
Optimal Statistical Hypothesis Testing for Social Choice

Lirong Xia ⇤

Rensselaer Polytechnic Institute, RPI, Troy NY 12180, USA
xial@cs.rpi.edu

Abstract

We address the following question in this pa-
per: “What are the most robust statistical
methods for social choice?” By leveraging
the theory of uniformly least favorable distri-
butions in the Neyman-Pearson framework to
finite models and randomized tests, we char-
acterize uniformly most powerful (UMP) tests,
which is a well-accepted statistical optimality
w.r.t. robustness, for testing whether a given al-
ternative is the winner under Mallows’ model
and under Condorcet’s model, respectively.

1 INTRODUCTION

Suppose a group of seven friends want to choose restau-
rant a, b, or c for dinner. Each person uses a ranking over
the restaurants to represent his or her preferences. Three
people rank a � b � c, three people rank b � c � a,
and one people ranks a � c � b. Suppose their prefer-
ences are correlated and are based on their perception of
the quality of the restaurants—the higher the quality of
a restaurant, the more likely a person will rank it high.
Which restaurant should they choose?

Similar problems exist in a wide range of group decision-
making scenarios such as political elections [Condorcet,
1785], meta-search engines [Dwork et al., 2001], recom-
mender systems [Ghosh et al., 1999], and crowdsourc-
ing [Mao et al., 2013]. Such problems at the intersection
of statistics and social choice can be dated back to Con-
dorcet’s Jury Theorem in the 18th century [Condorcet,
1785]. The Jury Theorem states that when there are
two alternatives, assuming that the votes are generated
i.i.d. from a simple statistical model, then the outcome
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of majority voting converges to the ground truth as the
number of voters goes to infinity.

However, the Jury Theorem does not identify the optimal
decision-making rule, especially when there are three al-
ternatives or more. From a statistical point of view, defin-
ing the optimality measure is highly nontrivial and con-
troversial. If we use likelihood of a parameter as the mea-
sure, then we may pursue the likelihoodist approach. If
we view the ground truth parameter as a random variable,
and use expected loss w.r.t. the posterior distribution over
the parameters as the measure, then we may pursue the
Bayesian approach. If we believe that the ground truth
is deterministic and unknown, and want to measure the
performance of a given rule, then we may pursue the fre-
quentist approach.1 At a high level, the frequentist ap-
proach tries to measure and design the most robust rule,
as Efron [2005] noted: “a frequentist is a Bayesian trying
to do well, or at least not too badly, against any possible
prior distribution”.

Most previous work in the literature of statistical ap-
proaches to social choice pursued either an MLE ap-
proach or an Bayesian approach. We are not aware of
the application of a widely-applied modern frequentists’
decision-making technique—optimal statistical hypothe-
sis testing—to social choice. In the celebrated Neyman-
Pearson framework of statistical hypothesis testing (see,
e.g. the book by Lehmann and Romano [2008]), a statis-
tical model is given and the decision-maker first chooses
two non-overlapping subsets of ground truth parameters
H0, H1, where H0 is called the null hypothesis and H1

is called the alternative hypothesis. Then the decision-
maker designs a test for H0 vs. H1, in the form of a
critical function f , to make a binary decision in {0, 1}
for each observed data. Here 1 means that H0 should be

1The three approaches differ in philosophy of probability
and measure of rules. The same rule, for example the MLE
(MAP with uniform prior for Bayesians), might be used in all
three approaches due to its optimality w.r.t. the three measures
under certain conditions.



rejected and 0 means that there is a lack of evidence to
reject H0. We note that the role of H0 and H1 are not the
same, namely a A vs. B test is different from a B vs. A
test.

While many generic hypothesis testing methods can
be applied, such as the generalized likelihood ratio
tests [Hoeffding, 1965, Zeitouni et al., 1992], how to
make an optimal social choice w.r.t. frequentists’ mea-
sure is still an open question.

Our Contributions. We answer the question of opti-
mal hypothesis testing for social choice by characterizing
uniformly most powerful (UMP) tests for various com-
binations of H0 and H1 for winner determination un-
der two popular models for rank data: Mallows’ model
and Condorcet’s model. UMP is a strong notion of op-
timality for hypothesis testing. A test f is evaluated by
two criteria: its size (or level of significance), which is
its worst-case probability to wrongly reject H0, and its
power, which is its probability to correctly reject H0.
The power of a test is evaluated at each h1 2 H1. A
level-↵ test f is a UMP test, if it has the highest power at
every h1 2 H1 among all tests whose sizes are no more
than ↵.

We focus on two types of tests for a given alternative
a: the non-winner tests, where H0 represents a being
the winner2; and the winner tests, where H1 represents
a being the winner. Our main results are summarized in
Table 1.

Non-winner
(H0 = {a wins})

Winner
(H1 = {a wins})

Mallows Y&N (Thm. 1, 2) Y&N (Thm. 3,4,5)
Condorcet Y&N (Thm. 6, 7) Y (Thm. 8)

Table 1: UMP tests for Mallows’ model and Condorcet’s
model. “Y” in Condorcet-Winner means that for any 0 <

↵ < 1, there exists a level-↵ UMP winner test for H1 vs. H1.
“Y&N” means that for some ↵, no level-↵ UMP test exists for
H0 = H1; but a UMP test exists for all levels for some natural
special cases.

