 (50 for datasets with total sample size less than
200 and 100 for the rest, done to account for small dataset
sizes). The discriminator and the generator are both fully
connected neural networks with a depth of three. Gen-
erator’s layers are of size (d, d/2, d) respectively, where
d is the input data’s dimensionality. RMSProp is used as
the optimizer with a learning rate for the discriminator
and the generator set at 0.001. GANs are trained for 100
epochs.

4.5 COMPARISON

For comparison, we use the “train on synthetic-test on
real” approach, where the real dataset is first split into
train and test partitions (80/20 split). Train partition is
used to train GANs and for the reconstruction in DPRP.
Resulting differentially private datasets are then used to
train a random forest model (built using Scikit Learn with
default parameters), performance of which is tested us-
ing the hold-out test set (real data). For evaluation, we
run the models 50 times and report the average results.
For quantitative comparison, we carefully chose the met-
rics that best reflect the overall output quality. Specifi-
cally, we use the Area Under the Precision-Recall Curve
(AUPRC) and Classification Accuracy (Acc). To pro-
vide an upper bound on the performance of DPRP and
GANs, we also include performance metrics on the real,
non-perturbed, non-noisy datasets.

4.6 MAIN COMPARISON

Table 2 shows our main comparison using Area Under
the Precision-Recall Curve (AUPRC) and Classification
Accuracy (Acc). With the aid of the results, we make
several key observations. First, and the most important
observation is that DPRP outperforms DPGAN and DP-
CGAN on all datasets and for all privacy budgets by a
significant margin, both in terms of AUPRC and Ac-
curacy. This provides concrete evidence to our earlier
claims that for small sized datasets, which are a common
occurrence in high sensitivity domains such as health-
care, differentially private data generated using DPRP
outperforms data generated by the state-of-the-art GANs
in terms of utility while simultaneously providing tight
privacy guarantees.

4Recently, PATE-GAN [7] has been shown to slightly out-
perform DPGAN on large binary outcome data. We were, how-
ever, unable to replicate the baselines reported in the PATE-
GAN paper and no source code is made available at the time of
this submission. Hence, PATE-GAN is not included as a direct
competitor for binary outcome datasets. But, the margin of im-
provement offered by DPRP over DPGAN is greater than that
reported in the PATE-GAN results (PATE-GAN vs DPGAN).



Data Method
ε = 8

(Acc,AUPRC)
ε = 6

(Acc,AUPRC)
ε = 4

(Acc,AUPRC)
ε = 2

(Acc,AUPRC)
ε = 1

(Acc,AUPRC)
Coimbra BC DPRP 0.56, 0.63 0.54, 0.62 0.52, 0.59 0.51, 0.59 0.51, 0.56

DPGAN 0.52, 0.53 0.50, 0.54 0.50, 0.54 0.48, 0.53 0.46, 0.53
DP-CGAN 0.51, 0.51 0.51, 0.50 0.49, 0.50 0.45, 0.49 0.44, 0.46
No Privacy 0.94, 0.69 0.94, 0.69 0.94, 0.69 0.94, 0.69 0.94, 0.69

Wisconsin BC DPRP 0.71, 0.74 0.69, 0.68 0.68, 0.65 0.63, 0.61 0.58, 0.62
DPGAN 0.53, 0.60 0.49, 0.60 0.48, 0.59 0.45, 0.58 0.45, 0.58
DP-CGAN 0.55, 0.63 0.53, 0.61 0.48, 0.57 0.43, 0.57 0.42, 0.55
No Privacy 0.98, 0.98 0.98, 0.98 0.98, 0.98 0.98, 0.98 0.98, 0.98

Indian Liver DPRP 0.79, 0.70 0.79, 0.66 0.77, 0.66 0.75, 0.65 0.72, 0.66
DPGAN 0.55, 0.59 0.53, 0.60 0.51, 0.59 0.49, 0.57 0.46, 0.54
DP-CGAN 0.54, 0.60 0.52, 0.59 0.50, 0.54 0.47, 0.52 0.45, 0.51
No Privacy 0.83, 0.74 0.83, 0.74 0.83, 0.74 0.83, 0.74 0.83, 0.74

Dermatology DPRP 0.35, 0.31 0.35, 0.31 0.32, 0.30 0.27, 0.29 0.28, 0.29
DPGAN 0.20, 0.23 0.19, 0.23 0.19, 0.22 0.19, 0.22 0.19, 0.21
DP-CGAN 0.22, 0.25 0.21, 0.23 0.21, 0.22 0.20, 0.20 0.20, 0.19
No Privacy 0.95, 0.99 0.95, 0.99 0.95, 0.99 0.95, 0.99 0.95, 0.99

