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Abstract

We consider the problem of learning a causal
graph in the presence of measurement error.
This setting is for example common in ge-
nomics, where gene expression is corrupted
through the measurement process. We develop
a provably consistent procedure for estimating
the causal structure in a linear Gaussian struc-
tural equation model from corrupted observa-
tions on its nodes, under a variety of measure-
ment error models. Namely, we provide an
estimator based on the method-of-moments and
an associated test which can be used in con-
junction with constraint-based causal structure
discovery algorithms. We prove asymptotic
consistency of the procedure and also discuss
finite-sample considerations. We demonstrate
our method’s performance through simulations
and on real data, where we recover the underly-
ing gene regulatory network from zero-inflated
single-cell RNA-seq data.

1 INTRODUCTION

Determining causal relationships between a set of vari-
ables is a central task in causal inference with applications
in many scientific fields including economics, biology
and social sciences (Friedman et al., 2000; Pearl, 2003;
Robins et al., 2000). Directed acyclic graph (DAG) mod-
els are commonly used to represent the causal structure
among variables. Learning a DAG from observations on
the nodes is intrinsically hard (Chickering et al., 2004),
and in general a DAG is only identifiable up to its Markov
equivalence class (Verma and Pearl, 1990). In addition,
in many applications there may be latent variables. While
various algorithms have been developed to learn DAGs
with latent variables (Spirtes et al., 2000; Colombo et al.,
2012), without restrictions on the latent variables there
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may be many DAGs that explain the data (Spirtes and
Richardson, 2002); e.g. the relationship among the latent
variables cannot be determined.

Restrictions on the latent variables can improve model
identifiability and allow for a causal analysis. In this pa-
per, we consider the problem of causal discovery with
measurement error, where each latent variable (represent-
ing the true quantity without measurement error) has ex-
actly one corresponding observed variable (representing
the corrupted observation of the latent variable), and the
goal is to infer the causal relationships among the latent
variables; see Figure 1. For instance in social sciences,
the beliefs of people cannot be directly measured, but
surveys can provide a noisy version of the latent vari-
ables, and we may be interested in inferring the causal
structure among the latent beliefs. Similarly, in biolog-
ical applications measurement error needs to be taken
into account, e.g. when measuring brain signals using
functional magnetic resonance (fMRI) or gene expression
using RNA sequencing. The observed variable for each
latent variable serves as its anchor. Hence, we use the
term anchored causal inference to parallel its usage for
the discrete setting considered in Halpern et al. (2015).
This does not directly relate to its usage in “anchored
regression” (Rothenhäusler et al., 2018).

While the method developed in this paper can be applied
generally to causal inference in the presence of noise, we
will showcase its use on learning the underlying gene regu-
latory network from single-cell RNA-seq data (Klein et al.,
2015). Such data is known to suffer from dropout (Ziegen-
hain et al., 2017), which manifests itself as false zeros due
to too little starting RNA or technical noise. We model
this dropout as a type of measurement noise. In single-
cell RNA-seq experiments, it is estimated that such false
zeros occur with a probability of 24-76% across current
state-of-the-art technologies (Ziegenhain et al., 2017).

Some of the most prominent causal structure discovery
algorithms are based on conditional independece test-



Figure 1: Anchored Causal Model with latent variables
Zi and corrupted observed counterparts Xi (anchors).

ing (Spirtes et al., 2000; Solus et al., 2017). Estimating
these directly from corrupted data may lead to biased es-
timates since the corruption may lead to changes in the
values of the correlations; see Figure 2a. Moreover, de-
pendencies may be introduced in the observed variables
that are not present in the latent variables. For instance,
consider the model shown in Figure 1: While the latent
variables Z2 and Z3 are independent given Z1, the ob-
served variables X2 and X3 are dependent given any con-
ditioning set among the observed variables X .

Currently, the typical approach for dealing with dropout
is to first impute gene expression data (Van Dijk et al.,
2018). However, imputation may also introduce spurious
dependencies (see Figure 2b). Furthermore, since current
imputation methods were designed to recover (uncondi-
tional) correlations/dependence relations among genes
but not conditional dependence relations, which are criti-
cal for causal structure discovery algorithms, the causal
graph learned based on imputed data is usually inaccu-
rate. It is therefore of great interest to develop algorithms
that directly learn the causal structure among the latent
variables from the corrupted data.