For example, “Y&N” in Mallows-Non-winner in Table 1
means that for some ↵, no level-↵ UMP test exists for
H0 vs. H0, where H0 consists of rankings where a given
alternative a is ranked at the top. On the other hand, for
some H1, a level-↵ UMP test exists for all 0 < ↵ < 1.
In fact, Theorem 2 characterizes all such H1’s.

In particular, we obtained a complete characterizations of
H1 for which UMP non-winner tests (that is, when H0

models “a wins”) exist, under Mallows’ model (Theo-

2This setting is called a “non-winner test” because when H0

is rejected, a should not be selected as the winner.

rem 2) and under Condorcet’s model (Theorem 7). Tech-
nically, to obtain the characterizations, we leverage the
theory of uniformly least favorable distributions to finite
models and randomized tests (Lemma 3, 4, 6, 7). These
lemmas generalize the key theorems by Reinhardt Rein-
hardt [1961] that only hold for continuous parameter
space, and they might be of independent interest.

Significance of results. Our results provide the first the-
oretical characterization of robust social choice w.r.t. fre-
quentists’ measure. Practically, the UMP winner tests
in the Condorcet-Winner column can be used for testing
whether a given alternative a is a winner by appropriately
setting H0 while fixing H1 to represent “a wins”.

Proof techniques. This paper focuses on composite
vs. composite tests, where both H0 and H1 contain
more than one element. Many results in this paper are
proved by applying Lemma 2 (Theorem 3.8.1 and Corol-
lary 3.8.1 in [Lehmann and Romano, 2008]), which of-
fers necessary and sufficient conditions for composite
vs. simple tests. However, applying Lemma 2 is more
challenging than it appears—the key is to come up with
a uniformly least favorable distribution that satisfies the
conditions in Lemma 2 for all elements in H1, and such
distribution is not guaranteed to exist. As we show later
in the paper, such distributions indeed exist for non-
winner tests for Mallows’ model and Condorcet’s model
respectively, and it is non-trivial to verify that they sat-
isfy conditions in Lemma 2. In fact, to this end, we
proved new properties (Lemma 5 and Lemma 8 in the
appendix) about Mallows’ model and new general theo-
rems (Lemma 6 and 7) that can be applied to Condorcet’s
model, which might be of independent interest.

Related Work and Discussions. Marden [1995] ap-
plied the Neyman-Pearson Lemma (Lemma 1) for sim-
ple vs. simple tests under Mallows, as illustrated in Ex-
ample 2. Most previous work in statistical approaches
in social choice focused on extending the Condorcet
Jury Theorem and proving asymptotic results [Gerlinga
et al., 2005, Nitzan and Paroush, 2017]. Previous
work focused on using commonly-studied voting rules
designed for elections [Conitzer and Sandholm, 2005,
Caragiannis et al., 2016], maximum likelihood estima-
tors [Conitzer and Sandholm, 2005, Xia and Conitzer,
2011], or Bayesian estimators [Young, 1988, Procac-
cia et al., 2012, Pivato, 2013, Elkind and Shah, 2014,
Azari Soufiani et al., 2014, Xia, 2016]. We are not aware
of a previous work on UMP tests for deciding whether a
given alternative wins or not in social choice context.

Compared to previous MLE and Bayesian approaches
to social choice, optimal rules characterized in this pa-



per are more robust because it offers the best worst-case
guarantee against an adversary who controls the ground
truth parameter. As in the general Bayesian vs. Frequen-
tists debate, this does not mean that one approach is bet-
ter than another, because the measures of performance
are different.

2 PRELIMINARIES

Let A = {a1, . . . , am} denote a set of m � 2 alterna-
tives and let L(A) denote the set of all linear orders over
A. Let n denote the number of agents. Each agent’s pref-
erences are represented by a linear order in L(A). We
often use V = [a � b � · · · ] to denote a ranking, and
write a �V b if a is preferred to b in V . Let Pn denote
the collection of n agents’ votes, called an (n-)profile.
For any profile P and any pair of alternatives a, b, we let
P (a � b) denote the number of votes in P where a is
preferred to b.

The weighted majority graph (WMG) of P , denoted by
WMG(P ), is a directed weighted graph where the weight
wP (a � b) on any edge a ! b is wP (a � b) = P (a �
b) � P (b � a). By definition wP (a � b) = �wP (b �
a). For example, the WMG of the profile P7 of seven
linear orders mentioned in the beginning of Introduc-
tion has weights wP7(a � b) = wP7(a � c) = 1 and
wP7(b � c) = 5.

Statistical Models for Rank Data. A statistical model
M = (S,⇥,~⇡) has three parts: the sample space S ,
which is composed of all possible data; the parameter
space ⇥; and the probability distributions ~⇡ = {⇡✓ :
✓ 2 ⇥}. If both S and ⇥ contain finitely many elements,
then we call M a finite model. For any pair of linear or-
ders V,W in L(A), let KT(V,W ) denote the Kendall-tau
distance, which is the total number of pairwise disagree-
ments between V and W . Formally,

KT(V,W ) = #

⇢
{a, b} ✓ A : [a �V b and b �W a]

or [b �V a and a �W b]

�

Definition 1 (Mallows’ model with fixed disper-
sion [Mallows, 1957]) Given the dispersion 0 <

' < 1, Mallows’ model is denoted by MMa =
(L(A)n,L(A),~⇡), where n linear orders are i.i.d. gen-
erated, the parameter space is L(A) and for any V,W 2
L(A), ⇡W (V ) = 1

Z
'

KT(V,W ), where Z is the normaliza-
tion factor.

