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Abstract

We consider the task of causal structure learn-
ing over measurement dependence inducing la-
tent (MeDIL) causal models. We show that this
task can be framed in terms of the graph the-
oretic problem of finding edge clique covers,
resulting in an algorithm for returning minimal
MeDIL causal models (minMCMs). This algo-
rithm is non-parametric, requiring no assump-
tions about linearity or Gaussianity. Further-
more, despite rather weak assumptions about
the class of MeDIL causal models, we show that
minimality in minMCMs implies some rather
specific and interesting properties. By establish-
ing MeDIL causal models as a semantics for
edge clique covers, we also provide a starting
point for future work further connecting causal
structure learning to developments in graph the-
ory and network science.

1 INTRODUCTION

Despite the many theoretical and practical difficulties,
establishing and understanding causal relationships re-
mains one of the fundamental goals of scientific research.
Consequently, many different approaches have been de-
veloped, with applications spanning a diverse range of
fields, e.g., from epidemiology to psychometrics to neu-
roimaging (Parascandola, 2001; Hoover, 2006; Seth et al.,
2015). Some of the most well-known approaches include
Granger causality (Granger, 1969) for time-series data,
the Rubin causal model and potential outcomes frame-
work (Holland, 1986) for randomized controlled trials,
and functional causal models and the representation of
their causal structure as directed acyclic graphs (Pearl,
2000; Spirtes et al., 2000). The last of these, the directed
acyclic graph (DAG), provides the context for our ap-
proach to causal structure learning.
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Roughly speaking, causal structure learning (CSL) typi-
cally focuses on identifying which variables are directly
causally related and how these direct causal relations
form a structure over which indirect causal relations exist.
One way of characterizing CSL algorithms is according
to which of the three following assumptions they rely on:
(i) the causal Markov assumption, which says the random
variables are (conditionally) independent (denoted by ⊥⊥)
if the corresponding vertices in the DAG are d-separated
(denoted by ⊥); (ii) the causal faithfulness assumption,
which says the vertices in the DAG are d-separated if
the corresponding random variables are (conditionally)
independent; and (iii) the causal sufficiency of the set
of variables, i.e. that there are no unobserved or latent
common causes. The basic approach to CSL—namely the
original constraint-based IC and PC algorithms (Verma
and Pearl, 1990; Spirtes and Glymour, 1991)—rely on
all three, while many of the algorithms developed in the
30 years since (as we will see in Section 1.1) relax these
assumptions.

Considering applications of CSL to, for example, psy-
chometrics and neuroimaging, the assumption of causal
sufficiency seems implausible. For a data set consisting
solely of answers to a depression diagnostic question-
naire or of voxel intensities in calcium imaging recordings
(with random variables corresponding respectively to the
questions or voxels), we think it is relatively uncontrover-
sial to claim that not only are the random variables not
causally sufficient, but indeed every dependence relation
among them is induced by unobserved latent variables
(respectively either cognitive processes related to, e.g.,
depression, or calcium signaling in cellular tissue, plus
other confounders). In fields and applications such as
these—where interventions are often difficult or unfea-
sible, and where the goal is to reason about underlying
causes based on their measurable effects—a more tailored
causal modeling framework may prove insightful. Thus,
the main difference between the traditional approach out-
lined above and the one we present in this paper is that



we assume a strong causal insufficiency of the random
variables being modeled and therefore are able to repre-
sent a different (but not entirely disjoint) class of causal
structures than is possible with DAGs in the traditional
approach.

The rest of the paper is organized as follows: We begin by
reviewing related work, emphasizing points of departure.
In Section 2 we define measurement dependence induc-
ing latent (MeDIL) causal models to be the class of latent
measurement models in which measurement variables can
only be effects (and not causes—contrary to the definition
of measurement models explored by others), making no
further assumptions about linearity or parametrizations
of the distributions. We then introduce the notions of
observational consistency and minimality, allowing us
to, for a given (estimated) distribution of measurement
variables, construct a minimal MeDIL causal model (min-
MCM). Then, in Section 3, by framing minMCMs as
edge clique covers (ECCs) of the undirected dependency
graph over measurement variables, we note how two no-
tions of minimality emerge. Subsequently, despite our
nonrestrictive assumptions and notion of minimality in
minMCMs, we are able to prove (i) that a minMCM lower
bounds the number of latent variables or the number of
functional causal relations (depending on which notion
of minimality is used), (ii) that the latent variables of
the minMCM are all pairwise independent, and (iii) that
(somewhat surprisingly) the minMCM can have more
latent causes than measured variables. In Section 4 we
describe an algorithm for learning minMCMs from only
unconditional (in)dependencies. Finally, we demonstrate
our approach with an application to a psychometric data
set in Section 5, before concluding with a discussion of
promising directions for future work.

