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Abstract

Contrastive unsupervised representation learn-
ing (CURL) is the state-of-the-art technique
to learn representations (as a set of features)
from unlabelled data. While CURL has col-
lected several empirical successes recently,
theoretical understanding of its performance
was still missing. In a recent work, Arora et al.
(2019) provide the first generalisation bounds
for CURL, relying on a Rademacher complex-
ity. We extend their framework to the flexible
PAC-Bayes setting, allowing us to deal with
the non-iid setting. We present PAC-Bayesian
generalisation bounds for CURL, which are
then used to derive a new representation learn-
ing algorithm. Numerical experiments on
real-life datasets illustrate that our algorithm
achieves competitive accuracy, and yields non-
vacuous generalisation bounds.

1 INTRODUCTION

Unsupervised representation learning (Bengio et al.,
2013) aims at extracting features representation from an
unlabelled dataset for downstream tasks such as classifi-
cation and clustering (see Mikolov et al., 2013; Noroozi
and Favaro, 2016; Zhang et al., 2016; Caron et al., 2018;
Devlin et al., 2019). An unsupervised representation
learning model is typically learnt by solving a pretext
task without supervised information. Trained model
work as a feature extractor for supervised tasks.

In unsupervised representation learning, contrastive loss
is a widely used objective function class. Contrastive loss
uses two types of data pair, namely, similar pair and dis-
similar pair. Their similarity is defined without label in-
formation of a supervised task. For example, in word
representation learning, Mikolov et al. (2013) define a
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similar pair as co-occurrence words in the same context,
while dissimilar pairs are randomly sampled from a fixed
distribution. Intuitively, by minimising a contrastive loss,
similar data samples are mapped to similar representa-
tions in feature space in terms of some underlying met-
ric (as the inner product), and dissimilar samples are not
mapped to similar representations.

Contrastive unsupervised representation learning im-
proves the performance of supervised models in prac-
tice, and has attracted a lot of research interest lately (see
Chen et al., 2020, and references therein), although usage
is still quite far ahead of theoretical understanding. Re-
cently, Arora et al. (2019) introduced a theoretical frame-
work for contrastive unsupervised representation learn-
ing and derived the first generalisation bounds for CURL.
In parallel, PAC-Bayes is emerging as a principled tool
to understand and quantify the generalisation ability of
many machine learning algorithms, including deep neu-
ral networks (as recently studied by Dziugaite and Roy,
2017; Neyshabur et al., 2018; Letarte et al., 2019).

Our contributions. We extend the framework intro-
duced by Arora et al. (2019), by adopting a PAC-
Bayes approach to contrastive unsupervised representa-
tion learning. We derive the first PAC-Bayes general-
isation bounds for CURL, both in iid and non-iid set-
tings. Our bounds are then used to derive new CURL
algorithms, for which we provide a complete implemen-
tation. The paper closes with numerical experiments on
two real-life datasets (CIFAR-100 and AUSLAN) show-
ing that our bounds are non-vacuous in the iid setting.

2 CONTRASTIVE UNSUPERVISED
REPRESENTATION LEARNING

2.1 LEARNING FRAMEWORK

Inputs are denoted x ∈ X = Rd0 , and outputs are de-
noted y ∈ Y , where Y is a discrete and finite set.



The representation is learnt from a (large) unlabelled
dataset U = {zi}mi=1, where zi = (xi,x

+
i ,x

−
i1, . . . ,x

−
ik)

is a tuple of k+2 elements; xi being similar to x+
i

and dissimilar to every element of the negative sample
set {x−ij}kj=1. The predictor is learnt from a labelled
dataset S = {(xi, yi)}ni=1.

In the following, we present the contrastive framework
proposed by Arora et al. (2019) in a simplified scenario
in order to highlight the key ideas, where the super-
vised prediction task is binary and the negative sam-
ple sets for unsupervised representation learning con-
tain one element. Thus, we choose the label set to be
Y = {−1, 1}, and the unsupervised set U contains
triplets zi = (xi,x

+
i ,x

−
i ). The extension to a more

generic setting (for |Y | > 2 and k > 1) bears no par-
ticular difficulty and is deferred to Appendix A.2. It is
important to note at this stage that both U and S are
assumed to be iid (independent, identically distributed)
collections, as also assumed by Arora et al. (2019).

Latent classes and data distributions. The main as-
sumption is the existence of a set of latent classes C. Let
us denote by ρ a probability distribution over C. More-
over, with each class c ∈ C, comes a class distributionDc
over the input space X . A similar pair (x,x+) is such
that both x and x+ are generated by the same class distri-
bution. Note that an input x possibly belongs to multiple
classes: take the example of x being an image and C a set
of latent classes including “the image depicts a dog” and
“the image depicts a cat” (both classes are not mutually
exclusive).

Definition 1. Let ρ2 be a shorthand for the joint distri-
bution (ρ, ρ). We refer to the unsupervised data distribu-
tion U as the process that generates an unlabelled sample
z = (x,x+,x−) according to the following scheme:
1. Draw two latent classes (c+, c−) ∼ ρ2 ;
2. Draw two similar samples (x,x+) ∼ (Dc+)2 ;
3. Draw a negative sample x− ∼ Dc− .

The labelled sample S is obtained by fixing two classes
c± = {c−, c+} ∈ C2 (from now on, the shorthand nota-
tion c± is used to refer to a pair of latent classes). Each
class is then mapped on a label of Y . We fix yc− = −1
and yc+ = 1; Thus we can write Y = {yc− , yc+} as an
ordered set. The label is obtained from the latent class
distribution restricted to two values ρc± :

ρc±(c
−) =

ρ(c−)

ρ(c−)+ρ(c+)
, ρc±(c

+) =
ρ(c+)

ρ(c−)+ρ(c+)
.

Definition 2. We refer to the supervised data distribu-
tion S as the process that generates a labelled sample
(x, y) according to the following scheme:
1. Draw a class c ∼ ρc± and set label y = yc ;
2. Draw a sample x ∼ Dc .

Loss function. The learning process is divided in two se-
quential steps, the unsupervised and supervised steps. In
order to relate these two steps, the key is to express them
in terms of a common convex loss function ` : R→R+.
Typical choices are

`log(v) := log2(1 + e−v) , (logistic loss) (1)
`hinge(v) :=max{0, 1−v} , (hinge loss) (2)

where the loss argument v expresses a notion of margin.

In the first step, an unsupervised representation learning
algorithm produces a feature map f : X → Rd. The
contrastive loss associated with f is defined as

Lun(f) := E
(c+,c−)∼ρ2

E
(x,x+)∼D2

c+

x−∼Dc−

`
(
f(x)·

[
f(x+)−f(x−)

])

= E
(x,x+,x−)∼U

`
(
f(x)·

[
f(x+)−f(x−)

])
.