Condorcet’s model differs from Mallows’ model by al-
lowing ties in the ground truth and in data. Formally, let
B(A) denote the set of all irreflexive, antisymmetric, and
total binary relations over A. We have L(A) ✓ B(A)

and the Kendall-tau distance is extended to B(A) by
counting the number of pairwise disagreements.

Definition 2 (Condorcet’s model for binary relations
with fixed dispersion) Given the dispersion 0 <

' < 1, Condorcet’s model is denoted by MCo =
(B(A)n,B(A),~⇡), where the parameter space is B(A)
and for any W 2 B(A) and V 2 B(A), ⇡W (V ) =
1
Z
'

KT(V,W ), where Z is the normalization factor.

In classical Condorcet’s model [Condorcet, 1785, Young,
1988], the sample space consists of linear orders and the
parameter space consists of binary relations. The model
in Definition 2 is a variant of Condorcet’s model, where
the sample space consists of binary relations. In other
words, each agent is allowed to use a binary relation to
represent his or her preferences—transitivity is not re-
quired as in classical Condorcet’s model or Mallows’
model.

Statistical Hypothesis Testing: The Neyman-
Pearson Framework. Given a statistical model
M = (S,⇥,~⇡), the decision-maker first chooses two
non-overlapping subsets of parameters H0, H1 ✓ ⇥,
where H0 is called the null hypothesis and H1 is called
the alternative hypothesis. The goal of hypothesis
testing is to decide whether the ground truth parameter is
in H0 (retaining the null hypothesis) or in H1 (rejecting
the null hypothesis), based on the observed data P 2 S .
To simplify notation, we let 0 denote retain and let 1
denote reject. A test is characterized by a (randomized)
critical function f : S ! [0, 1] such that for any
P 2 S , with probability f(P ) the outcome of testing is
1 (reject). When H0 (or H1) contains a single parameter,
it is called a simple hypothesis; otherwise it is called a
composite hypothesis.

A test f is often evaluated by its size and power. The
size of f is the maximum probability for f to wrongly
outputs 1 when the ground truth is in H0 (such cases are
called Type I errors or false positives), where the max
is taken over all parameters in H0. More precisely, for
any h0 2 H0, we let Size(f, h0) = EP⇠⇡h0

f(P ), and
Size(f) = sup

h02H0
Size(f, h0). If the size of f is ↵,

then f is called a level-↵ test. For any h1 2 H1, the
power of f at h1 is the probability that f correctly out-
puts 1 when the ground truth is h1. More precisely, we
let Power(f, h1) = EP⇠⇡h1

f(P ), where the expectation
is take over randomly generated profiles from ⇡h1 . We
would like a test f to have low size and high power, but
often tradeoffs must be made.

Example 1 Let MMa denote a Mallows’ model with
m = 3 and n = 1. Let A = {1, 2, 3}, h1 = [1 � 2 � 3],
and let H0 denote the other rankings. Let f be a test



where f(1 � 2 � 3) = 1, f(2 � 1 � 3) = f(1 �
3 � 2) = 0.5, and f outputs 0 for all other rankings. We
have Size(f) = Size(f, 2 � 1 � 3) = Size(f, 1 � 3 �
2) = (0.5+'+0.5'2)/Z, where Z is the normalization
factor. Power(f, 1 � 2 � 3) = (1 + ')/Z.

Given a statistical model M, H0, a parameter h1 62 H0,
and 0 < ↵ < 1, a level-↵ most powerful test f↵ is a test
with the highest power among all tests whose size is no
more than ↵. For finite H0, a most powerful test always
exists and may not be unique. For composite H1, it is
possible that for different h1 2 H1, the most powerful
tests are different. If there exists a level-↵ test f↵ that is
most powerful for all h1 2 H1, then f is called a level-
↵ uniformly most powerful (UMP) test for H0 vs. H1.
UMP is a strong notion of optimality and a UMP test
may not exists.

For simple H0 vs. simple H1, that is, |H0| = |H1| = 1,
the fundamental lemma of Neyman and Pearson charac-
terizes the most powerful tests as likelihood ratio tests,
defined as follows.

Definition 3 (Likelihood ratio test) Given a model M
and 0 < ↵ < 1. For any h0, h1 2 ⇥ with h0 6= h1 and
any P 2 S , we let Ratioh0,h1(P ) =

⇡h1 (P )
⇡h0 (P ) denote the

likelihood ratio of P and let

LR↵,h0,h1(P ) =

8
<

:

1 if Ratioh0,h1(P ) > k↵

0 if Ratioh0,h1(P ) < k↵

�↵ if Ratioh0,h1(P ) = k↵

,

denote the level-↵ likelihood ratio test, where k↵ � 0
and �↵ are chosen such that Size(LR↵,h0,h1) = ↵.