Zhang et al. (2017) considered the problem of learning
a causal DAG model under measurement error as in Fig-
ure 1, but restricted the measurement error to be inde-
pendent from the latent variables. For many applications,
including modeling dropout in single-cell RNA-seq data,
this assumption is too restrictive. Halpern et al. (2015)
considered more general anchored causal models than in
Figure 1, but only in the binary setting. Silva et al. (2006)
considered a similar model for continuous distributions,
but under the assumption that the dependence between
latent and observed variables is linear, an assumption that
is too restrictive for many applications. Inspired by topic
modeling, Anandkumar et al. (2013) proposed a causal
discovery method for DAGs with various levels of latent
variables, but under the assumption that the latent vari-
ables are non-Gaussian and have sufficient outgoing edges

(a) Dropout (b) Imputation

Figure 2: (a) Simulated Gaussian random variables before
(top) and after dropout with rate 0.5 (bottom). (b) Imputed
RNA-seq data (top) and raw data with dropout (bottom).

for identifiability of the model.

The main contributions of this paper are as follows:

• We introduce anchored causal inference to model
causal relationships among latent variables in the
Gaussian setting with noisy observations .

• We develop a consistent estimator for partial cor-
relations based on the method of moments and an
associated conditional independence test that can be
used with consistent structure learning algorithms to
find the structure among the latent variables, result-
ing in a consistent procedure for structure learning.

• We present experimental results on both simulated
data and real single-cell RNA-seq data, showing that
our estimator, which takes into account measure-
ment error, outperforms other methods for causal
inference when applied to the corrupted data.

2 PRELIMINARIES

Let G = ([p], E) be a directed acyclic graph (DAG) with
nodes [p] := {1, . . . , p} and directed edges E. We as-
sociate a random variable Zi to each node i ∈ [p]. We
denote the joint distribution of Z = (Z1, . . . , Zp)

T by
P and assume that Z is generated by a linear Gaussian
structural equation model:

Z = BTZ + ε, (1)

where B is the weighted adjacency matrix of G and
ε ∼ N p(µ,Ω) with Ω = diag(ω2

1 , · · · , ω2
p). We con-

sider the problem where only a noise-corrupted version of
Z is observed. We define X1, . . . , Xp to be the observed
variables (anchors) generated from the latent variables



Z1, . . . , Zp by a noise process Xi = Fi(Zi), where Fi
is a possibly non-deterministic function such that Xi has
non-zero variance.. We aim to learn the DAG G associated
with the latent variables Z.

A standard approach for structure discovery when no la-
tent variables are present is to first infer the conditional
independence (CI) relations among the observed vari-
ables and then use the CI relations to learn the DAG
structure (Spirtes et al., 2000). However, since multiple
DAGs can encode the same CI relations, G can only be
identified up to its Markov equivalence class (MEC). An
MEC can be represented by a CPDAG, a partially directed
graph whose skeleton (underlying undirected graph) is the
skeleton of G and an edge is directed if it has the same di-
rection for all DAGs in the MEC (Verma and Pearl, 1990).
Various algorithms have been developed for learning a
CPDAG when no latent variables are present (Chicker-
ing, 2002; Solus et al., 2017; Spirtes et al., 2000), most
prominently the PC algorithm (Spirtes et al., 2000), which
treats causal inference as a constraint satisfaction problem
with the CI relations as constraints. The PC algorithm is
provably consistent, meaning that it outputs the correct
MEC when the sample size n→∞ under the so-called
faithfulness assumption, which asserts that the CI rela-
tions entailed by P are the relations implied by separation
in the DAG G (Spirtes et al., 2000).

Harris and Drton (2013) proved high-dimensional consis-
tency of the PC-algorithm when applied directly to the
observed data X for Gaussian copula or non-paranormal
models, i.e., when the Gaussian random vector Z is a de-
terministic function of X . In this case, the conditional in-
dependence statements among the variables X are equiv-
alent to the conditional independence statements among
Z (Harris and Drton, 2013), which simplifies the problem
greatly. When X is a random function of Z, the setting
considered in this paper, this equivalence generally does
not hold. Figure 1 shows an example where Z2 |= Z3|Z1,
but without any further assumptions, X2 6⊥⊥ X3|X1. Fur-
thermore, Yoon et al. (2020) provided a consistent rank-
based estimator for the correlation matrix of Z when the
Xi are from a truncated Guassian copula, meaning that
there exist constants c1, . . . , cp such that Xi is set to zero
if Xi > ci, and applied this for estimating correlations in
gene expression data. While our model assumptions are
for a different class of noise functions and our gene ex-
pression model differs from that of Yoon et al. (2020), we
provide a comparison of the CPDAG learned by the PC-
algorithm using this correlation matrix with the CPDAG
learned using our estimation method in Section 5.1.