More precisely, from the unsupervised training dataset

U = {(xi,x+
i ,x

−
i )}

m
i=1 ∼ Um , (3)

we are interested in learning the feature map f that min-
imises the following empirical contrastive loss:

L̂un(f) :=
1

m

m∑
i=1

`
(
f(xi) ·

[
f(x+

i )− f(x−i )
])
. (4)

In the second step, a supervised learning algorithm
is given the mapped dataset Ŝ := {(x̂i, yi)}ni=1, with
x̂i := f(xi), and returns a predictor g : Rd → R. For
a fixed pair c± = {c−, c+}, the predicted label on an
input x is then obtained from ŷ = sgn[g(x̂)] (recall that
Y = {−1, 1}), and we aim to minimise the supervised
loss

Lsup(g ◦ f) := E
c∼ρc±

E
x∼Dc

`
(
yc g(f(x))

)
= E

(x,y)∼S
`
(
y g(f(x))

)
.

Given a labelled dataset S ∼ Sn, the empirical counter-
part of the above supervised loss is

L̂sup(g ◦ f) :=
1

n

n∑
i=1

`
(
yi g(f(xi))

)
.

Mean classifier. Following Arora et al. (2019), we study
the mean classifier defined by the linear function

gc±(x̂) := wc± · x̂ ,

where wc± := µµµc+−µµµc− , andµµµc := Ex∼Dc f(x). Then,
the supervised average loss of the mean classifier is the



expected loss on a dataset whose pair of labels is sampled
from the latent class distribution ρ.

Lµsup(f) := E
c±∼ρ2w/o

Lsup(gc± ◦ f) , (5)

with ρ2w/o being a shorthand notation for the sampling
without replacement of two classes among C. Indeed, we
want positive and negative samples that are generated by
distinct latent class distributions, i.e., c− 6= c+.

2.2 GENERALISATION GUARANTEES

A major contribution of the framework introduced by
Arora et al. (2019) is that it rigorously links the unsu-
pervised representation learning task and the subsequent
prediction task: it provides generalisation guarantees on
the supervised average loss of Eq. (5) in terms of the em-
pirical contrastive loss in Eq. (4). Central to this result is
the upcoming Lemma 3, that relates the supervised aver-
age loss of the mean classifier to its unsupervised loss.
Lemma 3 (Arora et al., 2019, Lemma 4.3). Given a la-
tent class distribution ρ on C and a convex loss ` : R→R,
for any feature map f : Rd0 → Rd, we have

Lµsup(f) ≤
1

1− τ
(Lun(f)− τ) ,

where τ is the probability of sampling twice the same
latent class (1[·] is the indicator function):

τ := E
c±∼ρ2

1[c+ = c−] =
∑
c∈C

[ρ(c)]
2
. (6)

Arora et al. (2019) upper bound the unsupervised con-
trastive loss in Lemma 3 by its empirical estimates. The
obtained generalisation guarantee is presented by the fol-
lowing Theorem 4. The bound focuses on a class of fea-
ture map functions F through its empirical Rademacher
complexity on a training dataset U , defined by

RU (F) := E
σσσ∼{±1}3dm

(
sup
f∈F

[
σσσ · f|U

])
,

where f|U := vec({f(xi), f(x+
i ), f(x

−
i )}mi=1) ∈ R3dm

is the concatenation of all feature mapping given by f
on U , and σσσ∼{±1}3dm denotes the uniformly sampled
Rademacher variables over that “representation” space.
Theorem 4 (Arora et al., 2019, Theorem 4.1). Let
B ∈ R+ be such that ‖f(·)‖ ≤ B, with probability 1− δ
over training samples U ∼ Um, ∀f∈F

Lµsup(f̂) ≤
1

1−τ
(Lun(f)− τ) +

1

1−τ
O
(
BRU (F)

m +B2

√
ln 1
δ

m

)
,

where f̂ := argmin
f∈F

L̂un(f) .

3 PAC-BAYES ANALYSIS

Among the different techniques to analyse generalisation
in statistical learning theory, PAC-Bayes has emerged in
the late 90s as a promising alternative to the Rademacher
complexity. PAC-Bayes (pioneered by Shawe-Taylor
and Williamson, 1997; McAllester, 1998; Catoni, 2003,
2004, 2007 – see Guedj, 2019 for a recent survey)
consists in obtaining PAC (probably approximately cor-
rect, Valiant, 1984) generalisation bounds for Bayesian-
flavoured predictors. PAC-Bayes bounds typically hold
with arbitrarily high probability and express a trade-off
between the empirical risk on the training set and a mea-
sure of complexity of the predictors class. A particular-
ity of PAC-Bayes is that the complexity term relies on
a divergence measure between a prior belief and a data-
dependent posterior distribution (typically the Kullback-
Leibler divergence).

3.1 SUPERVISED LEARNING FRAMEWORK

Let P be a prior over a predictor class H, which cannot
depend on training data, and let Q be a posterior over
the predictor class H, which can depend on the train-
ing data. Any predictor h ∈ H is a classification func-
tion h : X → Y . Most PAC-Bayes results measure the
discrepancy between the prior and the posterior distribu-
tions through the Kullback-Leibler divergence,

KL(P‖Q) := E
h∼P

ln
P(h)
Q(h)

. (7)

Moreover, PAC-Bayes provides bounds on the expected
loss of the predictors under the distribution Q. Let us
present the classical supervised setup, where the zero-
one loss is used.1 We refer to this loss as the classifica-
tion risk, denoted by r(y, ŷ) := 1[y ŷ < 0].2 Given a
data-generating distribution S on X × Y , the expected
Q-risk is

R(Q) := E
(x,y)∼S

E
h∼Q

r(y, h(x)) ,

and the empirical counterpart, i.e., the Q-weighted em-
pirical risk on a training set S = {(xi, yi)}ni=1 ∼ Sn, is
given by

R̂(Q) := 1

n

n∑
i=1

E
h∼Q

r(yi, h(xi)) .

1Classical PAC-Bayes analyses consider the supervised
learning setting, but non-supervised learning approaches ex-
ist (e.g., Seldin and Tishby, 2010; Higgs and Shawe-Taylor,
2010; Germain et al., 2013).

2See Appendix B for a contrastive risk with k negative sam-
ples.



The following Theorem 5 expresses an upper bound on
the risk R(Q), from the empirical risk R̂(Q) and the
posterior-prior divergence KL(Q‖P).
Theorem 5 (Catoni, 2007, Theorem 1.2.6). Given λ > 0
and a prior P overH, with probability at least 1−δ over
training samples S ∼ Sn, ∀Q overH,

R(Q) ≤
1− exp

(
−λR̂(Q)− KL(Q‖P)+ln 1

δ

n

)
1− exp (−λ)

. (8)

3.2 PAC-BAYES REPRESENTATION
LEARNING

We now proceed to the first of our contributions. We
prove a PAC-Bayesian bound on the contrastive unsuper-
vised representation loss, by replacing the Rademacher
complexity in Theorem 4 with a Kullback-Leibler di-
vergence. To do so, we consider a prior P and posterior
Q distributions over a class of feature mapping functions
F := {f ∈X→Rd}. Note that our PAC-Bayesian analy-
sis for a multi-class extension is found at Appendix A.2.