Lemma 1 (The Neyman-Pearson Lemma, see
e.g. [Lehmann and Romano, 2008]) For any simple
vs. simple test (h0 vs. h1) and any 0 < ↵ < 1, the
likelihood ratio test LR↵,h0,h1 is a level-↵ most powerful
test. Moreover, any most powerful test must agree with
LR↵,h0,h1 except on P 2 S with Ratioh0,h1(P ) = k↵.

Example 2 Given a Mallows’ model. Let H0 =
{h0} and H1 = {h1}. For any n-profile Pn, we
have Ratio(Pn) = '

KT(Pn,h1)

'KT(Pn,h0) = '
KT(Pn,h1)�KT(Pn,h0).

Therefore, it follows from the Neyman-Pearson lemma
that for any 0 < ↵ < 1, there exist K↵ and �↵ such that
the following test f↵ is a level-↵ most powerful test: for
any n-profile Pn,

f↵(Pn) =

8
<

:

1 if KT(Pn, h0)� KT(Pn, h1) > K↵

0 if KT(Pn, h0)� KT(Pn, h1) < K↵

�↵ if KT(Pn, h0)� KT(Pn, h1) = K↵

.

⌅

For composite H0 vs simple H1 = {h1}, a generaliza-
tion of the Neyman-Pearson lemma exists. The idea is
to use a distribution ⇤ over H0 to compress H0 into a
“combined” parameter, defined as follows.

Definition 4 For any M = (S,⇥,~⇡), any H0 ✓ ⇥, and
any h1 2 (⇥ \ H0). Let ⇤ denote a distribution over
H0 whose support set is denoted by Spt(⇤), and let h⇤

0

denote a new parameter whose distribution over S is the
probabilistic mixture of {⇡h0 : h0 2 ⇥} according to ⇤.
For any 0 < ↵ < 1 and any P 2 S ,

• let Ratio⇤,h1(P ) =
⇡h1 (P )P

h02H0
⇤(h0)⇡h0 (P ) , and

• let LR↵,⇤,h1(P ) denote the likelihood ratio test for
h
⇤
0 vs. h1 as in Definition 3.

The following lemma states that LR↵,⇤,h1 is a most pow-
erful test for H0 vs. h1 iff two conditions are satisfied.

Lemma 2 (Theorem 3.8.1 and Corollary 3.8. by
Lehmann and Romano [2008]) For composite vs. sim-
ple test (H0 vs. h1) and any distribution ⇤ over H0, the
likelihood ratio test LR↵,⇤,h1 is a level-↵ most powerful
test if and only if the following two conditions are satis-
fied.

(i) For any h
⇤
0 2 Spt(⇤), Size(LR↵,⇤,h1 , h

⇤
0) = ↵.

(ii) For any h0 2 H0, Size(LR↵,⇤,h1 , h0)  ↵.

Moreover, if there is no P 2 S with Ratio⇤,h1(P ) = k↵,
then LR↵,⇤,h1 is the unique level-↵ most powerful test.

The distribution ⇤ in Lemma 2 is called a least favorable
distribution. If |Spt(⇤)| = 1, then ⇤ is called a determin-
istic least favorable distribution. If ⇤ is a least favorable
distribution for all levels of significance 0 < ↵ < 1, then
it is called a uniformly least favorable distribution [Rein-
hardt, 1961].

3 TEST SETUP AND BASIC LEMMAS

We first introduce two types of hypothesis tests for
choices. Given an alternative a, for Mallows’ model we
define La�others = {V 2 L(A) : 8b 2 A, a �V b};
similarly, for Condorcet’s model we define Ra�others =
{V 2 B(A) : 8b 2 A, a �V b}. La�others and Ra�others
naturally correspond to a being ranked at the top in the
the ground truth in Mallows’ model and in Condorcet’s
model, respectively.

Definition 5 ((Non-)Winner Tests) Given an alterna-
tive a, in a non-winner test for Mallows’ model, we
let H0 = La�others; and in a winner test for Mallows’
model, we let H1 = La�others.



Given an alternative a, in a non-winner test for Con-
dorcet’s model, we let H0 = Ra�others; and in a winner
test for Condorcet’s model, we let H1 = Ra�others.

The rationale behind the naming of “non-winner” and
“winner” is the following. Because H0 is often chosen
as the devil’s advocate and the goal of testing is often to
reject H0, when setting H0 = La�others under Mallows’
model, we are hoping to reject H0, which means that a
is not the winner. We note that the decision-maker still
needs to specify H1 in a non-winner test and specify H0

in a winner test. Various natural choices of H1 or H0

will be explored in Section 4 and Section 5.

We now present two general lemmas on least favor-
able distributions that will be frequently used in this
paper. For any model M = (S,⇥,~⇡), any compos-
ite vs. simple test (H0 vs. h1), any distribution ⇤ over
H0, and any h0 2 H0, we define a random variable
X

⇤
h0

: S ! R such that for any P 2 S , Pr(P ) = ⇡h0(P )
and X

⇤
h0
(P ) = logRatio⇤,h1(P ). A random variable X

weakly first-order stochastically dominates (weakly dom-
inates for short) another random variable Y , if for all
p 2 R, Pr(X � p) � Pr(Y � p).

Lemma 3 ⇤ is a uniformly least favorable distribution
for H0 vs. h1 if and only if for any h

⇤
0 2 Spt(⇤) and any

h0 2 H0, X⇤
h
⇤
0

weakly dominates X⇤
h0

.