As compared to the fully observational setting, when la-
tent variables are present, identifiability is further weak-
ened. Various algorithms have been developed for learn-

ing in this setting (Spirtes et al., 2000; Colombo et al.,
2012). However, these algorithms cannot estimate causal
relations among the latent variables, which is our problem
of interest. Moreover, Leung et al. (2016) study iden-
tifiability of directed Gaussian graphical models in the
presence of a single latent variable, Blom et al. (2018) pro-
vide an upper bound for the measurement error when the
noise is Gaussian and independent of the latent variables,
and Zhang et al. (2017), Silva and Scheines (2005), Silva
et al. (2006), Halpern et al. (2015) and Anandkumar
et al. (2013) all consider the problem of learning causal
edges among latent variables from the observed variables,
i.e. models as in Figure 1 or generalizations thereof, but
under assumptions that may not hold for our applications
of interest, namely that the measurement error is indepen-
dent of the latent variables (Zhang et al., 2017), that the
observed variables are a linear function of the latent vari-
ables (Silva and Scheines, 2005; Silva et al., 2006), that
the observed variables are binary (Halpern et al., 2015),
or that each latent variable is non-Gaussian with sufficient
outgoing edges to guarantee identifiability (Anandkumar
et al., 2013). We note, however, that our work requires as-
sumptions (described below) that some of these methods
do not.

3 ANCHORED CAUSAL INFERENCE

In the following, we first describe the assumptions of our
Anchored Causal Model, then motivate the model by the
application to learning the underlying gene regulatory
network from zero-inflated single-cell RNA-seq data, and
finally provide an algorithm for anchored causal inference
and prove its consistency under the model assumptions.

Model Assumptions (Anchored Causal Model).
(A1). Given a DAG G = ([p], E), the latent variables
Z = (Z1, . . . Zp) are generated by a linear Gaussian
structural equation model (see (1)) that is faithful to G.

(A2). The observed random vector X = (X1, . . . , Xp)
satisfies for all i ∈ [p]

Xi |= {X1, . . . , Xp, Z1, . . . , Zp} \ {Xi, Zi} | Zi.

Furthermore, for all i, j ∈ [p] there exists a finite-
dimensional vector ηi of monomials in Xi and a finite-
dimensional vector ηij of monomials in Xi and Xj

such that their means can be mapped to the moments
of the latent variables by known continuously differen-
tiable functions gi and gij , i.e., E[Zi] = gi(E[ηi]) and
E[ZiZj ] = gij(E[ηij ]), and their covariance satisfies
Cov(ηi, ηij) <∞.

While Assumption (A1) fixes the structural and functional
relationship between the latent variables Z by a linear



Gaussian structural equation model, Assumption (A2)
fixes the structural relationship between latent and ob-
served variables by each Xi having exactly one parent
Zi for all i ∈ [p], and ensures that the first- and second-
order moments of Z ∼ N p(µ,Σ) can be obtained from
moments of X without the restriction to a specific mea-
surement error model. This allows for more general noise
models than in (Silva et al., 2006; Zhang et al., 2017). We
remark that given a model specified by the noise function
Fi, the functions gi and gij are directly obtainable from
Fi, as we demonstrate in the following example. Hence,
Assumption (A2) could have been specified in terms of Fi.
However, knowledge of Fi is, in general, a stronger con-
dition than knowledge of gi and gij ; we therefore chose
to specify our assumptions in terms of gi and gij .

Example 3.1 (Additive Gaussian noise model). Suppose

Xi = Fi(Zi) = Zi + Ui, where Ui ∼ N (mi, s
2
i )

for all i ∈ [p]. Then, it holds that E[Xi] = µi +mi, and
hence

gi(y) = y −mi, ηi = Xi.

Similarly,

E[X2
i ] = E[E[X2

i |Zi]]
= E[Z2

i ] + 2miE[Zi] + s2
i +m2

i .

Hence,

gii(y) = y2 − 2migi(y1)− s2
i −m2

i

with ηii = (Xi, X
2
i ). Finally, for i 6= j, we have

E[XiXj ] = E[E[Xi|Zi]E[Xj |Zj ]]
= E[ZiZj ] +miE[Zj ] +mjE[Zi] +mimj ,

giving

gij(y) = y3 −migj(y2) +mjgi(y1) +mimj

with ηij = (Xi, Xj , XiXj).

We next present examples of other models that fit into our
framework. The functions gi, gij and the vectors ηi,ηij
can be obtained through a calculation similar to that just
presented. We therefore omit the details in what follows.

Example 3.2 (Modeling single-cell RNA-seq data). Let
Zi represent the true latent RNA values (log-transformed)
and Xi the observed RNA values after dropout. Pierson
and Yau (2015) considered a simple model of gene regula-
tion represented by a linear Gaussian structural equation
model among the latent variables Z and modeled dropout
for single-cell RNA-seq data by

Xi = Fi(Zi) =

{
Zi w.p. qi

0 w.p. 1− qi
for all i ∈ [p].