First, let us remark that we can adapt Theorem 5 to a
bound on the unsupervised expected contrastive risk de-
fined as

Run(Q) := E
(x,x+,x−)∼U

E
f∼Q

r
(
f(x+)−f(x−), f(x)

)
,

where r(y, ŷ) := 1[y · ŷ < 0] is the zero-one loss ex-
tended to vector arguments. We denote R̂un(Q) the em-
pirical counterpart of Run(Q) computed on the unsuper-
vised training set U ∼ Um. Once expressed this way,
Theorem 5—devoted to classical supervised learning—
can be straightforwardly adapted for the expected con-
trastive risk. Thus, we obtain the following Corollary 6.
Corollary 6. Given λ > 0 and a prior P over F , with
probability at least 1−δ over training samples U ∼ Um,
∀Q over F ,

Run(Q) ≤
1− exp

(
−λR̂un(Q)−

KL(Q‖P)+ln 1
δ

m

)
1− exp (−λ)

.

Unfortunately, the bound on the contrastive risk Run(·)
does not translate directly to a bound on the supervised
average risk

Rµsup(f) := E
c±∼ρ2w/o

Rsup(gc± ◦ f) . (9)

This is because the zero-one loss is not convex, prevent-
ing us from applying Lemma 3 to obtain a result analo-
gous to Theorem 4. However, note that both loss func-
tions defined by Equations (1-2) are upper bound on the
zero-one loss:

∀y, ŷ ∈ Rd : r(y, ŷ) ≤ `(y · ŷ) , with ` ∈ {`log, `hinge}.

Henceforth, we study the Q expected loss

Lµsup(Q) = E
f∼Q

Lµsup(f)

in regards to

Lun(Q) = E
f∼Q

Lun(f) .

By assuming that the representation vectors are bounded,
i.e., ‖f(·)‖ ≤ B for some B ∈ R+ as in Theorem 4,
we also have that the loss function is bounded. Thus,
by rescaling in [0, 1] the loss function, Theorem 5 can
be used to derive the following Theorem 7, which is the
PAC-Bayesian doppelgänger of Theorem 4.

Theorem 7. Let B ∈ R+ such that ‖f(·)‖ ≤ B for
all f ∈ F . Given λ > 0 and a prior P over F , with
probability at least 1−δ over training samples U ∼ Um,
∀Q over F ,

Lµsup(Q) ≤ (10)

1

1−τ

(
B`

1− exp
(
− λ
B`
L̂un(Q)−

KL(Q‖P)+ln 1
δ

m

)
1− exp(−λ)

− τ

)
,

with B`:=max{`(−2B2), `(2B2)} and τ given by
Eq. (6).

Proof. Since ‖f(·)‖ ≤ B, we have ∀x,x+,x− ∈ X3:

−2B2 ≤ f(x) · [f(x+)− f(x−)] ≤ 2B2 .

Thus, `(f(x) · [f(x+)− f(x−)]) ≤ B`, as ` is both con-
vex and positive. Therefore, the output of the rescaled
loss function `′(·) := 1

B`
`(·) belongs to [0, 1]. From that

point, we apply Theorem 5 to obtain3, with probability
at least 1− δ,

1

B`
Lun(Q) ≤

1− exp
(
− λ
B`
L̂un(Q)−

KL(Q‖P)+ln 1
δ

m

)
1− exp (−λ)

.

Also, since the inequality stated in Lemma 3 holds true
for all f ∈ F , taking the expected value according to Q
gives

Lµsup(Q) ≤
1

1− τ
(Lun(Q)− τ) .

The desired result is obtained by replacing Lun(Q) in the
equation above by its bound in terms of L̂un(Q).

3Theorem 5 is given for the zero-one loss, but many works
show that the same argument holds for any [0, 1]-bounded loss
(e.g., Higgs and Shawe-Taylor, 2010).



The Rademacher bound of Theorem 4 and the PAC-
Bayes bound of Theorem 7 convey a similar message:
finding a good representation mapping (in terms of the
empirical contrastive loss) guarantee to generalise well,
on average, on the supervised tasks.

An asset of the PAC-Bayesian bound lies in the fact that
its exact value is easier to compute than the Rademacher
one. Indeed, for a well-chosen prior-posterior family,
the complexity term KL(Q‖P) has a closed-form so-
lution, while computing RU (F) involves a combina-
torial complexity. From an algorithm design perspec-
tive, the fact that KL(Q‖P) varies with Q suggests a
trade-off between accuracy and complexity to drive the
learning process, while RU (F) is constant for a given
choice of class F . We leverage these assets to propose
a bound-driven optimisation procedure for neural net-
works in Section 4.

Note that one could be interested to study the risk of a
predictor learned on the representation of the supervised
data instead of the mean classifier’s risk. As discussed
in Appendix A.3, the loss of the best supervised predictor
is at least as good as the mean classifier’s one.

3.3 RELAXING THE IID ASSUMPTION

An interesting byproduct of Arora et al. (2019)’s ap-
proach is that the proof of the main bound (Theorem 4)
is modular: we mean that in the proof of Theorem 7,
instead of plugging in Catoni’s bound (Theorem 5), we
can use any relevant bound. We therefore leverage the
recent work of Alquier and Guedj (2018) who proved a
PAC-Bayes generalisation bound which no longer needs
to assume that data are iid, and even holds when the data-
generating distribution is heavy-tailed. We can therefore
cast our results onto the non-iid setting.

We believe removing the iid assumption is especially
relevant for contrastive unsupervised learning, as we
deal with triplets of data points governed by a relational
causal link (similar and dissimilar examples). In fact,
several contrastive representation learning algorithms vi-
olate the iid assumption (Goroshin et al., 2015; Lo-
geswaran and Lee, 2018).

Alquier and Guedj (2018)’s framework generalises the
Kullback-Leibler divergence in the PAC-Bayes bound
with the class of f -divergences (see Csiszár and Shields,
2004, for an introduction). Given a convex function f
such that f(1) = 0, the f -divergence between two prob-
ability distributions is given by

Df (P‖Q) = E
h∼Q

f

(
P(h)
Q(h)

)
. (11)

Theorem 8. Given p > 1, q = p
p−1 and a prior P

over F , with probability at least 1− δ, ∀Q over F ,

Lµsup(Q) ≤
1

1− τ

(
L̂un(Q)− τ

)
+

1

1− τ

(
Mq

δ

) 1
q (
Dφp−1(Q‖P) + 1

) 1
p , (12)

whereMq = Ef∼P EU∼Um(|Lun(f)−L̂un(f)|q) (recall
that L̂un depends onU , see Eqs. 3 and 4) and φp(x)=xp.