Proof: To simplify notation we let LR↵ and Ratio to
denote LR↵,⇤,h1 and Ratio⇤,h1 , respectively. For any
0 < ↵ < 1 and any h0 2 H0, we have

Size(LR↵, h0) =
X

P2S:Ratio(P )>k↵

⇡h0(P )

+ �↵

X
P2S:Ratio(P )=k↵

⇡h0(P )

=Pr(X⇤
h0

> log k↵) + �↵ Pr(X⇤
h0

= log k↵) (1)

=(1� �↵) Pr(X
⇤
h0

> log k↵) + �↵ Pr(X⇤
h0

� log k↵)

=(1� �↵) lim
x!log k

�
↵

Pr(X⇤
h0

� x) + �↵ Pr(X⇤
h0

� k↵)

The “if” direction: for any h0 2 H0 and any h
⇤
0 2

Spt(⇤), because X
⇤
h
⇤
0

weakly dominates X
⇤
h0

, we have
that for any x 2 R, Pr(X⇤

h
⇤
0

� x) � Pr(X⇤
h0

�
x). It follows from (1) that Size(LR↵, h1), h⇤

0) �
Size(LR↵, h0). By Lemma 2, LR↵ is a level-↵ most
powerful test. Therefore ⇤ is a uniformly least favorable
distribution.

The “only if” direction: suppose for the sake of con-
tradiction that this is not true. Let h0 2 H0 and
h
⇤
0 2 Spt(⇤) be such that X⇤

h
⇤
0

does not weakly domi-
nate X

⇤
h0

. It follows that there exists x 2 R such that
Pr(X⇤

h
⇤
0
� x) < Pr(X⇤

h0
� x). Let ↵ = Pr(X⇤

h
⇤
0
� x).

Because ⇤ is uniformly least favorable, the size of LR↵

must be ↵, where k↵ = 2x and �↵ = 1. By Lemma 2,
Pr(X⇤

h0
� x) = Size(LR↵, h0) � Size(LR↵, h

⇤
0) =

Pr(X⇤
h
⇤
0
� x), which is a contradiction. ⇤

Example 3 Let M denote a Mallows’ model with m =
3 and n = 1. Let A = {1, 2, 3}, h1 = [1 � 2 � 3]
and let ⇤ denote the uniform distribution over {[2 � 1 �
3], [1 � 3 � 2]}. We will apply Lemma 3 to prove that
⇤ is a uniformly least favorable distribution for testing
H0 = (L(A) � {[1 � 2 � 3]}) vs. [1 � 2 � 3]. The
likelihood ratios of all rankings are summarized in Ta-
ble 2 in the increasing order.

V 3 � 2 � 1 others 1 � 2 � 3
Ratio⇤,1�2�3(V ): '

2'
1+'2

1
'

Table 2: Likelihood ratios.

For any h1 2 H0, X
⇤
h0

takes three values: log 1
'

,
log 2'

1+'2 , and log'. The probabilities for the five ran-
dom variables taking these three values are summarized
in Table 3.

log' log 2'
1+'2 log 1

'

X
⇤
1�3�2 and X

⇤
2�1�3

'
2

Z

1+'+'
2+'

3

Z

'

Z

X
⇤
2�3�1 and X

⇤
3�1�2

'

Z

1+'+'
2+'

3

Z

'
2

Z

X
⇤
3�2�1

1
Z

2('+'
2)

Z

'
3

Z

Table 3: X⇤
h0

for all h0 2 H0, where Z is the normaliza-
tion factor.

Because 0 < ' < 1, it is not hard to verify that X⇤
1�3�2

and X
⇤
2�1�3 weakly dominate other random variables.

By Lemma 3, ⇤ is a uniformly least favorable distribu-
tion. ⌅

Our second lemma states that if we can find a determinis-
tic uniformly least favorable distribution for n = 1, then
it is also uniformly least favorable for the same statistical
model with n � 2 i.i.d. samples.

Lemma 4 Suppose ⇤ is a deterministic uniformly least
favorable distribution for composite vs. simple test (H0

vs. h1) under M = (S,⇥,~⇡). Then for any n 2 N, ⇤ is
also a uniformly least favorable distribution for testing
H0 vs. h1 under M = (Sn

,⇥,~⇡) with n i.i.d. samples.

All missing proofs can be found in the appendix.

4 UMP TESTS FOR MALLOWS

In this section, we present results on UMP non-winner
and winner tests for Mallows’ model.



Non-Winner Tests for Mallows. The first theorem
(Theorem 1) of this subsection is a warmup, whose main
goal is to define a test f↵,a,B that is UMP for any simple
H1 that consists in a linear order where a is not ranked
at the top. The main theorem of this section is Theo-
rem 1, which characterizes all UMP non-winner tests for
arbitrary choices H1.

For any profile P , any B ⇢ A, and any a 2 (A � B),
we let wP (B � a) =

P
b2B

wP (b � a), that is, the total
weights on edges from B to a in WMG(P ).