1.1 RELATED WORK

Elaborating on the basic approach mentioned above, CSL
without latents amounts to finding an essential graph (An-
dersson et al., 1997), a mixed graph with directed and
undirected edges, which represents the Markov equiva-
lence containing the true DAG. The essential graph is typ-
ically found by using either a score- or constraint-based
approach. Score-based methods find an essential graph by
directly optimizing a score of how well it fits the data sam-
ples (Chickering, 2002).Constraint-based methods take a
set of conditional independence relations as input (which
must be estimated or acquired somehow before applying
the algorithm), and these relations constitute a set of con-
straints on the possible d-separations, which the output
essential graph satisfies (Verma and Pearl, 1990; Spirtes
and Glymour, 1991). Our approach in this paper is more
closely related to constraint-based methods, especially

their extensions to latent variable models.

Extensions of CSL to causal models including latent vari-
ables (i.e., relaxing the causal sufficiency assumption),
such as the FCI algorithm and its variants (Spirtes et al.,
1999), correspondingly extend the search space from es-
sential graphs to partial ancestral graphs (PAGs), which
have an additional three edge types (so five total), allow-
ing them to represent the extended Markov equivalence
class containing dependencies induced by latent variables.

In these terms, our latent CSL algorithm is not searching
for a PAG. As we explain in sections 2 and 3, by making
use of the strong causal insufficiency in this application
space, we can directly represent the conditional indepen-
dence constraints that form the input for our algorithm
as an undirected dependence graph (UDG). This UDG
is essentially a PAG with only bidirected edges. Or, put
another way, it is a modified Markov random field (Kin-
dermann and Snell, 1980) where the conditional indepen-
dence relations are determined from the undirected edges
by using strong causal insufficiency (see Proposition 6) in-
stead of the Markov property, thereby allowing the UDG
to represent latent induced dependence (which Markov
random fields are usually incapable of representing).

With the conditional independence constraints input in
the form of a UDG over measurement variables, our algo-
rithm essentially adds the latent causes and directed edges
necessary to construct the minimally causally sufficient
DAG containing latent and measurement variables. Thus,
instead of doing CSL in the presence of latent variables as
is the case with FCI and similar algorithms, we use CSL
to reason about latent variables.

Our approach is more related in this respect to other work
on measurement models (Silva and Scheines, 2005; Silva
et al., 2006; Kummerfeld et al., 2014; Kummerfeld and
Ramsey, 2016). However, these other approaches utilize
properties of the covariance matrix of the measurement
variables, such as vanishing tetrad constraints, while we
utilize graph theoretic properties of the UDG representa-
tion of conditional independencies. This results in connec-
tions between our approach and causal feature learning
(Chalupka et al., 2016) and causal consistency and abstrac-
tion (Rubenstein et al., 2017; Beckers and Halpern, 2019),
which will be discussed more with respect to future work
in Section 6.2. Another closely related approach is factor
analysis, especially when framed in terms of using the
topology of a Bayesian network of observed variables to
reason about hidden factors (Martin and VanLehn, 1994),
with the main difference being our goal of a minimally
causally sufficient DAG as opposed to a statistically con-
venient (but not necessarily as causally relevant) factor
model.



Overall, our approach has several points of overlap in
terms of motivations and formal methods in existing
CSL, measurement model, and factor analysis approaches.
However, we address the problem from a different per-
spective, utilizing the causal insufficiency property of our
application space and graph theoretic edge clique cover
methods to produce a novel algorithm.

2 MINIMAL MEDIL CAUSAL MODELS

We begin with a formal definition of measurement de-
pendence inducing latent (MeDIL) causal models, before
discussing the notion of observational consistency and its
implications about minimality in such models.

We use functional causal models (FCMs) to describe
causal relations in complex systems.