The proof is a straightforward combination of aforemen-
tioned results, substituting Theorem 1 in Alquier and
Guedj (2018) to Catoni’s bound (Theorem 5) in the proof
of Theorem 7. Up to our knowledge, Theorem 8 is the
first generalisation bound for contrastive unsupervised
representation learning that holds without the iid as-
sumption, therefore extending the framework introduced
by Arora et al. (2019) in a non-trivial and promising di-
rection. Note that Theorem 8 does not require iid as-
sumption for both unsupervised and supervised steps.

4 FROM BOUNDS TO ALGORITHMS

In this section, we propose contrastive unsupervised rep-
resentation learning algorithms derived from the PAC-
Bayes bounds stated in Theorems 7 and 8. The algo-
rithms are obtained by optimising the weights of a neu-
ral network by minimising the right-hand side of (10)
and (12), respectively. Our training method is inspired
by the work of Dziugaite and Roy (2017), who opti-
mise a PAC-Bayesian bound in a supervised classifica-
tion framework, and show that it leads to non-vacuous
bounds values and accurately detects overfitting.

4.1 NEURAL NETWORK OPTIMISATIONS

4.1.1 Algorithm based on Theorem 7

We consider a neural network architecture with N real-
valued learning parameters. Let us denote w ∈ RN the
concatenation into a single vector of all the weights, and
fw : X → Rd the output of the neural network whose
output is a d-dimensional representation vector of its in-
put. From now on, FN = {fw|w ∈ RN} is the set of
all possible neural networks for the chosen architectures.
We restrict the posterior and prior over FN to be Gaus-
sian distributions, that is

Q := N (µQ,diag(σσσ
2
Q)) , P := N (µP , σ

2
PI) ,

where µQ,µP ∈ RN , σσσ2
Q ∈ RN+ , and σ2

P ∈ R+.



Given a fixed λ in Theorem 7, since τ is a constant value,
minimising the upper bound is equivalent to minimising
the following expression4

λm L̂un(Q) + KL(Q‖P) + ln
1

δ
. (13)

Since L̂un(Q) is still intractable (as it is expressed as
the expectation with respect to the posterior distribution
on predictors), we resort to an unbiased estimator; the
weight parameters are sampled at each iteration of a gra-
dient descent, according to

w = µQ + σσσQ � ε ; with ε ∼ N (0, I) ,

the symbol� being the element-wise product. Therefore
we optimise the posterior’s parameters µQ and σσσ2

Q. In
addition, we optimise the prior variance σ2

P in the same
way as Dziugaite and Roy (2017, Section 3.1). That is,
given fixed b, c ∈ R+, we consider the bound value for

σ2
P ∈ {c exp

(
− jb
)
| j ∈ N} . (14)

From the union bound argument, the obtained result is
valid with probability 1 − δ by computing each bound
with a confidence parameter δj := 1 − 6

π2j2 , where j =
b ln c

σ2
P

.

Given δ, b, c, and λ, our final objective based on Theo-
rem 7 is

min
µQ,σ2

Q,σ2P

λm L̂un(Q) + KL(Q‖P) + 2 ln
(
b ln c

σ2
P

)
,

where

KL(Q‖P) =
1

2

(
‖µQ−µP‖

2
2

σ2
P

−N+
‖σσσ2
Q‖1
σ2
P

+N lnσ2
P−

N∑
i=1

lnσσσ2
Q,i

)
.

4.1.2 Algorithm based on Theorem 8

We consider the same neural network architecture, prior,
and posterior as in Section 4.1.1.

We specify p = 2 in Theorem 8 to use a familiar f -
divergence: the χ2-divergence. Then, minimising the
upper bound is equivalent to minimising the following
expression:

L̂un(Q) +
√
M2

δ
(χ2(Q‖P) + 1). (15)

Even though we use the unbiased estimator to evaluate
the first term like iid algorithm, the objective is still in-
tractable since the moment M2 requires the test loss

4Note that without loss of generality, the constant B` is ab-
sorbed by λ and plays no role in the optimisation objective.

Lun(f). Thus we assume the existence of an upper bound
on the covariance of the contrastive loss ` to boundM2

as follow5:

Cov(`(zi), `(zj))

{
≤ B2

` if i−T ≤ j ≤ i+T
= 0 otherwise

, (16)

where T is the length of dependency to generate similar-
ity pairs (x,x+).

This assumption is natural for CURL on sequential
data (Mikolov et al., 2013; Goroshin et al., 2015), where
a positive sample x+ appears in sample x’s neighbours
in a time series.

Given δ, b, c, and T , our final objective is

min
µµµQ,σσσ

2
Q,σ

2
P

L̂un(Q) +

π

(
b ln

c

σ2
P

)√
B2
`

24mδ
(1 + 8T ) (χ2(Q‖P) + 1), (17)

where the full expression of χ2-divergence is found in
Appendix C. The objective is obtained by using the co-
variance’s assumption and the union bound for the prior’s
variance σ2

P .

The objective value is large if T is large, that is when data
dependency is long. Therefore collecting independent
time-series samples is a more effective way to tighten
the bound than increasing T . Interestingly, Eq. (15) with
Eq. (16) can be viewed as a generalised bound of Bégin
et al. (2016, Corollary 10). In fact, our objective becomes
their bound when the data is iid and ` is the zero-one loss.

4.2 PARAMETER SELECTION

In the forthcoming experiments (Section 5), we empiri-
cally compare the following three criteria for parameter
selection: (i) the validation contrastive risk according to
the posterior Q, (ii) the validation contrastive risk of the
maximum a posteriori network, and (iii) the PAC-Bayes
bound associated with the learned Q.

For the first validation contrastive risk criterion, we se-
lect a model with the best hyper-parameters such that it
achieves the lowest contrastive risk L̂un(Q) on the vali-
dation data. We approximate L̂un(Q) in a Monte Carlo
fashion by sampling several fw from Q.

Empirically, stochastic neural networks learnt by min-
imising the PAC-Bayes bound perform quite conserva-
tively (Dziugaite and Roy, 2017). Therefore we also use
a validation contrastive risk computed with the determin-
istic neural network being the most likely according to

5More generally, we may use α-mixing based upper bound
of the moment described by Alquier and Guedj (2018).



the posterior (i.e., the neural network weights are taken
as the mean vector of the posterior, rather than sampled
from it).

The last criterion, the PAC-Bayes bound, does not use
validation data; it only requires training data. For the al-
gorithm described in Section 4.1.1, we select a model
with the best hyper-parameters such that it minimises
the following PAC-Bayes bound on the contrastive su-
pervised risk Run(Q):

min
λ>0

[
1− exp

(
−λR̂un(Q)−

KL(Q‖P)+ln π2j2

6 +ln 2
√
m
δ

m

)
1−exp(−λ)

]
.