Theorem 1 (A most powerful non-winner test for
Mallows) Given a Mallows’ model MMa, for any alter-
native a, any ranking h1 where a is not ranked at the top,
any 0 < ↵ < 1, and any n, the following test is a level-↵
UMP for testing La�others vs. h1. For any n-profile Pn,

f↵,a,B(Pn) =

8
<

:

1 if wPn
(B � a) > K↵

0 if wPn
(B � a) < K↵

�↵ if wPn
(B � a) = K↵

,

where B is the set of alternatives ranked above a in h1,
and K↵ and �↵ are chosen s.t. the size of f↵,a,B is ↵.

Proof: The proof proceeds by identifying a uniformly
least favorable distribution for H0 = La�others vs. h1. In
fact, let B denote the set of alternatives ranked above a

in h1. Let h⇤
0 denote the ranking that is obtained from h1

by raising a to the top position. We will prove that the
deterministic distribution ⇤ at {h⇤

0} is a uniformly least
favorable distribution.

Let LR↵ denote LR↵,h
⇤
0 ,h1 and let Ratio denote

Ratioh
⇤
0 ,h1 . Recall that both are defined in Definition 3.

We first prove the theorem for n = 1. By Lemma 3,
it suffices to prove that for any h0 2 H0, X⇤

h
⇤
0

weakly
dominates X⇤

h0
. For any ranking V and any pair of alter-

natives b, c, we let I(b �V c) = 1 if b �V c, otherwise
I(b �V c) = 0. For any single-vote profile P = {V },
we have:

logRatio(P ) = (KT(V, h1)� KT(V, h⇤
0)) log'

= log'
X

c�V d

(I(d �h1 c)� I(d �h
⇤
0
c))

= log'(
X

b2B:a�V b

(I(b �h1 a)� I(b �h
⇤
0
a))

+
X

b2B:b�V a

(I(a �h1 b)� I(a �h
⇤
0
b)))

= log' · (|B|� 2wP (B � a))

Therefore, to prove that X⇤
h
⇤
0

weakly dominates X
⇤
h0

, it
suffices to prove for any K 2 Z,

⇡h0({P : wP (B � a) � K})  ⇡h
⇤
0
({P : wP (B � a) � K})

Let M denote the permutation over A such that
M(h0) = h

⇤
0. Because h0 2 H0 = La�others, we have

M(a) = a. Let B0 = M(B). Because Kendall-Tau dis-
tance is invariant to permutations, for any P 2 L(A) we
have ⇡h0(P ) = ⇡M(h0)(M(P )) and

⇡h0({P : wP (B � a) � K})
=⇡M(h0)({M(P ) : wM(P )(M(B) � M(a)) � K})
=⇡h

⇤
0
({M(P ) : wM(P )(B

0 � M(a)) � K})
=⇡h

⇤
0
({P : wP (B

0 � a) � K})

Therefore, it suffices to prove that ⇡h
⇤
0
({P : wP (B0 �

a) � K})  ⇡h
⇤
0
({P : wP (B � a) � K}). We will

prove a stronger lemma. Given any W 2 L(A) and
C

0
, C ✓ A with C 6= C

0 and |C| = |C 0|, we say that
C dominates C 0 w.r.t. W if there exists a one-one map-
ping F : (C � C

0) ! (C 0 � C) such that for all c 2 C

we have c �W F (c). In words, C 0 can be obtained from
C by lowering some alternatives according to W .

Lemma 5 Under a Mallows’ model, for any ', any K 2
N, any a 2 A, any W 2 L(A), and any C

0
, C ✓ A

such that C dominates C
0 w.r.t. W , we have ⇡W ({P :

wP (C 0 � a) � K})  ⇡W ({P : wP (C � a) � K}).

It follows from Lemma 5 that X⇤
h
⇤
0

weakly dominates
X

⇤
h0

, which means that ⇤ is a uniformly least favorable
distribution for n = 1 by Lemma 3. We note that ⇤ is
deterministic. Therefore, by Lemma 4, ⇤ is also a uni-
formly least favorable distribution for Mallows’ model
with any n 2 N, which means that the correspond-
ing likelihood ratio test LR↵ is most powerful. It is
not hard to verify that LR↵ = f↵,a,B . Moreover, be-
cause ⇤ is deterministic, any most powerful test f for
H0 vs. h1 must also be most powerful for the simple
vs. simple test (h⇤

0 vs. h1). By the Neyman-Pearson
lemma (Lemma 1), f must agree with LR↵ except on
Pn such that Ratio(Pn) = k↵, which corresponds to Pn

with wPn
(B � a) = K↵. ⇤

Theorem 1 can be extended to the following characteri-
zation of all UMP non-winner tests (H0 = La�others) for
Mallows’ model. For any B ⇢ A and a 2 (A\B), we let
LB�a ✓ L(A) denote the set of all rankings where the
set of alternatives ranked above a is exactly B. For ex-
ample, when m = 4, L{c}�a = {[c � a � b � d], [c �
a � d � b]}.

Theorem 2 (Characterization of UMP non-winner
tests for Mallows) Given a Mallows’ model MMa with
m � 2 and n � 2, there exists a UMP test for H0 =
La�others vs. H1 for all 0 < ↵ < 1 if and only if there
exists B ✓ A such that H1 ✓ LB�a.

Moreover, when H1 ✓ LB�a, we have that f↵,a,B as
defined in Theorem 1 is a UMP test.