Definition 1 (Functional Causal Model). A functional
causal model is a tripleM = 〈V,F, ε〉, where

• V is the set of (endogenous) random variables,

• F is a set of functions defining each endogenous
variable as a function of its direct causes (i.e., parents
or pa()) and its corresponding exogenous random
variable, so that for each Vi ∈ V, we have Vi :=
fi(pa(Vi), εi). Furthermore, F is constrained such
that no Vi is a direct cause of itself or any of its
causes, removing the possibility of causal cycles.

• ε defines a joint probability distribution over the ex-
ogenous (or noise) variables, with a corresponding
εi ∈ ε for each Vi ∈ V, and with εi being indepen-
dent with εj for each εi, εj ∈ ε

In particular, we are interested in latent CSL over
measurement variables, so it is advantageous to move
from the general FCM definition to a specifically struc-
tural/graphical definition that conceptually differentiates
the set of endogenous variables into causally effective
latent variables and their observed measurements, leading
to the idea of MeDIL causal models:

Definition 2 (Measurement Dependence Inducing Latent
Causal Model (MCM)). A graphical MCM is a DAG,
given by the triple G = 〈L,M,E〉. L and M are disjoint
sets of vertices, while E is a set of directed edges between
these vertices, subject to the following constraints:

1. all vertices in M have in-degree of at least 1 and
out-degree of 0

2. all vertices in L have out-degree of at least 1

3. E contains no cycles

There are no further constraints as to the variety of dis-
tributions and functional causal relations that MCMs can
represent, i.e., they are non-parametric and their arrows
can represent arbitrary functional relations between vari-
ables. The formal constraints 1. and 2. in Definition 2 are
to ensure that MCMs are applicable to settings in which
we can explicitly separate into disjoint sets the measured
effect variables M whose probabilistic dependencies must
therefore be mediated by latent causes L.

However, the explicit separation of cause and effect and
the corresponding latent structure in MCMs introduces
its own difficulties for inference. Namely, many latent
models are consistent with a given probability distribution
over observed effects, making the task of inferring a single
latent model ill-posed. In order to help explain this consis-
tency of different latent models and illustrate our strategy
for restricting the problem so that inference is well-posed,
consider the following definition and example.
Definition 3 (Observational Consistency). A MCM is
observationally consistent with a probability distribution
over measurement variables if it is capable of inducing the
pairwise dependencies (which can estimated from sam-
ples) of that distribution. This can be seen as a weakening
of the notion of observational equivalence corresponding
to our extension from DAGs containing only observed
variables to the notion of MCMs.1

Example 4 (Observational Consistency). Suppose we
have data consisting of peoples’ answers to a question-
naire with four questions designed to measure depression
and stress. We assume that the answer to one question
cannot cause the answer to another and therefore that
the observed answers as well as any observed associ-
ation between answers are the result of latent causes,
such as depression or stress. Define random variables
M = {M1,M2,M3,M4} corresponding to answers to
the four questions, and let them have only the following
two pairwise independencies:

M1 ⊥⊥M4 and M2 ⊥⊥M4

The pairwise dependency structure between variables in
M is shown in Figure 1(a), and three observationally
consistent MCMs are shown in 1(b), 1(c), 1(d). As this
example demonstrates, multiple latent models can give
rise to the same set of observed dependencies.

1observational or Markov equivalence (Pearl, 2000, pp. 16–20)
means two DAGs have the same skeletons and colliders, while obser-
vational consistency means that two MCMs have the same undirected
dependency graphs over measurement variables (e.g., Figure 1)
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Figure 1: (a) undirected dependency graph over M—
notice two missing edges corresponding to independen-
cies; (b) minimal MCM over M; (c) non-minimal MCM
observationally consistent with M; (d) MCM correspond-
ing to ICA or FA

We address this problem by employing Ockham’s razor
to pick a minimal MCM (minMCM) (e.g., Figure 1(b)).

Definition 5 (Minimal MeDIL causal model (minMCM)).
A minMCM for a set of measurement variables M is any
least expressive (i.e., minimal) MCM that is observation-
ally consistent with M. As Pearl and Verma (1995) note,
a latent causal model’s expressive power can be measured
by the (in)dependencies it induces over the measured vari-
ables, with more dependencies corresponding to more
expressive power. In our case, criteria can be given for
minimality in modified terms of the causal faithfulness
and causal Markov assumptions:

1. in addition to being observationally consistent with
its set of measurements, a minMCM must graph-
ically induce the measurements without violating
faithfulness; the notion of faithfulness used here
is concerned with conditional independencies only
over measurements and not all variables in the MCM,
so we call it measurement-faithfulness; note that Fig-
ure 1(b) is faithful to the conditional independencies
in Example 4 while Figure 1(d) is not—the MCM in
Figure 1(b) is minimal while that in 1(d) is not