Cervical Cancer DPRP 0.97, 0.93 0.97, 0.93 0.96, 0.92 0.95, 0.91 0.95, 0.91
DPGAN 0.37, 0.87 0.33, 0.87 0.29, 0.85 0.24, 0.83 0.21, 0.82
DP-CGAN 0.39, 0.90 0.37, 0.89 0.33, 0.86 0.27, 0.85 0.23, 0.85
No Privacy 0.98, 0.99 0.98, 0.99 0.98, 0.99 0.98, 0.99 0.98, 0.99

Caesarian DPRP 0.56, 0.71 0.56, 0.69 0.55, 0.66 0.55, 0.64 0.54, 0.59
DPGAN 0.53, 0.51 0.49, 0.51 0.49, 0.51 0.49, 0.50 0.49, 0.49
DP-CGAN 0.49, 0.48 0.48, 0.48 0.46, 0.47 0.44, 0.47 0.42, 0.45
No Privacy 0.78, 0.96 0.78, 0.96 0.78, 0.96 0.78, 0.96 0.78, 0.96

HCC DPRP 0.76, 0.67 0.76, 0.65 0.72, 0.62 0.66, 0.60 0.64, 0.58
DPGAN 0.52, 0.57 0.51, 0.53 0.48, 0.51 0.46, 0.51 0.45, 0.49
DP-CGAN 0.54, 0.59 0.53, 0.56 0.50, 0.54 0.47, 0.52 0.45, 0.49
No Privacy 0.79, 0.72 0.79, 0.72 0.79, 0.72 0.79, 0.72 0.79, 0.72

Table 2: Main comparison of DPRP with DPGAN and DP-CGAN for varying privacy budgets (ε ∈ [8, 6, 4, 2, 1]).
Comparison is made using Area under the Precision-Recall Curve (AUPRC) and Classification Accuracy (Acc).
Higher is better for both metrics. Best performing model out of DPRP and GANs is presented in bold. We see
that DPRP outperforms GANs on all datasets and for all privacy budgets. We also provide results on the non-private,
non-noisy real data as an upper bound achievable (denoted in the table as “No Privacy”).

For many scenarios, we observe that DPRP’s perfor-
mance is much closer to the non-noisy, no privacy model,
compared to the DPGAN’s and DP-CGAN’s outcome.
Where even with a large privacy budget (ε = 8), both
GANs struggle to learn the data distribution, which pro-
vides further evidence to our earlier claim that state-
of-the-art generative models struggle when datasets are
small, irrespective of the privacy budget. We also ob-
serve that as the privacy budget decreases, there is lit-
tle variation in GANs performance. This is again due
to the reason that GANs struggles to learn the data dis-
tribution, even with a larger privacy budget, resulting in
similar poor performance, irrespective of the noise scale.
For DPRP, for all datasets and for all privacy budgets,

the optimal values for k1 selected are always > d, that is
our method exploits dimensionality explosion to provide
good utility by reducing the noise impact (see Eqn. (6)
and Section 3.3 for details).

4.7 IMPACT OF k2

As we observe from Algorithm 1, one of the main com-
ponents of our reconstruction, V̂ ′, has it’s own parame-
ter, k2, that can be tuned and has a direct impact on the
reconstruction quality. k2 controls the number of values
from the right singular vector used in the reconstruction.
Using few (k2 < d) values result in a compressed recon-
struction, which can potentially lead to poor outcomes
in a differentially private regime (see our discussion on



Data
40%

(Acc,AUPRC)
60%

(Acc,AUPRC)
80%

(Acc,AUPRC)
100%

(Acc,AUPRC)
Coimbra BC 0.46, 0.59 0.52, 0.59 0.49, 0.61 0.56, 0.62
Wisconsin BC 0.57, 0.61 0.68, 0.65 0.65, 0.68 0.71, 0.64
Indian Liver 0.57, 0.65 0.77, 0.66 0.75, 0.67 0.61, 0.64
Dermatology 0.32, 0.29 0.32, 0.30 0.33, 0.28 0.29, 0.31
Cervical Cancer 0.95, 0.90 0.96, 0.92 0.95, 0.91 0.97, 0.94
Caesarian 0.49, 0.63 0.55, 0.66 0.59, 0.69 0.63, 0.64
HCC 0.67, 0.62 0.72, 0.62 0.72, 0.62 0.74, 0.65