Example 4 Let P7 denote the profile mentioned in the
beginning of Introduction. Suppose we want to test
whether there is enough evidence to claim that a can-
not be the winner. We can apply a non-winner test on
a by letting H0 = La�others and H1 = Lothers�a. By
Theorem 2, f↵,a,B is a UMP test, where B = {b, c}.
The test can be done by computing the test statistic
T = wP7(B � a) = �2, and then checking if T is in
the critical region (K↵,1) for some pre-computed K↵.
If T 2 (K↵,1), then H0 is rejected, which means that
a should not be chosen as the winner. If T = K↵, then
H0 is rejected with probability �↵. Otherwise H0 cannot
be rejected, meaning that there is not enough evidence to
claim that a cannot be the winner. ⌅

Winner Tests for Mallows. We now consider UMP win-
ner tests under Mallows’ model (H1 = La�others) for two
natural choices of H0: H0 = Lothers�a in Theorem 3,
which means that a is ranked in the bottom in the ground
truth, and H0 = (L(A)�H1) in Theorem 4 and 5, which
means that a is not ranked at the top in the ground truth.

Theorem 3 (A UMP winner test under Mallows)
Given a Mallows’ model MMa, for any alternative a,
any 0 < ↵ < 1, and any n, the following test is a level-↵
UMP for testing H0 = Lothers�a vs. H1 = La�others. For
any n-profile Pn,

f↵,a(Pn) =

8
<

:

1 if wPn
(a � others) > K↵

0 if wPn
(a � others) < K↵

�↵ if wPn
(a � others) = K↵

,

where K↵ and �↵ are chosen s.t. the size of f↵,a is ↵.

Proof: For any h1 2 H1, we will prove that f↵,a is
a most powerful level-↵ test. Let h⇤

0 2 H0 denote the
ranking that is obtained from h1 by moving a to the bot-
tom position without changing the relative positions of
the other alternatives. Like the proof of Theorem 1, it is
not hard to check that f↵,a is equivalent to the likelihood
ratio test LR↵,h

⇤
0 ,h1 .

Because f↵,a is invariant to permutations over A \ {a},
for any h

0
0 2 H0 and any permutation M over A \ {a},

we have Size(f↵,a, h0
0) = Size(f↵,a,M(h0

0)). In partic-
ular, let M denote the permutation such that M(h0

0) =
h
⇤
0. We have Size(f↵,a, h0

0) = Size(f↵,a, h⇤
0). It follows

from Lemma 2 that f↵,a is most powerful, by letting ⇤
to be the deterministic distribution on {h⇤

0}. ⇤

Example 5 Let us continue with the setting in Exam-
ple 4. Suppose we want to test whether there is enough
evidence to claim that a is the winner. We can ap-
ply a winner test on a by letting H0 = Lothers�a and
H1 = La�others, i.e. switching the roles of H0 and H1 in
Example 4. By Theorem 3, f↵,a is a UMP test. The

test can be done by computing the test statistic T =
wP7(a � others) = 2, and then checking if T is in the
critical region (K⇤

↵
,1) for some pre-computed K

⇤
↵

. If
T 2 (K⇤

↵
,1), then H0 is rejected, which means that a

should be chosen as the winner. If T = K
⇤
↵

, then H0 is
rejected with a pre-computed probability �⇤

↵
. Otherwise

H0 cannot be rejected, meaning that there is no enough
evidence to claim that a is the winner. ⌅

The following two theorems identify conditions on ' in
Mallows’ model for the UMP winner test H0 = (L(A) \
H1) vs. H1 = La�others when n = 1.

Theorem 4 Let MMa denote a Mallows’ model with
n = 1, any m � 4, and any ' < 1/m. There exists
0 < ↵ < 1 such that no level-↵ UMP test exists for
H0 = (L(A)�H1) vs. H1 = La�others.

Theorem 5 Let MMa denote a Mallows’ model with
n = 1 and any m � 4. There exists ✏ > 0 such that
for any ' > 1 � ✏ and any ↵, a UMP test exists for
H0 = (L(A)�H1) vs. H1 = La�others.

5 UMP TESTS FOR CONDORCET

We first prove two general theorems on UMP tests for
statistical models that combine multiple independent
models, and then apply them to characterize UMP tests
under Condorcet’s model.

Definition 6 (Combining two models) Given two mod-
els MX = (SX ,⇥X ,~⇡X) and MY = (SY ,⇥Y ,~⇡Y ),
we let MX ⌦MY = (SX ⇥ SY ,⇥X ⇥⇥Y ,~⇡X ⇥ ~⇡Y ),
where for any (⇡✓X

,⇡✓Y
) 2 ~⇡X ⇥~⇡Y and any PX 2 SX

and PY 2 SY , we let (⇡✓X
,⇡✓Y

)(PX , PY ) = ⇡✓X
(PX) ·

⇡✓Y
(PY ).

Example 6 Given a Condorcet’s model MCo with m =
3. Let A = {1, 2, 3}. For any pair of alternatives {a, b},
we let M{a,b} = ({0, 1}n, {0, 1},~⇡) denote the restric-
tion of MCo on the pairwise comparison between a and
b. We have MCo = M{1,2} ⌦M{2,3} ⌦M{1,3}. ⌅

Given two models MX and MY , the next theorem pro-
vides a way to leverage a least favorable distribution for
a composite vs. simple test under MX to a least favor-
able distribution for a composite vs. simple test under the
combined model MX ⌦MY .