(18)

This criterion is given by Corollary 6, where the term
ln 1

δ is replaced by ln π2j2

6 +ln 2
√
m
δ . The first summand

comes from the union bound over the prior’s variances–
see Eq. (14). The second summand replaces 1

δ by 2
√
m
δ ,

as Letarte et al. (2019, Theorem 3) showed that this suf-
fices to make the bound valid uniformly for all λ > 0,
which allows for minimising the bound over λ. Note that
the learning algorithm minimises a bound on the (dif-
ferentiable) convex loss, but our model selection bound
focuses on the zero-one loss as our task is a classification
one.

5 NUMERICAL EXPERIMENTS

Our experimental codes are publicly available.6 We im-
plemented all algorithms with PyTorch (Paszke et al.,
2019). Herein, we report experiments for the algorithm
described in Section 4.1.1. Experiments for the non-iid
algorithm are provided in Appendix E.

5.1 PROTOCOL

Datasets. We use CIFAR-100 (Krizhevsky, 2009)
image classification task, containing 60 000 images,
equally distributed into 100 labels. We create
train/validation/test splits of 47 500/2 500/10 000 im-
ages. We preprocess the images by normalising all pix-
els per channel based on the training data. We build the
unsupervised contrastive learning dataset by considering
each of the 100 label as a latent class, using a block size
of 2 and a number of negative samples of 4 (see Ap-
pendix A for the extended theory for block samples and
more than one negative samples).

We also use AUSLAN (Kadous, 2002) dataset that con-
tains 95 labels, each one being a sign language’s motion,

6https://github.com/nzw0301/
pb-contrastive

and having 22 dimensional features. We split the dataset
into 89 775/12 825/12 825 training/validation/test sets.
As pre-processing, we normalise feature vectors per di-
mension based on the training data. The contrastive
learning dataset then contains 95 latent classes. The
block size and the number of negative samples are the
same as CIFAR-100 setting. More details are provided
in Appendix D.1.

Neural networks architectures. For CIFAR-100 ex-
periments, we use a two hidden convolutional layers neu-
ral network (CNN). The two hidden layers are convolu-
tions (kernel size of 5 and 64 channels) with the ReLU
activation function, followed by max-pooling (kernel
size of 3 and stride of 2). The final layer is a fully
connected linear layer (100 neurons) without activation
function. For AUSLAN experiments, we used a fully
connected one hidden layer network with the ReLU ac-
tivation function. Both hidden and last layers have 50
neurons. More architecture details are given in Ap-
pendix D.2.

PAC-Bayes bound optimisation. We learn the network
parameters by minimising the bound given by Theo-
rem 7, using the strategy proposed in Section 4.1.1. We
rely on the logistic loss given by Eq. (1). We fix the fol-
lowing PAC-Bayes bound’s parameters: b = 100, c =
0.1, and δ = 0.05. The prior variance is initialised at
e−8. The prior mean parameters µP coincide with the
random initialisation of the gradient descent.

We repeat the optimisation procedure with different com-
binations of hyper-parameters. Namely, the PAC-Bayes
bound constant λ is chosen in { 10

a

m |a=1, 2, . . . , 9} for
CIFAR-100, and in { 10

a

m |a=0, 1, . . . , 5} for AUSLAN.
We also consider as a hyper-parameter the choice
of the gradient descent optimiser, here between RM-
SProp (Tieleman and Hinton, 2012) and Adam (Kingma
and Lei Ba, 2015). The learning rate is in {10−3, 10−4}.
In all cases, 500 epochs are performed and the learning
rate is divided by 10 at the 375th epoch. To select the
final model among the ones given by all these hyper-
parameter combinations, we experiment three parameter
selection criteria based on approaches described in Sec-
tion 4.2, as detailed below.
– Stochastic validation (s-valid). This metric is ob-
tained by randomly sampling 10 set of network param-
eters according to the learnt posterior Q, and averaging
the corresponding empirical contrastive loss values com-
puted on validation data. The same procedure is used to
perform early-stopping during optimisation (we stop the
learning process when the loss stops decreasing for 20
consecutive epochs).
– Deterministic validation (det-valid). This met-
ric corresponds to the empirical contrastive loss values

https://github.com/nzw0301/pb-contrastive
https://github.com/nzw0301/pb-contrastive


computed on validation data of the deterministic net-
work f∗, which corresponds to the mean parameters of
the posterior (i.e., the maximum a posteriori network
given by Q). Early stopping is performed in the same
way as for s-valid.
– PAC-Bayes bound (PB). The bound values of the learnt
posterior Q are computed by using Eq. (18). Note that
since this method does not require validation data, we
perform optimisation over the union of the validation
data and the training data. We do not perform early stop-
ping since the optimised objective function is directly the
parameter selection metric.

Benchmark methods. We compare our results with two
benchmarks, described below (more details are provided
in Appendix D.3)
– Prior contrastive unsupervised learning (Arora et al.,
2019). Following the original work, we minimise the
empirical contrastive loss L̂un(f). Hyper-parameter se-
lection is performed on the validation dataset as for
s-valid and det-valid described above.
– Supervised learning (supervised). We also train
the neural network in a supervised way, using the la-
bel information; Following the experiment of Arora et al.
(2019), we add a prediction linear layer to our architec-
tures (with 100 output neurons for CIFAR-100, and 95
output neurons for AUSLAN), and minimise the multi-
class logistic loss function

`log(v):= log2(1 +
∑|Y |
i=1 e

−vi) .

Once done, we drop the prediction layer. Then, we use
the remaining network to extract feature representation.

5.2 EXPERIMENTAL RESULTS

Supervised classification. Table 1 contains supervised
accuracies obtained from the representation learnt with
the two benchmark methods, as well as with our three
parameter selection strategies on the PAC-Bayes learn-
ing algorithms. For each method, two types of super-
vised predictor are used: µ and µ-5 (as in Arora et al.,
2019).7 The µ classifier is obtained µc that was the av-
erage vector of feature vectors f̂w mapped from training
data per supervised label, and µ-5 classifier had µµµc that
was average of 5 random training samples feature vec-
tors. For µ-5, we used averaged evaluation scores over 5
times samplings on each experiment.

For the two datasets, we report three accuracies on the
7Our neural network architecture on CIFAR-100 differs

from the one used in Arora et al. (2019). Their model is based
on the deeper network VGG-16 (Simonyan and Zisserman,
2015), which explains why our accuracies are lower than the
one reported in Arora et al. (2019).

testing set, described below. Values are calculated by av-
eraging over three repetitions of the whole experiments
using different random seeds.
– predictors-2 accuracy (AVG-2). This is the empir-
ical counterpart of Eq. (9), i.e., given a test dataset
T := {(zi, ci)}|T |i=1 where ci ∈ C is a latent class, we
define AVG-2(fw) := 1− R̂µsup(fw), given

R̂µsup(fw) :=
C(C−1)

2

∑
1≤c+<c≤C

R̂Tc± (ĝc± ◦ f̂w) ,

where C is the number of latent classes (e.g., C=100
for CIFAR-100 dataset), f̂w is a feature map learnt
from the training data, ĝc±(x̂) := (ŵc+ − ŵc−) · x̂
is the predictor based on the centre of mass ŵc+ , ŵc−

of the training data mapped features of classes c+, c−,
and R̂Tc± is the supervised risk on the dataset Tc± :=
{(x, 1)|(x, c+)∈T} ∪ {(x,−1)|(x, c−)∈T}:

R̂Tc± (ĝc± ◦ f̂w) :=
1

|Tc± |
∑

(x,y)∈Tc±

r
(
ĝc±(f̂w(x)), y

)
.