Table 3: Evaluating the effect of k2 on the outcome. %k2 signifies the reduction in the number of values from the
right singular vector used for reconstruction relative to the original dataset dimensions d. Privacy budget is kept fixed
at ε = 4, δ = 0.0001 with budget allocation kept fixed at 80%/15%.

the Algorithm 1 in Section 3.3, where we explicitly state
the relationship between the values used from the right
singular vector and the reconstruction quality). As we
use the “optimal” values for k1 in P ′, we use this section
to investigate the impact of k2 on the reconstruction of
the differentially private dataset. For the comparison, we
keep the privacy budget constant at ε = 4, δ = 0.0001
with a similar privacy budget split as earlier.

Table 3 shows the results. We observe that as we in-
crease the number of values (k2) from the right singular
vector used in the reconstruction, on average, we see a
utility boost. Which is intuitive, as we have explained
earlier, k2 < d leads to a compressed reconstruction,
which might not be desirable with differential privacy.
However, we advocate for using k2 as a hyperparameter
and choosing the best value for a given dataset as in a few
cases (Indian Liver, Dermatology), we observe that using
fewer (< 100%) noisy singular values provides less dis-
torted reconstruction compared to using all values from
the right singular vector (some datasets are more “com-
pressible” than others).

4.8 PRIVACY BUDGET ALLOCATION

For all previous experiments, we have used a constant
privacy budget split of 80%/15%, that is 80% of the pri-
vacy budget is allocated to making the random projec-
tion, P , differentially private while 15% is allocated to
the differentially private SVD for getting the right singu-
lar vector required for the reconstruction. But it remains
to see how the variation in the privacy budget allocation
affects the overall model utility. This is what we investi-
gate in this section. For the comparison, we keep the core
setup the same as the main results, with the total privacy
budget kept constant at ε = 4, δ = 0.0001, and the val-
ues for k2 kept constant at 0.6d. For space constraints,
detailed results are provided in the supplementary ma-
terial. We observe that the best results are obtained as

we increase the privacy budget allocation for the random
projection, especially≥ 40%, leading to a less noisy ran-
dom projection. Signaling that random projection plays
a larger role in the reconstruction compared to the right
singular vector.

4.9 COMPUTATIONAL COMPLEXITY

We briefly mentioned in the introduction that com-
pared to the state-of-the-art generative models, DPRP
has an added computational advantage, making the im-
plementation highly “usable” in real-life scenarios for re-
searchers working in resource-constrained environments.
Here we briefly justify the claim. Specifically, we com-
pare the average run time of DPRP and GANs over the 50
runs per dataset using percent reduction in computational
time as a comparison metric. Due to space constraints,
detailed results are provided in the supplementary mate-
rial. In summary, DPRP offers a reduction in computa-
tional time greater than 65% on all datasets, with gains
close to 90% on some datasets. The average reduction in
computational time across all datasets is close to 80%, a
significant decrease compared to GANs.

4.10 COMPARISON WITH “OPTIMAL” GANS

As we have used hyperparameter tuning for DPRP to se-
lect the optimal values of k1, it is only fair that we do the
same for DPGAN and DP-CGAN. That is, we use the hy-
perparameter search to find the best parameters for both
GANs to compare with DPRP. Specifically, we use the
number of units in the hidden layers, the learning rate,
and the number of epochs as the hyperparameters with
the total privacy cost adjusted using the method similar
to [8]. Even with the use of best hyperparameters, we fail
to see any performance benefits for both GANs, hence
the detailed results are not displayed (results are worse
than reported in Table 2 with DP-CGAN suffering worse
deterioration).



There are two main reasons for this phenomenon. First,
as we have to charge privacy budget for hyperparameter
tuning, doing so can consume larger budget for GANs
compared to DPRP as in our method we only have a sin-
gle tuning parameter, compared to the combinatorial ex-
plosion in deep learning models. Second, as we have
already stated, deep generative models struggle to learn
the data generating distribution for small datasets, hence,
any setting of hyperparameters fails to provide added
benefit.

5 RELATED WORK

The idea of non-private reconstruction is based on the
groundwork of Vempala et al. [12], first used by Zhang et
al. [13] for image compression. Most of the related work
to DPRP can be divided into two main categories, that is
the differentially private generative models and differen-
tial privacy in random projections.