Assuming the dropout probabilities qi are known, this
model satisfies Assumptions (A1) and (A2) with

ηi = Xi

ηij = XiXj

, gi(y) =
y

qi
and gij(y) =

{
y
qiqj

i 6= j
y
qi

i = j
,

but does not satisfy the assumptions in (Silva et al., 2006;
Zhang et al., 2017).

While this is a simple model for RNA-seq data, also more
complicated models fit into our framework. For example,
the Michaelis-Menten model considers dropout probabili-
ties that depend on µi = E(Zi) (Andrews and Hemberg,
2018). In addition, RNA-seq data is often modeled us-
ing Poisson random variables (Pachter, 2011; Grün et al.,
2014). The following more complex model with these
two properties fits into our framework.

Example 3.3 (A more complex model for single-cell
RNA-seq data). Consider the model defined by

Xi =

{
Poisson(Zi) w.p. µi

c+µi

0 w.p. 1− µi

c+µi

,

where c is a given parameter. Using E[Xi] ≥ 0, one can
solve for the moments of Zi in terms of the moments of
Xi to obtain

ηi = Xi, ηii = (Xi, X
2
i ), ηij = (Xi, Xj , XiXj)

and

gi(y) =
y +

√
y2 + 4c

2
,

gii(y) = y2
c+ gi(y1)

gi(y1)
− gi(y1)2 − gi(y1),

gij(y)=
(c+gi(y1))(c+gj(y2))

gi(y1)gj(y2)
y3−gi(y1)gj(y2),

for i 6= j. Hence also this model satisfies the assumptions
of an Anchored Causal Model.

Having provided various examples motivating our An-
chored Causal Model, we now introduce Algorithm 1, our
Anchored Causal Inference procedure to learn the causal
structure among the latent Z variables. The procedure
works as follows: Given n i.i.d. samples of X denoted
by X̂ = (X̂(1), X̂(2), . . . , X̂(n)), compute the required
empirical moments E[η̂i] and E[η̂ij ]. Given a particular
measurement error model defined by gi and gij , compute
the first- and second-order moments of Z to obtain its
covariance matrix Σ̂. If we can obtain the set of CI rela-
tions involving Z, we can use causal structure discovery
algorithms to learn G (up to its Markov equivalence class).
Since Z follows a Gaussian distribution, conditional in-
dependence corresponds to zero partial correlation. Let



Algorithm 1 Anchored Causal Inference

Input: n samples X̂ = (X̂(1), . . . , X̂(n)) of the random
vector X = F (Z); the functions gi and gij as in (A2).
Output: CPDAG representing the Markov equivalence
class of the DAG G of the latent variables Z.
1. For each i, j ∈ [p] compute the sample moment vectors
E[η̂i] and E[η̂ij ] from the samples X̂ .
2. Estimate the sample moments of Z via µ̂i ,
gi(E[η̂i]), µ̂ij , gij(E[η̂ij ]).
3. Estimate the covariance matrix Σ̂ of Z by (Σ̂)ij =
µ̂ij − µ̂iµ̂j for all i, j ∈ [p].
4. Estimate the partial correlations of Z from Σ̂ using (2).
5. Calculate the test statistics defined in Corollaries 1 or 2
to infer the CI relations among the latent variables Z.
6. Use a consistent causal discovery algorithm (e.g. the
PC algorithm) based on the inferred CI relations.

i, j ∈ [p] andK ⊆ [p]\{i, j}, then the sample partial cor-
relations ρ̂ij·K can be computed recursively for increasing
conditioning set sizes by

ρ̂ij·K =
ρ̂ij·K\{l} − ρ̂il·K\{l}ρ̂jl·K\{l}√
1− ρ̂2

il·K\{l}

√
1− ρ̂2

jl·K\{l}

, (2)

where in the base case ρ̂ij·∅ = ρ̂ij are the correlations ob-
tained from Σ̂. The main difficulty lies in developing test
statistics based on the estimated partial correlations ρ̂ij·K
such that the inferred CI relations correspond as n→∞
to the set of CI relations implied by the underlying causal
DAG G. Such test statistics are developed in Corollaries 1
and 2. The inferred CI relations can then be fed into a
constraint-based causal discovery algorithm such as the
PC algorithm (Spirtes et al., 2000) or the hybrid GSP
algorithm (Solus et al., 2017) to obtain the CPDAG of G.

The first step in asserting consistency of Algorithm 1 is the
following lemma. The proof is provided in Appendix A.

Lemma 1. Under assumptions (A1) and (A2), the estima-
tor ρ̂ij·K in (2) is asymptotically consistent.