– Top-1 accuracy (TOP-1). This is the accuracy on the
multi-class labelled test data T . We predicted the label
ŷi = argmaxy µy · fw(xi) on the test data. Therefore,

TOP-1(fw) :=
1

|T |

|T |∑
i=1

1[yi = ŷi] .

– Top-5 accuracy (TOP-5). For each test instance
(xi, yi) ∈ T , let Ŷi be the set of 5 labels having the high-
est inner products µy · f(xi). Then,

TOP-5(fw) :=
1

|T |

|T |∑
i=1

1[yi ∈ Ŷi] .

Note that the TOP-1 and TOP-5 metrics are not sup-
ported by theoretical results, in the present paper or
the work of Arora et al. (2019). Nevertheless, we re-
port those as an empirical hint of how representations
are learnt by our contrastive unsupervised representation
learning algorithm.

We observe that det-valid algorithm achieves com-
petitive results with the ones of the CURL algorithm
studied by Arora et al. (2019).

PAC-Bayesian generalisation bounds. Table 2 shows
the PAC-Bayes bound values obtained from Eq. (18).
The bounds were calculated by using the same models
used in Table 1. We also reported a training risk R̂un(f

∗)
and test risk Run(f

∗) that we calculated by using only
the mean parameter of the posterior as for neural net-
work’s weight. The rows of λ̂ indicated the optimised λ



Table 1: Supervised tasks results. supervised was trained on the labelled training data, the others were trained on
the contrastive training data. For supervised, Arora et al. (2019), s-valid, and det-valid, hyper-parameters
were selected by using the validation loss. PB hyper-parameters were selected by the PAC-Bayes bound. The best
scores are in bold among contrastive learning algorithms.

PAC-Bayes based methods

supervised Arora et al. (2019) s-valid det-valid PB

µ µ-5 µ µ-5 µ µ-5 µ µ-5 µ µ-5

CIFAR-100
AVG-2 91.4 87.5 89.4 85.6 87.7 83.9 90.0 87.2 75.4 70.8
TOP-1 25.3 16.8 22.5 15.6 17.3 12.7 21.4 16.0 6.9 5.4
TOP-5 57.8 46.0 52.9 42.6 46.9 38.3 54.0 45.2 23.4 19.4

AUSLAN
AVG-2 80.2 75.1 85.6 83.3 85.3 82.7 85.3 82.9 82.6 79.1
TOP-1 12.0 7.1 38.0 24.9 36.1 23.7 37.1 24.7 23.2 14.8
TOP-5 35.7 24.1 56.7 48.2 56.2 47.7 56.5 49.1 50.6 38.4

Table 2: Contrastive unsupervised PAC-Bayes bounds
of the models used in Table 1.

s-valid det-valid PB

CIFAR-100
R̂un(f

∗) 0.146 0.131 0.308
Run(f

∗) 0.185 0.167 0.315

R̂un(Q) 0.172 0.170 0.323
Run(Q) 0.203 0.197 0.327
Bound 0.733 0.718 0.437
KL 32 756 30 894 1 333
λ×m 105 105 104

λ̂×m 122 781 119 687 24 295

AUSLAN
R̂un(f

∗) 0.193 0.190 0.263
Run(f

∗) 0.182 0.182 0.216

R̂un(Q) 0.199 0.195 0.267
Run(Q) 0.186 0.185 0.220
Bound 0.419 0.417 0.361
KL 9 769 10 018 2 054
λ×m 105 105 104

λ̂×m 95 683 97 379 45 198

values that minimised Eq. (18), and thus that correspond
to the reported PAC-Bayes bounds. Let us stress that all
reported bounds values are non-vacuous.

The generalisation bounds obtained with the PB param-
eter selection criterion are naturally the tightest. For this
method, the gap between the empirical risk R̂un(Q) and
the test risk R̂un(Q) is remarkably consistently small.
This highlights that the PAC-Bayesian bound minimisa-
tion is not prone to overfitting. On the downside, this
behaviour seems to promote “conservative” solutions,
which in turns gives lower supervised accuracy com-
pared to methods relying on a validation set (see Table 1).

6 CONCLUSION

We extended the framework introduced by Arora et al.
(2019), by adopting a PAC-Bayes approach to contrastive
unsupervised representation learning. This allows in par-
ticular to (i) derive new algorithms, by minimising the
bounds (ii) remove the iid assumption. While supported
by novel generalisation bounds, our approach is also val-
idated on numerical experiments are the bound yields
non-trivial (non-vacuous) values.
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A EXTENDED PAC-BAYES BOUNDS

Arora et al. (2019) show two extended generalisation error bounds based on Theorem 4. We also show each PAC-
Bayesian counterpart of their extended bounds for Theorem 7. In addition, we show PAC-Bayesian analysis of a
general supervised classifier instead of the mean classifier.

A.1 BLOCK BOUND

The first extension is to use block pairs for positive and negative samples to make the bound tighter. We also derive a
tighter PAC-Bayes bound in the same setting.

Let b be the size of blocks. We change the data generation process; Given (c+, c−) ∼ ρ2, we sample (x, {x+
j }bj=1) ∼

Db+1
c+ and {x−j }bj=1 ∼ Dbc− . Given block pairs, unsupervised block loss is defined as

Lblockun (f) = E

{
`

[
f(x) ·

(∑b
i=1 f(x

+
i )

b
−
∑b
i=1 f(x

−
i )

b

)]}
. (19)

This block loss Lblockun (f) lower bounds Lun(f) (Arora et al., 2019, Proposition 6.2): ∀f ∈ F , Lblockun (f) ≤ Lun(f).
Based on this lower bound, when we define Lblockun (Q) = Ef∼Q L

block
un (f), we obtain the following lower bound of the

unsupervised risk Lun(Q) for all Q over F by taking the expected value according to Q,

Lblockun (Q) ≤ Lun(Q).

Therefore we derive the tighter block bound by combining the previous lower bound and Theorem 7.

Proposition 9. ∀Q over F ,

Lµsup(Q) ≤
1

1− τ

B` 1− exp
(
− λ
B`
L̂blockun (Q)− KL(Q‖P)+ln 1

δ

m

)
1− exp(−λ)

− τ

 . (20)

A.2 k-NEGATIVE SAMPLES BOUND

The second extension is to use k negative samples in their framework as a general setting. Following Arora et al.
(2019), we consider the data generation process with k negative samples per each pair. Let U be the process that
generates an unlabelled sample z = (x,x+, {x−i }ki=1) according to the following scheme:

1. Draw k + 1 latent classes (c+, {c−i }ki=1) ∼ ρk+1 ;
2. Draw two similar samples (x,x+) ∼ (Dc+)2 ;
3. Draw k negative samples {x−i ∼ Dc−i | i = 1, . . . , k} .