5.1 GANS FOR DIFFERENTIAL PRIVATE DATA
RELEASE

Following limited successes of prior privacy-preserving
data sharing methods [11, 17], that are either limited by
the computational complexity, constrained output space
(such as [11] only works with binary outcomes), etc.
GANs [4] have established themselves as the current
state-of-the-art in differentially private synthetic data re-
lease [6, 7]. With the exception of PATE-GAN [7],
all other differentially private GAN based models are
trained using differentially private stochastic gradient de-
cent [8]. Both approaches, however, fall severely short
on the utility front when dealing with small datasets, as
we discussed at length in Section 1.3.

5.2 RANDOM PROJECTIONS AND
DIFFERENTIAL PRIVACY

Releasing differentially private random projections is
studied in [20, 23]. For both, in addition to not releas-
ing the data from the original data distribution, albeit
only a random projection, limiting the inferential utility
and prohibiting domain experts to do a qualitative assess-
ment by comparing the reconstructed data to the original
data per-observation, former only provides privacy at the
attribute-level, not the often desired user-level. Subse-
quent works using differentially private random projec-
tions follow a similar approach and hence suffer from
similar drawbacks, such as Ahmed et al. [24] uses ran-
dom projections to release social network graph data, and
the work by Xu et al. [25] uses differentially private ran-
dom projection for releasing a low dimensional projec-
tion of original high dimensional data. As mentioned,
these works are limited to providing privacy at the at-

tribute level and releasing just random projections of the
original data, severely limiting the inferential utility.

6 CONCLUSION, LIMITATIONS, AND
FUTURE WORK

We have presented DPRP, a new method to release dif-
ferentially private reconstruction of small-sized datasets.
Based on random projections and right singular vectors,
DPRP constitutes a model-free approach, which is easy
to implement and computationally cheap, while provid-
ing strong privacy and utility guarantees. With the aid
of our extensive empirical evaluation on seven real-life
datasets, we have shown that DPRP outperforms state-
of-the-art generative models for all privacy budgets and
for all datasets. One of the main limitations of DPRP in
comparison to generative models is that DPRP is limited
to reconstruction of same sized datasets as input, whereas
generative models can generate variable-sized output.

For our future work, we would like to push the limits of
DPRP to extend it to large and high dimensional datasets.
Some other research directions worth exploring are the
use of efficient decompositions to get the right singular
vectors, whereby further reducing the required noise for
differential privacy; using an ensemble of differentially
private random projections for reconstruction, where we
can reduce the noise by averaging multiple “noisier” ran-
dom projections; investigating the impact of the input
rank, and evaluating the use of the matrix-based noise
adding mechanisms.

ACKNOWLEDGEMENTS

We thank Ricardo Silva Carvalho for valuable feedback.
This research is in part supported by a CGS-D award and
a discovery grant from Natural Sciences and Engineering
Research Council of Canada.

References

[1] B. Lo, L. Dornbrand, and N. N. Dubler, “Hipaa and
patient care: the role for professional judgment,”
Jama, vol. 293, no. 14, pp. 1766–1771, 2005.

[2] L. Sweeney, “Foundations of privacy protection
from a computer science perspective,” in Proceed-
ings of the Joint Statistical Meeting, AAAS, 2000.

[3] C. Dwork, F. McSherry, K. Nissim, and A. Smith,
“Calibrating noise to sensitivity in private data
analysis,” in Proceedings of the Third Conference
on Theory of Cryptography, TCC’06, (Berlin, Hei-
delberg), pp. 265–284, Springer-Verlag, 2006.



[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial nets,” in Ad-
vances in neural information processing systems,
pp. 2672–2680, 2014.

[5] R. Shokri, M. Stronati, C. Song, and V. Shmatikov,
“Membership inference attacks against machine
learning models,” in Security and Privacy (SP),
2017 IEEE Symposium on, pp. 3–18, IEEE, 2017.

[6] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou,
“Differentially private generative adversarial net-
work,” arXiv preprint arXiv:1802.06739, 2018.

[7] J. Yoon, J. Jordon, and M. van der Schaar, “PATE-
GAN: Generating synthetic data with differential
privacy guarantees,” in International Conference
on Learning Representations, 2019.

[8] M. Abadi, A. Chu, I. Goodfellow, H. B. McMa-
han, I. Mironov, K. Talwar, and L. Zhang, “Deep
learning with differential privacy,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 308–318, ACM,
2016.

[9] K. Chaudhuri, A. D. Sarwate, and K. Sinha, “Near-
optimal algorithms for differentially-private princi-
pal components,” arXiv preprint arXiv:1207.2812,
2012.