Next, we design a consistent hypothesis test for obtaining
CI relations based on the estimated partial correlations of
Z in (2), similar in principle to Gaussian CI tests based
on Fisher’s z-transform used by many causal inference
algorithms (Chickering, 2002; Spirtes et al., 2000; Solus
et al., 2017). When Fi is the identity function for all i ∈
[p], it can be shown (Lehmann, 1998) that the estimated
partial correlations in (2) satisfy

√
n(ρ̂ij·K − ρij·K)

D−→ N 1

(
0, (1− ρ2

ij·K)2
)
. (3)

Hence, applying the Delta method (van der Vaart and
Wellner, 1996) to Fisher’s z-transform zf (ρ) := log((1 +

ρ)/(1− ρ))/2 of the estimated partial correlations yields
√
n
(
zf (ρ̂ij·K)− zf (ρij·K)

)
D−→ N 1(0, 1). (4)

Hence Fisher’s z-transform can be used in the test statistic
T :=

√
n zf (ρ̂i,j·K) to test conditional independence by

declaring Xi |= Xj |XK at significance α if and only if

|T | ≤ Φ−1(1− α

2
), (5)

where Φ−1 denotes the inverse CDF of N (0, 1). The fol-
lowing theorem generalizes (3) to our anchored causal
model class, where the partial correlations of Z are esti-
mated from the observed moments of X .
Theorem 1. Let η denote the vector of monomials of X
required to compute the first- and second-order moments
of Z. Let ν denote the vector of first- and second-order
moments of η. Then under assumptions (A1) and (A2), for
any i, j ∈ [p] and K ⊆ [p] \ {i, j}, the estimated partial
correlation ρ̂ij·K in (2) satisfies

√
n(ρ̂i,j·K − ρi,j·K)

D−→ N 1

(
0, τij·K(ν)

)
where τij·K is a continuous function of ν.

The proof of Theorem 1 can be found in Appendix B,
where we provide a procedure for computing the function
τij·K for any i, j ∈ [p] and K ⊆ [p] \ {i, j}. The main
idea of the proof is as follows: First apply the Central
Limit Theorem to the vector of sample moments E[η̂].
Under assumption (A2), the correlations ρ based on Σ
are continuously differentiable functions of ν. Further-
more, for any i, j ∈ [p] and K ⊆ [p] \ {i, j}, the par-
tial correlation ρij·K is defined recursively for increasing
conditioning set sizes as a continuously differentiable
function of ρ. Hence, one can iteratively apply the Delta
method (Lehmann, 1998) starting from the statement of
the Central Limit Theorem applied to E[η̂] to obtain the
asymptotic distribution of ρ̂ij·K .

In the following two corollaries to Theorem 1, we pro-
vide different test statistics for CI testing based on the
estimated partial correlations of the latent vector Z. We
start by generalizing Fisher’s transform and its asymptotic
distribution given in (4).
Corollary 1. If the asymptotic variance τij·K(ν) can be
written purely as a function of ρij·K , i.e., there exists
τ̃ij·K such that τij·K(ν) = τ̃ij·K(ρij·K), and there exists
a variance stabilizing transformation zij·K such that

zij·K(ρ) =

∫
1√

τ̃ij·K(ρ)
dρ+ C (6)

with C chosen such that zij·K(0) = 0, then under (A1)
and (A2)
√
n
(
zij·K(ρ̂ij·K)− zij·K(ρij·K)

)
D−→ N 1(0, 1).



The proof of Corollary 1 follows by applying the Delta
method to Theorem 1 (Appendix C). Whether the con-
ditions of Corollary 1 are satisfied, depends on the mea-
surement error model F . We show in Appendix F.1 that
the conditions of Corollary 1 hold for the dropout model
with K = ∅ and µ = 0, and derive the corresponding
variance stabilizing transformation. Note that it is suffi-
cient if we can compute the integral in (6) numerically; a
closed-form solution is not required. Corollary 1 implies
that the test statistic T =

√
n z(ρ̂i,j·K) in (5) can be used

to consistently estimate the CI relations among the latent
variables Z. When the assumptions of Corollary 1 are
not met, then we can obtain a different test statistic that is
asymptotically normal as in the following result.
Corollary 2. Define ζij·K(ρ̂, ν̂) := ρ̂/

√
τij·K(ν̂). Then

under (A1) and (A2)
√
n
(
ζij·K(ρ̂ij·K , ν̂)− ζij·K(ρij·K , ν̂)

)
D−→ N 1(0, 1).

Corollary 2 follows from Theorem 1: since τ is contin-
uous in ν, ν̂ converges to ν by the law of large numbers
and implies that τij·K(ρ̂ij·K , ν̂)

a.s.−−→ τij·K(ρ̂ij·K , ν)
as n → ∞ (see Appendix D). Hence the test statistic
T =

√
n ζij·K(ρ̂ij·K , ν̂) can be used in (5) to obtain the

CI relations among the latent variables Z.