2. considering arbitrary subsets of the latents, Z ⊆
L, there are as few d-separations of the form
Mi 6⊥ Mj | Z as (faithfully) possible, i.e., such
d-separations only exist in an minMCM if implied
by the (in)dependencies and causal insufficiency of
the distribution only over measurement variables;
we call this measurement-Markov since it says the
only d-separations in the minMCM are those implied
by measurement-faithfulness2; note that Figure 1(c)
does not satisfy this

2just as is the case with the usual causal faithfulness and Markov
conditions

Learning a minMCM for a data set only requires consid-
ering the unconditional independence relations among its
variables, unlike the other methods mentioned in Section
1.1. This follows from Proposition 6.

Proposition 6. In a MCM, the set of unconditional
(in)dependencies over measurement variables fully deter-
mines the set of conditional (in)dependencies over mea-
surement variables.

Proof. The Causal Markov and Causal Faithfulness as-
sumptions (CMA and CFA, respectively) imply that two
variables are probabilistically independent if and only if
they are d-separated (allowing us to use independence/d-
separation and ⊥⊥ / ⊥ interchangeably). Recall from
Definition 2 that all dependence relations (and therefore,
by the CMA and CFA, d-connections) between measure-
ment variables are mediated by latent variables. Hence,
all measurement variables have out-degree 0, and so any
measurement variable in a path between two other mea-
surement variables must be a collider and any depen-
dent measurement variables must share at least one la-
tent parent. This means that the set of unconditional
(in)dependencies over measurement variables fully deter-
mines the set of conditional (in)dependencies as follows:
for all Mi,Mj ,Mk ∈M,

• Mi 6⊥⊥Mj =⇒ Mi 6⊥⊥Mj |Mk

• Mi ⊥⊥Mj =⇒{
Mi ⊥⊥Mj |Mk, if Mi ⊥⊥Mk or Mj ⊥⊥Mk

Mi 6⊥⊥Mj |Mk, otherwise

As we will see in Section 4, even though estimating con-
ditional independencies is not required for our method,
doing so nevertheless can help determine whether any of
the assumptions have been violated.

3 MINIMAL MEDIL CAUSAL MODELS
AS EDGE CLIQUE COVERINGS

We can now present our main insight:

Proposition 7. The problem of finding a minMCM for a
set of measurement variables can be framed as the graph
theoretical problem of finding a minimum edge clique
covering (ECC)3 (Erdős et al., 1966; Gramm et al., 2009;
Ennis et al., 2012) over the corresponding undirected
dependency graph of the measurement variables.

3A minimum ECC over an undirected graph is a collection of
cliques that exactly covers its edges, where an edge E = (Vi, Vj)
is covered by clique C iff Vi, Vj ∈ C.
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Figure 2: (a) MCM, where each Ci corresponds to a maximal clique in D(M)—dashed red edges/vertices are redundant
for vertex-minimality while blue dotted edges/vertices are redundant for edge-minimality; (b) D(M)—undirected
dependency graph of M = {M1, . . . ,M8}; (c) vertex-minimal minMCM of D(M); (d) edge-minimal minMCM of
D(M)

Proof. For a given set of measurement variables M, de-
note the undirected dependency graph as D(M), e.g.,
Figure 1(a), where an edge represents dependence and the
lack of an edge represents independence. Proposition 6
tells us that D(M), though it only encodes unconditional
(in)dependencies, contains all necessary information for
characterizing observationally consistent MCMs. Con-
sider the MCM G = 〈L,M,E〉 constructed from a set of
cliques C comprising a minimum ECC over D(M) using
the following procedure: (i) posit a latent LC ∈ L iff
C ∈ C and (ii) posit a directed edge E ∈ E from the
latent LC to the measurement variable M iff M ∈ C.
In other words, G is a MCM with measurement vari-
ables M, one latent for each clique in the minimum ECC
over D(M), and an edge from each latent to exactly the
measurement variables in the corresponding clique.

Note that G is not only observationally consistent with
D(M) but also captures its independencies and is thus
faithful, satisfying criterion 1. of Definition 5. Further-
more, the construction of G from a minimum ECC en-
sures that latents are only posited when necessitated by
the dependencies between measurements, satisfying cri-
terion 2. of Definition 5. Thus, G is an minMCM for
D(M).