We extend loss functions for a vector of size k. We use two convex loss functions:

`log(v) := log2(1 +

k∑
i=1

e−vi) , (logistic loss) (21)

`hinge(v) :=max[0, 1 + max
i

(−vi)] , (hinge loss) (22)

Then we define unsupervised contrastive loss and empirical contrastive loss with k negative samples;

Lun(f) := E
z∼U

`
({

f(x) ·
[
f(x+)− f(x−i )

]}k
i=1

)
, (23)

L̂un(f) :=
1

m

m∑
i=1

`
({

f(xi) ·
[
f(x+

i )− f(x−ij)
]}k
j=1

)
. (24)



We analyse a mean classifier as with k = 1 scenario. Let T be the set of supervised classes whose size is k + 1, let
D be the distribution over T , and let DT be the distribution over class in T . The supervised average loss of mean
classifier with k negative samples is defined as

Lµsup(f) = E
T ∼D

Lµsup(T , f) = E
T ∼D

E
c∼DT

E
x∼Dc

[`({f(x) · (µµµc −µµµc′)}c′ 6=c)]. (25)

To introduce the counterpart of Lemma 3 for k negative samples, we introduce notations related to the extended class
collision. Let I+(c−1 , . . . , c

−
k ) = {i ∈ [1, . . . , k] | c−j = c+} be a set of negative sample indices such that cj is

the same to c+. Let τk = P (I+ 6= φ) be the class collision probability, and let Q be a distinct latent class set of
c+, c−1 , . . . , c

−
k sampled from ρk+1.

The following Lemma 10 shows the upper bound of supervised average loss with k ≥ 1 by the unsupervised contrastive
loss.

Lemma 10. (Arora et al., 2019, Eq. 26), ∀f ∈ F ,8

(1− τk) E
T ∼D

p+min(T )
pmax(T )

Lµsup(T , f) ≤ Lun(f)− τk E
c+,{c−i }ki=1∼ρk+1

[`(0|I+|) | I+ 6= φ]. (26)

where 0|I+| is zero vector of size |I+|, pmax(T ) = maxcDT (c), and
p+min(T ) = minc∈T pc+,{c−i }ki=1∼ρk+1(c+ = c | T = Q, I = φ).

Let us denote Q-weighted loss functions of contrastive learning with k negative samples:

Lun(Q) := E
f∼Q

Lun(f), (27)

L̂un(Q) := E
f∼Q

L̂un(f), (28)

Lµsup(T ,Q) := E
f∼Q

Lµsup(T , f). (29)

We derive the following Theorem 11 based on Lemma 10 to extend Theorem 7 for k ≥ 1.

Theorem 11. Let B ∈ R+ such that ‖f(·)‖ ≤ B for all f ∈ F . Given k ∈ N, λ > 0 and a prior P over F , with
probability at least 1− δ over training samples U ∼ Um, ∀Q over F ,

(1− τk) E
T ∼D

p+min(T )
pmax(T )

Lµsup(T ,Q) ≤

B`
1− exp

(
− λ
B`
L̂un(Q)−

KL(Q‖P)+ln 1
δ

m

)
1− exp (−λ)

− τk E
c+,{c−i }ki=1∼ρk+1

[`({0}|I+|) | I+ 6= φ].

with B`:= log2(1 + ke2B
2

) for the logistic loss, or B`:=1 + 2B2 for the hinge loss.

Proof. We follow similar steps to the proof of Theorem 7. Since ‖f(·)‖ ≤ B, we have ∀x,x+,x− ∈ X3:

−2B2 ≤ f(x) · [f(x+)− f(x−)] ≤ 2B2 .

Given the number of negative samples k, from the loss functions’ definition, we can obtain the lower bound and upper
bound explicitly.

log2(1 + ke−2B
2

) ≤ `log(v) ≤ log2(1 + ke2B
2

) , (30)

0 ≤ `hinge(v) ≤ 1 + 2B2 , (31)

8In the original paper from Arora et al. (2019), it is shown for f̂ , but actually it is valid ∀f ∈ F .



Thus B`log := log2(1 + ke2B
2

) and B`hinge
:= 1 + 2B2. Therefore we can bound the Lun(Q) by using the same

inequality in the proof of Theorem 7: With probability at least 1− δ,

1

B`
Lun(Q) ≤

1− exp
(
−λ 1

B`
L̂un(Q)−

KL(Q‖P)+ln 1
δ

m

)
1− exp (−λ)

.

Also since Lemma 10 is true for all f ∈ F , we take expected value according to Q;

(1− τk) E
T ∼D

p+min(T )
pmax(T )

Lµsup(T ,Q) ≤ Lun(Q)− τk E
c+,{c−i }ki=1∼ρk+1

[`({0}|I+|) | I+ 6= φ]. (32)

The result is obtained by replacing Lun(Q) in the above inequality by its bound in terms of L̂un(Q).

A.3 LOWER BOUND OF GENERAL CLASSIFIER

We give PAC-Bayesian analysis of a general classifier’s lower bound by the similar way to Arora et al. (2019, The-
orem 4.5). More precisely, we derive a lower bound of Theorem 7 by using a general classifier instead of the mean
classifier.

We introduce a posterior distribution, Qsup, over hypothesis class of predictors G = {g ∈ Rd → R}. GivenQ trained
on unsupervised data, we define the PAC-Bayesian supervised loss as

Lsup(Qsup,Q) := E
g∼Qsup

E
f∼Q

Lsup(g ◦ f).

The optimal posterior is denoted Q̂sup = argminQsup
Lsup(Qsup,Q). Therefore we derive a lower bound of Theo-

rem 7:

Lsup(Q̂sup,Q) ≤ Lµsup(Q). (33)

Therefore general classifier’s loss is at least as good as the mean classifier’s loss.

B CONTRASTIVE ZERO-ONE RISK WITH k-NEGATIVE SAMPLES

We extend the zero-one risk to k negative sampling setting; Let z = (x,x+,x−1 , . . . ,x
−
k ), then

rk(z) =
1

k

k∑
i=1

r(f(x+)− f(x−i ), f(x)). (34)

We use this zero-one risk to compute R̂(Q) used in Eq. (18).

C FULL EXPRESSION OF χ2-DIVERGENCE

From Bock (2000, Eq. 8.52), χ2-square divergence between our posterior and prior has the closed-form:
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where ‖x‖A is the Mahalanobis distance
√
x>Ax. Note 2

σ2
P
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−1 is positive definite.9

9To hold positive definite of the matrix, we replace each posterior variance parameter σσσ2
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optimisation.