With respect to finite-sample considerations, note that
ζij·K in Corollary 2 is a function of ν̂, and thus its con-
vergence to its asymptotic distribution requires the con-
vergence of ν̂. Hence, we expect the convergence in
distribution of Corollary 1 to be faster than that of Corol-
lary 2 and as a result the test statistic in Corollary 1 to
perform better in the finite-sample regime.

We end this section with the main result of this paper.
Theorem 2. Under assumptions (A1) and (A2), Algo-
rithm 1 is consistent, i.e., as n→∞ it returns a CPDAG
for the the Markov equivalence class of the true DAG G.

The proof is given in Appendix E, where we show that
under the faithfulness assumption, the set of CI relations
inferred from Σ̂ in Algorithm 1 converges to those im-
plied by the DAG G. Hence using any consistent causal
structure learning algorithm on these CI relations results
in the correct equivalence class among the Z variables.
Remark 1. The estimator in Algorithm 1, along with the
results of Corollary 1 and 2 can be used with any CI-
based structure learning algorithm to identify the struc-
ture among the Z variables. Hence, one can directly
modify the assumptions of the anchored causal model to
allow the Zi to be generated by a Gaussian distribution
that is faithful to a MAG (Spirtes and Richardson, 2002)
(i.e., with latent variables) and replace the PC algorithm
in the last step of Algorithm 1 for example by the FCI
algorithm (Spirtes et al., 2000).

4 IMPLEMENTATION

Next, we discuss an important aspect of implementation
and show how the results in Section 3 can be applied to
the dropout model in Example 3.2.

In the finite-sample setting, the estimated covariance ma-
trix Σ̂ of the latent variables is not guaranteed to be posi-
tive semidefinite. In this case, shrinkage towards a posi-
tive definite matrix can be used as a form of regularization.
When n < p, a standard approach is to use Ledoit-Wolf
shrinkage towards the identity matrix (Ledoit and Wolf,
2004). When n > p, the sample covariance matrix Ŝ
based on the samples X̂ is positive definite with prob-
ability 1 and hence Σ̂ can also be shrunk towards Ŝ by

Λ̂ = (1− α∗)Σ̂ + α∗Ŝ where α∗ = arg min
α∈[0,1],Λ̂�0

α.

(7)
The shrinkage that provides better results depends on
whether Ŝ or the identity are better approximations of the
true underlying covariance matrix Σ. In our experiments
in Section 5, we applied shrinkage towards Ŝ as in (7).
Both types of shrinkage result in consistent estimates:
consistency of Ledoit-Wolf shrinkage is proven in (Ledoit
and Wolf, 2004) and the consistency of shrinkage towards
the sample covariance matrix in (7) follows from Theo-
rem 1, since Σ̂→ Σ as n→∞ implies that Σ̂ becomes
positive semidefinite with large enough sample size, and
therefore, α→ 0 as n→∞, which shows that shrinkage
reduces to the consistent case without shrinkage.

4.1 Application: Dropout Model

Under the dropout model in Example 3.2, the assumptions
of Corollary 1 are in general not satisfied, since τij·K
cannot generally be expressed as a function of ρij·K only.
This is shown in Appendix F.2 by plotting τ as a function
of ν for fixed ρ. In the special case when µ = 0, the
conditions are satisfied for all i, j ∈ [p] when K = ∅, i.e.,
a variance stabilizing transform zij = zij·∅ can be found
for the correlations ρij = ρij·∅. This dropout stabilizing
transform is provided in Appendix F.1 and can be used
together with the resulting CI test as a heuristic also when
K 6= ∅ or µ 6= 0. Its performance is analyzed in Section 5.

In Appendix F.3, we provide a recursive formula for com-
puting ζij·K from Corollary 1 for the dropout model,
which we refer to as the dropout normalizing transform.
From Corollary 1, ζij·K(ρ̂ij·K) should have an asymp-
totic variance of 1. Hence, computing ζij·K requires deter-
mining the asymptotic variance τij·K of ρ̂ij·K , and then
defining ζij·K appropriately to transform this variance
to 1. Also note that applying shrinkage will in general
change the asymptotic variance of the partial correlations.



(a) Q-Q Plot, Normalizing (b) Q-Q Plot, Stabilizing (c) ROC CPDAG (d) ROC CPDAG

(e) ROC CPDAG (f) ROC CPDAG (g) SHD CPDAG (h) SHD CPDAG

Figure 3: (a)-(b) Q-Q plots for the dropout normalizing and stabilizing transforms. (c)-(h) Performance of the dropout
stabilizing transform, dropout normalizing transform and Gaussian CI test in simulations for structure discovery: ROC
curves (c)-(f) and SHD curves (g)-(h) for evaluating the accuracy of estimating the true CPDAG.

We show how to correct τij·K as a function of the shrink-
age coefficient α in Appendix F.4. This adjustment is
applied in all of our experiments in Section 5.