[10] J. Zhang, X. Xiao, Y. Yang, Z. Zhang, and
M. Winslett, “Privgene: differentially private
model fitting using genetic algorithms,” in Pro-
ceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pp. 665–676,
ACM, 2013.

[11] J. Zhang, G. Cormode, C. M. Procopiuc, D. Sri-
vastava, and X. Xiao, “Privbayes: Private data re-
lease via bayesian networks,” ACM Transactions on
Database Systems (TODS), vol. 42, no. 4, p. 25,
2017.

[12] S. S. Vempala, The random projection method.
American Mathematical Soc., 2005.

[13] Q. Zhang and R. J. Plemmons, “Image recon-
struction from double random projection,” IEEE
Transactions on Image Processing, vol. 23, no. 6,
pp. 2501–2513, 2014.

[14] C. Dwork and A. Roth, “The algorithmic founda-
tions of differential privacy,” Found. Trends Theor.
Comput. Sci., vol. 9, pp. 211–407, Aug. 2014.

[15] W. B. Johnson and J. Lindenstrauss, “Extensions of
lipschitz mappings into a hilbert space,” Contempo-
rary mathematics, vol. 26, no. 189-206, p. 1, 1984.

[16] P. Indyk and R. Motwani, “Approximate nearest
neighbors: towards removing the curse of dimen-
sionality,” in Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pp. 604–
613, 1998.

[17] C. Dwork, K. Talwar, A. Thakurta, and L. Zhang,
“Analyze gauss: optimal bounds for privacy-
preserving principal component analysis,” in Pro-
ceedings of the forty-sixth annual ACM symposium
on Theory of computing, pp. 11–20, ACM, 2014.

[18] S. Tu, Differentially private random pro-
jections, Accessed Nov 2019. https:
//people.eecs.berkeley.edu/˜sltu/
writeups/dp-rp.pdf.

[19] B. Laurent and P. Massart, “Adaptive estimation of
a quadratic functional by model selection,” Annals
of Statistics, pp. 1302–1338, 2000.

[20] K. Kenthapadi, A. Korolova, I. Mironov, and
N. Mishra, “Privacy via the johnson-lindenstrauss
transform,” Journal of Privacy and Confidentiality,
vol. 5, no. 1, pp. 39–71, 2013.

[21] R. Torkzadehmahani, P. Kairouz, and B. Paten,
“Dp-cgan: Differentially private synthetic data and
label generation,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion Workshops, pp. 0–0, 2019.

[22] M. Arjovsky, S. Chintala, and L. Bottou, “Wasser-
stein generative adversarial networks,” in Interna-
tional Conference on Machine Learning, pp. 214–
223, 2017.

[23] J. Blocki, A. Blum, A. Datta, and O. Sheffet,
“The johnson-lindenstrauss transform itself pre-
serves differential privacy,” in 2012 IEEE 53rd An-
nual Symposium on Foundations of Computer Sci-
ence, pp. 410–419, IEEE, 2012.

[24] F. Ahmed, R. Jin, and A. X. Liu, “A random ma-
trix approach to differential privacy and structure
preserved social network graph publishing,” arXiv
preprint arXiv:1307.0475, 2013.

[25] C. Xu, J. Ren, Y. Zhang, Z. Qin, and K. Ren, “Dp-
pro: Differentially private high-dimensional data
release via random projection,” IEEE Transactions
on Information Forensics and Security, vol. 12,
no. 12, pp. 3081–3093, 2017.

https://people.eecs.berkeley.edu/~sltu/writeups/dp-rp.pdf
https://people.eecs.berkeley.edu/~sltu/writeups/dp-rp.pdf
https://people.eecs.berkeley.edu/~sltu/writeups/dp-rp.pdf

	INTRODUCTION
	Motivation and Problem Statement
	Current Approach
	Challenges with Current State-of-the-art
	Proposed Solution

	Preliminaries
	Differential Privacy
	Random Projections

	DPRP
	DPRP Overview
	Privacy Guarantees of DPRP
	Discussion

	Experiments
	Datasets
	Privacy Parameters
	DPRP
	Competitors
	Comparison
	Main Comparison
	Impact of k2
	Privacy Budget Allocation
	Computational Complexity
	Comparison With ``Optimal" GANs

	Related Work
	GANs for Differential Private Data Release
	Random Projections and Differential Privacy

	Conclusion, Limitations, and Future Work