A minimum ECC can be minimal in two related but dis-
tinct ways: the original and more well-studied approach

seeks the smallest number of cliques needed to cover all
edges (this is equivalent to the intersection number (Erdős
et al., 1966)), while another justifiable approach is to seek
an ECC requiring the fewest assignments of vertices to
cliques. The corresponding interpretation for minMCMs
is vertex-minimal (fewer cliques imply fewer latents im-
ply fewer total vertices) and edge-minimal (fewer assign-
ments of measurement vertices to cliques implies fewer
directed edges from latent to measurement vertices), re-
sulting in Proposition 8. There are some undirected de-
pendency graphs for which the vertex-minimal and edge-
minimal minMCMs are identical, such as figures 1 and
3, but this identity does not hold generally (Ennis et al.,
2012) (see Figure 2). In either approach to minimality,
the resulting minMCM induces the same set of dependen-
cies over measurement variables and thus has the same
expressive power (w.r.t. the measurement variables). We
thus see no straightforwardly principled way of picking
one approach over the other, and so we present both in
hopes that practitioners will use whichever one (or both)
they judge most sensible/interesting for their particular
application.

Regardless of which notion of minimality is used, minM-
CMs have some interesting properties. First, they lower
bound (i) the number of causal concepts or (ii) the number
of functional causal relations that are required to model
measurements of a complex system at any level of gran-
ularity (Proposition 8). Second, minMCMs contain no
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Figure 3: (a) example D(M) for which the minMCM (b)
has 6 measurement variables and 7 latent variables

causal links between the latent variables (Proposition 9).
Finally, in contrast to factor analysis, a minMCM may
require more latent than measurement variables (Proposi-
tion 10).

Proposition 8. For a given set of unconditional pair-
wise dependencies among measurement variables M, a
minMCM gives a lower bound on the number of latent
variables or edges (depending on the measure of minimal-
ity is used) required in any (faithful and observationally
consistent) MCM.

Proof. This is a direct consequence of the construc-
tion of minMCMs from either the clique-minimum or
assignment-minimum ECC of D(M), as described in
Proposition 7.

Proposition 9. In a minMCM, each latent variable is
d-separated from every other latent variable.

Proof. Intuitively, this is a result of the definition of a
minMCM being minimal in the sense of least expressive
(and thus having as few latents or edges): if two latent
variables are d-connected, then the dependencies among
measurement variables that they induce could also instead
be induced by a single latent variable (which also results
in fewer edges). A minMCM has no redundant latent
variables or edges and therefore no d-connected latent
variables. For example, note in that the MCMs in fig-
ures 1(b) and 1(c) induce the same d-separations over the
measurement variables, but that 1(b) with its d-separated
latents has the fewer latents and fewer total edges. More
formally, this follows directly from procedure for con-
structing an minMCM in Proposition 7 and Algorithm
1.

Proposition 10. There exist minMCMs containing more
latent than measurement variables.

Proof. This follows from the graph theoretical character-
ization of minMCMs: there are at least as many latent
variables as the intersection number of D(M), which in a
graph with n vertices is (non-trivially) upper bounded by
n2

4 (Erdős et al., 1966). A simple example can be found
when D(M) is as in Figure 3, resulting in n = 6 nodes
and an intersection number of i = 7.

4 A minMCM-FINDING ALGORITHM
AND ITS COMPLEXITY

The procedure in the proof of Proposition 7 for construct-
ing a minMCM from an undirected dependency graph
leads directly to Algorithm 1.

Algorithm 1: constructing a minimal MeDIL
causal model (minMCM)
Input : undirected dependency graph, D(M), over

the measurement variables M
Output : vertex-minimal or assignment-minimal

MCM G over M

1 initialize edgeless graph with a vertex for each
M ∈M;

2 find a clique-minimum or assignment-minimum
edge clique cover of D(M), using the algorithm
in Fig. 3 of (Gramm et al., 2009) or the
algorithm FIND-AM of (Ennis et al., 2012),
respectively;

3 for each clique C in the cover do
4 add vertex L with edges directed to each

M ∈ C;
5 end

Notice that Line 2 in Algorithm 1 is to find a minimum
ECC of D(M). Nearly all of the computational com-
plexity of Algorithm 1 comes from this step, which is
known to be an NP-hard problem, and so the choice of
an efficient ECC-finding algorithm and implementation
is especially important.