D EXPERIMENTAL DETAILS

D.1 DATASETS

AUSLAN dataset. We used AUSLAN time-series dataset instead of Wiki-3029 used in Arora et al. (2019), which
contains 3 029 classes’ sentences sampled from Wikipedia. This is because Arora et al. (2019) used recurrent neural
networks on this dataset, but PAC-Bayes theory with recurrent neural networks on word sequences dataset is not
trivial due to its time-dependent predictor and data sparsity, so it is not out of scope in this paper. Therefore we
selected AUSLAN dataset as a simpler and similar dataset.

AUSLAN originally contains 27 time-series samples per class. Each sample has different lengths, whose the maximum
is 136 and the minimum is 45, and each time step is represented by a feature vector whose dimensionality is 22. We
treated each feature vector as each input sample in our experiment. In addition, we sample the first 45 time steps from
each original time series to unify the number of samples per class. We separated original 27 times-series into 24/3
training/test sets. Then we selected 3 time-series of training dataset per class randomly as a validation set for each
random seed. Thus, we obtained 89 775/12 825/12 825 training/validation/test datasets. We used these datasets as
supervised datasets. We created contrastive datasets in the same way to the CIFAR-100’s experiment.

D.2 NETWORK ARCHITECTURES AND INITIALISATION PARAMETERS

CIFAR-100 experiments. For all convolution layers, the number of channels was 64, the kernel size was 5, the
stride of the convolution was 1, zero-padding was 1, and the dilation was 1. The convolutional layers’ parameters were
initialised as zero-mean truncated Gaussian distribution whose σ was 0.1. For all max-pooling layers, the kernel size
was 3, the stride of the window was 2, and the dilation was 1. For the linear layer, the number of units was 100. The
linear layers’ parameters were also initialised as zero-mean truncated Gaussian distribution whose σ was 1/800. For
all convolutional layers and linear layers, biases were initialised as 0.

AUSLAN experiment. We used a fully connected one hidden layer’s network with ReLU activation function. Both
hidden and last layer have 50 neurons. The hidden layers’ parameters were initialised as zero-mean truncated Gaussian
distribution whose σ was 1/11, and the output layer’s parameters were initialised as zero-mean truncated Gaussian
distribution whose σ was 1/25.

D.3 BENCHMARK METHODS

Comparison with Arora et al. (2019). We optimised the model by using a stochastic gradient descent algorithm
with 100 mini-batches and 500 epochs. We searched the best learning rate in {10−3, 10−4} and optimiser algorithm
in stochastic gradient descent (SGD) with momentum 0.9, RMSProp, and Adam. We also performed early-stopping
and updated the learning rate by the same as the PAC-Bayes setting.

Supervised learning. The additional linear layers’ parameters were initialised as zero-mean truncated Gaussian
distribution with σ = 1/50, and a bias was initialised as 0. The loss function was the multi-class logistic loss.
We did the same way to find the best hyper-parameters, learning rate and optimiser, and to perform early-stopping.
Optimisation methods and procedures were also the same as the non-PAC-Bayesian contrastive learning setting.

E NON-IID EXPERIMENTS

We conduct experiments by using the algorithm in Section 4.1.2 on contrastive data without iid assumption.

E.1 PARAMETER SELECTION

For parameter selection with respect to optimiser and learning rate, we can use the same strategies based on validation
data: s-valid and det-valid, which are described in Section 4.2.

As a counterpart to the PAC-Bayes bound criterion (18), we select a trained model with best hyper-parameters such



that it minimises the following PAC-Bayes bound:

R̂un(Q) + πj

√
1

24mδ
(1 + 8T ) (χ2(Q‖P) + 1). (36)

Note that we do not optimise the bound with respect to λ like Eq. (18) after minimising Eq. (17), since there is no λ
parameter in Eq. (36).

E.2 DATASET

We create N-AUSLAN for our non-iid data experiments by modifying creation procedures of the AUSLAN dataset. We
make positive pairs such that adjacent samples in the original time-series are treated as similar samples. Formally,
we create positive pair (xt, {xj}t+Bj=t+1), t = 1, . . . (45 − B) per original sample. In these experiments, we used the
block size B = 2, which also means T = 2 in the non-iid objective. Negative pairs are created in the same way
to the CIFAR-100’s experiment. As a result, we obtained 85 785/12 255/12 255 training/validation/test contrastive
datasets. Supervised datasets are exactly same as AUSLAN datasets.

E.3 NETWORK ARCHITECTURES AND INITIALISATION PARAMETERS

We use the same settings described in Appendix D.2 excepting that prior’s variance is initialised at e−5.

E.4 OPTIMISATION

Optimisers and their hyper-parameters are same as AUSLAN’s PAC-Bayes setting.

E.5 BENCHMARK METHODS

There is no competitor for non-iid bound based algorithm because other algorithms are derived from the generalisa-
tion bounds requiring iid assumption. As references, we report the performances of Arora et al. (2019)’s algorithm
and our CURL algorithms proposed in Section 4.1.1. Their hyper-parameters and networks are same as AUSLAN’s
experimental settings.

E.6 RESULTS

Table 3 reports classification performance on supervised data. The classification performances do not perform well
like iid results shown by Table 1. We believe that χ2-divergence causes poor classification performance because its
value rapidly increases when the posterior moves from the prior.

Table 3: Supervised tasks results on N-AUSLAN. All methods were trained on the contrastive training data. For
Arora et al. (2019), s-valid, and det-valid, hyper-parameters were selected by using the validation loss. PB
hyper-parameters were selected by the PAC-Bayes bounds.

As Reference

non-iid bound based Algorithms (Section 4.1.2) iid bound based Algorithms (Section 4.1.1)

s-valid det-valid PB Arora et al. (2019) s-valid det-valid PB

µ µ-5 µ µ-5 µ µ-5 µ µ-5 µ µ-5 µ µ-5 µ µ-5

AVG-2 69.2 64.0 69.7 64.3 69.4 64.2 75.2 67.3 74.6 66.4 74.8 66.5 72.3 64.0
TOP-1 6.8 4.9 6.9 4.9 6.9 5.0 20.5 9.6 19.6 9.1 21.0 9.3 14.4 7.5
TOP-5 22.0 17.1 22.1 17.3 22.5 17.3 41.7 23.4 40.8 22.8 41.7 22.9 34.9 20.1

Table 4 shows the PAC-Bayes bound values obtained from Eq. (36). All bounds are vacuous, but the gap between the
generalisation risk and the training risk tends to be small.



Table 4: Contrastive unsupervised PAC-Bayes bounds of the models used in Table 3.

s-valid det-valid PB

R̂un(f
∗) 0.056 0.073 0.033

Run(f
∗) 0.089 0.103 0.074

R̂un(Q) 0.058 0.065 0.058
Run(Q) 0.106 0.108 0.097
Bound 4.460 140.949 2.227
χ2 0.012 980.354 0.052
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