In Section 5.2, we apply our estimation procedure based
on the dropout model to single-cell RNA-seq data to infer
the structure of the underlying regulatory network. For
the theoretical analysis in Section 3 we assumed that the
dropout probabilities qi are known. However, in general
these parameters need to be estimated, and it was pro-
posed in (Pierson, 2015) to model qi by qi = 1− expλµ

2
i

for i ∈ [p], where λ depends on the RNA-seq assay. Us-
ing this model for the dropout probabilities we can jointly
estimate the parameters µ and q as follows. We can write

E[ηi] = E[Xi] = E[(1− expλµ
2
i )Zi] = (1− expλµ

2
i )µi.

Since µi corresponds to count averages, we can assume
that µ̂i ≥ 0. Under this assumption, the equation E[η̂i] =

(1− expλµ̂
2
i )µ̂i has a unique solution for µ̂i.

With respect to the parameter λ, for some single-cell RNA-
seq assays it is possible to obtain an estimate for λ by
including molecules with known expression as controls.
However, since this estimate is often unreliable (Grün
and van Oudenaarden, 2015) and not always available,
we selected λ so as to minimize the amount of shrinkage
required to obtain a positive semidefinite matrix.

5 EXPERIMENTS

In this section, we analyze the performance of the test
statistics derived earlier, along with Algorithm 1 under
the dropout model from Example 3.2 both on simulated
data and on single-cell RNA-seq data1

5.1 Simulations

Test Statistic Evaluation. First, we evaluate the perfor-
mance of the dropout normalizing and dropout stabilizing
transforms on the dropout model in Example 3.2 using a
Q-Q plot to compare the empirical distribution of the asso-
ciated statistic under the null hypothesis (ρi,j·K = 0) with
the theorized standard normal distribution. We generated
data from the dropout noise model with a simple graph
structure on the Z variables such that Xi |= Xj |Xk, Xl

holds for some i, j, k, l ∈ [p]. We used p = 5, weights
in the range [−1,−0.25] ∪ [0.25, 1], and dropout proba-
bilities in [0, 0.8]. We generated n observations of X for
n ∈ {500, 1000, 5000}, then estimated the partial correla-
tion ρ̂ij·kl and applied the dropout normalizing transform
(Figure 3a) and the dropout stabilizing transform (Fig-
ure 3b) to obtain the associated test statistic. We repeated

1The code is available in the causaldag repository at
https://github.com/uhlerlab/causaldag.
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Figure 4: (a) ROC curve for predicting causal effects of interventions in Perturb-seq data. (b) SHD between CPDAGs
estimated on single-cell RNA-seq data from pancreatic cells with low versus high dropout rate. (c) Gene regulatory
network estimated from Perturb-seq data (blue edges indicate previously known interactions (Dixit et al., 2016) that
were also detected by our method).

this generation and estimation process to obtain 100
points in the Q-Q plots. The plots for n ∈ {500, 5000}
are shown in Appendix G. The results show that the dis-
tribution of these statistics deviate only slightly from the
expected distribution. The dropout stabilizing transform
deviates slightly more, as expected, since it was derived
for correlations and not for partial correlations.

Structure Learning. The data was generated from the
dropout model described in Example 3.2. The structure
of the matrix B in the linear Gaussian structural equa-
tion model (1) was generated by an Erdös-Renyi model
with expected degree d for d ∈ {2, 3, 5} and number of
nodes p ∈ {10, 30, 50}. The weights of the matrix B
were uniformly drawn from [−1,−0.25] ∪ [0.25, 1] to be
bounded away from 0. The mean parameters µi were
uniformly drawn from [0, 3] and the probabilities qi from
[0, 0.8]. These ranges were chosen to match the expected
ranges in the gene expression data analyzed in Section 5.2.
We generated n observations of X from this generating
model, for n ∈ {1000, 2000, 10000, 50000}.

Figure 3 (c)-(h) shows the ROC curves and the Structural
Hamming Distance (SHD) evaluating the CPDAG output
by Algorithm 1 for p ∈ {10, 50}, n ∈ {2000, 10000}
and d = 3. Each point in the plots is an aver-
age over 96 simulations. We compare 5 methods
for estimating the graph. Each corresponds to a dif-
ferent curve in the plots. We use (1) PC with the
estimator in algorithm 1 and the dropout stabilizing
transform (labeled dropout stabilizing), and
similarly (2) with the dropout normalizing transform
(dropout normalizing); (3) PC and the Gaussian
CI test applied directly to the observations (gaussian);
(4) PC with the rank-based correlation test used by Harris
and Drton (2013) (drton); and (5) the algorithm from
Zhang et al. (2017) for the case of Gaussians (zhang).