In case a clique-minimum ECC (and therefore vertex-
minimum minMCM) is preferred, (Gramm et al., 2009)
provides an exact algorithm. The exact algorithm finds an
ECC in O(f(2k) + n4) time, where k is the number of
cliques in the ECC and n is the number of vertices in the
undirected graph, and is thus fixed-parameter tractable.
Furthermore, (Cygan et al., 2016) gives a lower bound on
the complexity of the clique-minimum ECC problem and
argues that the algorithm is probably optimal. Gramm
et al. (2009) also provide a free/libre implementation
of their algorithm, though it has not been maintained
for some time and does not easily run on most modern
machines.



In case an assignment-minimum ECC (and therefore edge-
minimum minMCM) is preferred, (Ennis et al., 2012)
provides an exact algorithm. Though they do not offer an
analyses of its complexity, it is essentially a backtracking
algorithm based on (Bron and Kerbosch, 1973)’s maxi-
mal clique finding algorithm, which has time complexity
ofO(3n/3), and so this assignment-minimum ECC find-
ing algorithm has an even larger complexity.

As far as we are aware, no other implementations of
the clique-minimum or assignment-minimum ECC find-
ing algorithms exist. To remedy this, we have im-
plemented and released these and a few other related
causal inference tools as a free/libre Python package at
https://medil.causal.dev. Already Gramm et al. (2009)
and Ennis et al. (2012) showed that their algorithms per-
form in a reasonable amount of time on moderately sized
graphs, e.g., returning a solution containing 100 cliques in
a matter of minutes. Unsurprisingly, given the hardware
advancements of the past decade, our implementation per-
forms even better, e.g. finding the 614 clique solution to
the 61 node graph presented in the next section in only 39
seconds using an Intel Core i7-8700K CPU.

5 APPLICATION

In this section we demonstrate the necessary steps to get
from a raw data set to a minMCM output from our algo-
rithm. We then hint at how this output can be analyzed
and suggest some conclusions that can be drawn from it.
Note that our contribution in this paper is theoretical, and
the point of the following application is to make some of
our theoretical claims and the potential use cases more
concrete.

5.1 THE DATA AND PREVIOUS ANALYSES

The Stress, Religious Coping, and Depression data set4

was collected by Bongjae Lee from the University of Pitts-
burgh in 2003. There were 127 participants answering a
total of 61 questions: 21 designed to measure stress, 20 for
religious coping, and 20 for depression—see (Silva and
Scheines, 2005) for the full questionnaire. This data has
been analyzed by several other measurement model meth-
ods (Silva and Scheines, 2005; Silva et al., 2006; Kum-
merfeld et al., 2014; Kummerfeld and Ramsey, 2016),
and their findings (which largely agree with each other)
can be briefly summarized as follows: (i) in contrast to the
design goal, most of the measurement variables are “im-
pure” in that they are caused by multiple latent variables;
(ii) they are able to find some subsets (ranging in num-
ber from three to nine) of “pure” measurement variables

4We would like to thank David Danks and especially Joseph Ram-
sey at Carnegie Mellon University for providing us with a copy.

that passed their significance tests and some of which
suggest a model similar to what Lee hypothesized con-
taining three latent variables—the first of which causes
only measurement variables of stress, the second only
depression, and the third only coping; (iii) most of their
models scoring the highest significance are more complex
models than Lee’s model (the most complex containing
eight latents (Silva and Scheines, 2005)).

5.2 ANALYSIS USING minMCMS

Notice that the input to Algorithm 1 is an undirected
dependency graph, while in practice one does not have
direct knowledge of the (in)dependencies themselves but
only samples of the measurement variables. It is therefore
necessary to first estimate the independencies before ap-
plying this algorithm. Because the algorithm is agnostic
to the test statistic, it is not constrained to linear methods
such as Pearson correlation (for which “X ⊥⊥ Y =⇒
corr(X,Y ) = 0” but not the converse) but can leverage
the power of nonlinear independence tests (Gretton et al.,
2005; Székely et al., 2007). We used the distance corre-
lation (Székely et al., 2007) as our test statistic (with the
property “X ⊥⊥ Y ⇐⇒ dCorr(X,Y ) = 0”) and per-
formed 1000 random permutations of the measurement
variables to sample from the null-distribution (Dwass,
1957). The p-value for each pair was then calculated as
the proportion of the permutation tests in which the ab-
solute distance correlation of the pair of variables with
permuted samples exceeded that of the original pair. Fi-
nally, independence between two variables was concluded
if the distance correlation between them was less than 0.1
and the corresponding p-value was greater than 0.1.5

The binary-valued 61 × 61 matrix corresponding to the
estimated independencies, with a 0 for independence and
1 for dependence thus forms the adjacency matrix for the
UDG that is input for Algorithm 1. We decided to find
a latent-minimal minMCM, and the result has 614 latent
variables. It is thus too complex to be legibly displayed
here, so we instead present figures 4 and 5 to facilitate
analysis of the results.

Looking at the histogram in Figure 4(a), we find a median
indegree (i.e., number of latent causes) of the measure-
ment variables of 27, but with one in particular, M30,
having 425. The item in the questionnaire correspond-
ing to M30 was the ninth in the set designed to measure
depression, and it asked participants how frequently the
event “I thought my life had been a failure” occurred in
the preceding week. Semantically, it makes sense that
this item would have many more latent causes than the

5As one would expect, using a nonlinear measure of dependence
allows us to detect more dependencies: we found almost 31% of the
over 1500 estimated nonlinear pairwise dependencies (i.e., edges in the
UDG) to be undetectable using the linear Pearson correlation.

https://medil.causal.dev


Figure 4: histograms showing (a) indegree of the mea-
surement variables and (b) the outdegree of the latent
variables

other items, because its scope is much larger, requiring
reflection on the participants’ entire life up to that point
instead of just during the week in question, as is the case
for other depression items, such as “I enjoyed life” (M37,
24 latent causes) and “I felt sad” (M39, 25 latent causes).
Furthermore, looking at Figure 5(a), showing the number
of latents each pair of measurement variables share, we
see that M30 shares a relatively high amount of latent
causes with the other measurement variables (median of
21), while for M37 and M39 the median of shared latent
causes is one. Our analysis thus agrees with the previous
analyses described in Section 5.1 insofar as we also find
many “impure” measurement variables, but extends their
insights by differentiating between measurement variables
that are best considered a general or mixed measurement
(M30) and those that, even though they are also impure,
span different subsets of the latent space (M37 and M39).

Looking at the outdegree (i.e., the number of measure-
ment variables a latent causes) in Figure 4(b) we find a
median of four and a range from 2 to 20. The number
of measurements shared by each pair of latent variables
reveals further structure (Figure 5(b)). In particular, the in-
cidence matrix representation of the latents corresponding
to the block structure between approximately L105–L145

reveals seven measurement variables that these latents
mostly have in common, corresponding to four stress and
three depression items. On the other side, 41% (roughly
74k) pairs of variables do not share any measurement
variables. Such insights may be used to simplify models,
e.g. by removing measurement variables that induce mul-
tiple latents, or to build subsets of “pure” measurement
variables, in the sense that the resulting measurement

Figure 5: heatmaps showing (a) the number of latent
variables each pair of the 61 measurement variables have
in common and (b) the number of measurement variables
each pair of the 614 latent variables have in common

subsets are caused by disjoint sets of latents6.

Finally, we note that there is more structure to be explored
in the minMCM and figures 4 and 5 , but that is beyond
our present scope. Note that the type of structure analyzed
here emerges only when considering an ECC (i.e. patterns
in the UDG, which is an abstraction of the correlation ma-
trix) and not from the correlation matrix itself—analogous
to higher-moment statistics or higher-order logic.

Our findings are not inconsistent with previous analyses
of this data set, as can be seen by their agreement with
points (i) and (iii) in Section 5.1, and should rather be
seen as complementary. More generally our algorithm and
corresponding analyses do not subsume existing methods
but rather provide a novel perspective that allows us to
focus on otherwise unutilized structure in measurement
data, which in addition to helping to model the data also
aids in, e.g., assessing and revising questionnaires and
instruments.

6 DISCUSSION

Having in the preceding sections presented our minMCM
finding algorithm, its supporting theory, and a demon-
stration application, we now conclude with two main
directions for future work: the first direction is primarily
concerned with applications of Algorithm 1 in its current
state or requiring only minor modifications, while the sec-
ond is primarily concerned with significantly extending

6Note that this is a bit different from the notion of ”pure” used in
the other measurement literature



Algorithm 1 and with developing new methods based on
insights gleaned during its development.