In plotting the ROC curve for the CPDAG, we consider an

undirected edge in the CPDAG a true positive if a directed
edge exists in either direction in the true graph, and a false
positive otherwise. We consider a directed edge a true
positive if the same edge exists in the true graph. In
Appendix G, we provide additional figures for the setting
where p = 30, n ∈ {2000, 50000} and d ∈ {2, 5}.

The simulation results show that the dropout stabilizing
transform outperforms, or performs at least as well as the
other methods in all settings we tested even though it was
derived for K = ∅ and µ = 0. The performance of both
dropout transforms improves over the other methods with
increasing sample size. A large sample size is especially
important for the dropout normalizing transform because
it relies on the estimation of more parameters. Since the
dropout stabilizing transform is preferable to the dropout
normalizing transform computationally, we concentrate
on this transform in Figure 3 (e)-(f).

The simulation results show that our estimators outper-
form the naive Gaussian CI test applied directly to the cor-
rupted data, and the difference in performance increases
with sample size. This has important implications for
the development of new single-cell RNA-seq technolo-
gies, since it indicates that an increased sample size is
preferrable to minimizing dropout. Current technologies
have been heading in this direction, trading off increased
sample sizes (with studies containing up to a million sam-
ples) for an increased dropout rate (Zheng et al., 2017).

5.2 Single-cell RNA-seq Data

Perturb-seq. We tested our method on gene expres-
sion data collected via single-cell Perturb-seq by Dixit
et al. (2016) from bone marrow-derived dendritic cells
(BMDCs) after log-transformation. As in most single-cell
studies, the gene expression observations are affected by
dropout. The data consists of 933 observational samples
(after standard pre-processing), which we used for learn-



ing the gene regulatory network. The Perturb-seq data
set also contains interventional samples, which we used
to evaluate the estimated CPDAG and construct an ROC
curve. As in Dixit et al. (2016), we focused our analysis
on 24 genes, which are important transcription factors
known to regulate each other as well as a variety of other
genes (Garber et al., 2012). We used the dropout stabiliz-
ing transform to obtain the CI relations among the latent
variables (labeled dropout in Figure 4) and compared
the resulting CPDAG to the graph obtained using the stan-
dard Gaussian CI test applied directly to the observed
corrupted data (labeled gaussian). In both settings we
used the PC algorithm to infer the CPDAG from the CI
relations. For a typical baseline used in genomics, we also
imputed gene expression data using MAGIC (Van Dijk
et al., 2018) and applied the PC algorithm to the im-
puted data (labeled magic). Additionally, we used the
PC algorithm applied to the rank-based estimator of the
correlation matrix of Z from Yoon et al. (2020) (labeled
yoon). Figure 4(a) shows the resulting ROCs, which
quantify for varying tuning parameters the accuracy of
each of the learned CPDAGs in predicting the effect of
each of the eight interventions. Our procedure with the
dropout stabilizing transform outperforms the others. The
inferred gene regulatory network is shown in Figure 4(c).

Pancreas - Type II Diabetes. We also tested our method
on two gene expression datasets collected from human
pancreatic cells (Baron et al., 2016; Segerstolpe et al.,
2016) via different single-cell assays, one with low
dropout rate and 3514 cells (Smart-seq2), and the other
with high dropout rate and 8569 cells (inDrop). The ex-
pression data was log-transformed in both cases. We
focused our analysis on a gene regulatory network of
20 genes, which is known to be involved in Type II Dia-
betes (Sharma et al., 2018). Since no interventional data is
available for this application, we evaluated our estimator
based on how consistent the estimated CPDAG is across
the two data sets. Figure 4b shows the SHD between the
CPDAGs estimated from the data set with low versus high
dropout using the dropout stabilizing transform, Gaussian
CI test applied directly to the data, and Gaussian CI test
applied to data imputed with MAGIC. The inferred gene
regulatory network is provided in Appendix G. Since the
SHD is generally lower for the dropout stabilizing trans-
form, the CPDAG estimates produced by our method are
more consistent across different dropout levels, thereby
suggesting that our method is more robust to dropout.

6 DISCUSSION

We proposed a procedure for learning causal structure in
the presence of measurement error under the Anchored
Causal Model, where each corrupted observed variable is

generated from a latent uncorrupted variable and the aim
is to learn the structure among the latent variables using
the observed variables as anchors. We introduced an es-
timator and test statistics that can be used with CI-based
structure discovery algorithms to learn the Markov equiv-
alence class of the causal DAG among the latent variables.
One of the main motivations for developing this algorithm
was to address the problem of dropout in single-cell RNA-
seq experiments. We showed how to apply our algorithm
for learning the underlying gene regulatory network under
a simple dropout model and analyzed its performance on
synthetic data and on single-cell RNA-seq data, An inter-
esting future application for this methodology would be
to use this framework with more complex dropout models
for RNA-seq data to further improve performance.
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