6.1 FUTURE APPLICATIONS AND MINOR
MODIFICATIONS

Being constraint-based, the Algorithm 4 relies on esti-
mated independencies. Thus, errors in the inference of
minMCMs come not from Algorithm 1 itself but rather
from the estimation of independencies that it (along with
many other causal inference methods) requires as input.
In this regard, a single incorrectly estimated independence
can in the (unlikely) worst case7result in incorrectly dou-
bling or halving the number of estimated latents or edges.
In any case, as mentioned at the end of Section 2, further
estimates of conditional independencies can help corrobo-
rate or refute the estimated unconditional independencies.
More detailed examination is needed to make this more
theoretically precise as well as to determine how much of
a problem this is likely to pose for real data.

One final caveat for interpreting minMCMs is that, for
complex graphs, there can be multiple minimum ECCs
(for both types of minimality), each with the same min-
imum number of cliques or assignments. Thus, while
using a minMCM to reason about the minimum number
of edges or latents is always valid, stronger conclusions
may require that the graph D(M) admits only one min-
MCM (which is simple enough to test) or that further
assumptions or background knowledge are used to justify
one minMCM over other observationally consistent ones.
To this end, the (non-minimal) MCM corresponding to
maximal cliques (e.g., Figure 2(a)) may be especially
interesting, because it contains all observationally consis-
tent MCMs (including the minMCMs in 2(c) and 2(d)).

Another promising aspect of our approach for future work
is its extensibility, which results from establishing MeDIL
causal models as a causal semantics for edge clique cov-
ers. Though we have so far focused on minimal ECCs,
a MCM corresponding to any ECC for a given UDG is
guaranteed to be measurement-faithful and causally suffi-
cient (though not minimal or measurement-Markov) for
the corresponding distribution of measurement variables.
Using a different class of ECCs simply requires a differ-
ent algorithm to be used in Line 2 of Algorithm 1. Just as
we expressed simplicity of the causal model in terms of
the number of latents (or edges) in the MCM and there-
fore the number of cliques (or assignments) in the ECC,
any property of a causal model that can be expressed in

7This is when the inclusion/exclusion of a single edge in an n ≥ 3
vertex undirected dependency graph makes the difference between the
graph having 2(n − 2) maximal cliques that are all edges and n −
2 maximal cliques that are all triangles. Fortunately, such precarious
structures are easy to detect and can be removed by picking different
sets of measurements.

terms of properties of an ECC can be used to repurpose
an ECC-finding algorithm for the desired CSL task. For
example, developments in network science (Conte et al.,
2019) make it possible for ECC-based causal analysis
of very large graphs, even containing up to millions of
nodes.

6.2 EXTENSIONS AND FURTHER
DEVELOPMENTS

Because Algorithm 1 returns a causally sufficient DAG, it
should be possible to actually learn a corresponding fully
specified functional causal model using, e.g., some ver-
sion of nonlinear ICA or variational autoencoders (Khe-
makhem et al., 2019) that has been modified to take into
account the conditional independence structure. This
could potentially lead to the development of a causal,
non-parametric generalization of factor analysis (Martin
and VanLehn, 1994) which would still be interestingly
different from similar existing work (Hoyer et al., 2008;
Kummerfeld and Ramsey, 2016). Furthermore, since
learning such a FCM would require the data set and not
just its CI relations, it would be straight-forward to make
a score-based adaptation of Algorithm 1 inspired by (Eli-
dan et al., 2001), where cliques are picked according to
maximizing a scoring criterion instead of (possibly mis-
estimated) CI relations. This would help overcome the
potential pitfall mentioned in Section 6.1.

Additionally, notice that formally, (though not semanti-
cally) every DAG is a MCM: any given DAG G can be
partitioned into sink nodes S and non-sink nodes N, in
which case it is observationally consistent with respect to
S to any other DAG H whose (sub)set of sink nodes S′

has the same UDG as S. This allows for some of the the-
ory developed in sections 2 and 3 to be easily repurposed
to characterizing subset-Markov equivalence classes for
DAGs with different sets of variables, as long as they have
some subset of sink nodes S = S′ in common. This may
help connect causal coarsening (Chalupka et al., 2016)
with causally consistent transformations between micro-
and macro-models (Rubenstein et al., 2017) and causal
abstraction (Beckers and Halpern, 2019).
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