Lemma 6 For any pair of models MX and MY , sup-
pose ⇤X is a least favorable distribution for compos-
ite vs. simple test (H0,X vs. x1) under MX . For any
y1 2 ⇥Y , let ⇤⇤ be the distribution over H0,X ⇥ ⇥Y

where for all x 2 H0,X , ⇤⇤(x, y1) = ⇤X(x). Then,



⇤⇤ is a least favorable distribution for H0,X ⇥ ⇥Y

vs. (x1, y1) under MX ⌦MY .

Example 7 Continuing Example 6, we let MX =
M{1,2}, H0,X = {0}, x1 = 1, let ⇤X be the determin-
istic distribution over {0}, and let MY = M{2,3}⇥{1,3}
and y1 = (1, 1). ⇤X is a least favorable distribution ac-
cording to the Neyman-Pearson lemma (Lemma 1). Let
⇤⇤ denote the deterministic distribution over {(0, 1, 1)}.
It follows from Lemma 6 that ⇤⇤ is a least favorable
distribution for ({0} ⇥ {0, 1}2) vs. (1, 1, 1) under Con-
dorcet’s model. ⌅

The next theorem focuses on the setting where we com-
bine t 2 N identical statistical models MX . Given
MX = (S,⇥,~⇡), a distribution ⇤ over ⇥, any ✓

⇤ 2 ⇥,
and any t 2 N, we let (MX)t = MX ⌦ · · ·⌦MX| {z }

t

and define the extension of ⇤ to ⇥t w.r.t. ✓⇤, denoted
by Ext(⇤, ✓⇤, t), as follows. Let ~✓⇤ = (✓⇤, . . . , ✓⇤) 2
⇥t. For any j 2 t and any ✓ 2 ⇥, we have
Ext(⇤, ✓⇤, t)(✓, [~✓⇤]�j) = 1

t
⇤(✓). That is, Ext(⇤, ✓⇤, t)

generates a vector ~✓ 2 ⇥t in the following two steps.
First, a number j  t is chosen uniformly at random.
Then, we fix the components of ~✓ to be ✓⇤, except for the
j-th component, which is generated from ⇥ according to
⇤.

For any H0 ✓ ⇥ and any h1 2 (⇥ \ H0), we let ~h1 =
(h1, . . . , h1| {z }

t

) and let Ext(H0, h1, t) = ({H0 [ {h1}}t \

{~h1}).

Example 8 In the setting of Example 6, we let MX =
M{1,2}, let ⇤ denote the deterministic distribution over
{0}, let H0 = {0} and h1 = 1. Then, Ext(⇤, 1, 3) is the
uniform distribution over {(0, 1, 1), (1, 0, 1), (1, 1, 0)},
~h1 = (1, 1, 1), and Ext(H0, 1, 3) = ({0, 1}3 \
{(1, 1, 1)}). ⌅

Lemma 7 For any model MX and any t 2 N, sup-
pose ⇤ is a uniformly least favorable distribution for
composite vs. simple test (H0 vs. h1) under MX . Then
Ext(⇤, h1, t) is a uniformly least favorable distribution
for Ext(H0, h1, t) vs. ~h1 in (MX)t.

Example 9 In the setting of Example 8, it follows
from Lemma 7 that the uniform distribution over
{(0, 1, 1), (1, 0, 1), (1, 1, 0)} is a uniformly least favor-
able distribution for testing Ext(H0, 1, 3) = ({0, 1}3 \
{~1}) vs. ~h1 = (1, 1, 1) under (MX)3, which is the Con-
dorcet’s model with m = 3. ⌅

Non-Winner Tests for Condorcet. We are now ready to
characterize UMP tests for Condorcet’s model by apply-

ing Lemma 6 and 7. Theorem 6 and Theorem 7 of this
section are counterparts of Theorem 1 and Theorem 2
(both are for Mallows’ model), respectively, though the
proof techniques are quite different.

Theorem 6 (A most powerful non-winner test for
Condorcet) Given a Condorcet’s model MCo with m �
2, for any a 2 A, any h1 2 (B(A) \ Ra�others), any n,
and any ', the following test is most powerful for testing
Ra�others vs. h1. For any n-profile Pn,

g↵,a,B(Pn) =

8
<

:

1 if wPn
(B � a) > K↵

0 if wPn
(B � a) < K↵

�↵ if wPn
(B � a) = K↵

,

where B is the set of alternatives that are preferred to a

in h1.

Proof: Let h⇤
0 denote the binary relation obtained from

h1 by enforcing a � b for all b 2 A. We will prove that
the deterministic distribution over {h⇤

0} is a uniformly
least favorable distribution for Ra�others vs. h1.

Let X = {{a, b} : b 6= a} denote the pairwise com-
parisons between alternatives in A that involve a and let
Y denote the set of all other pairwise comparisons. Let
MX = (SX ,⇥X ,~⇡X) denote Condorcet’s model MCo

restricted to X . That is, SX = {0, 1}(m�1)n
,⇥X =

{0, 1}m and for any ✓ 2 ⇥X and any Pn 2 SX ,
⇡✓(Pn) / '

KT(✓,Pn). Similarly, let MY denote Con-
dorcet’s model restricted to Y . It follows that MCo =
MX ⌦MY .

Let h1 = (x1, y1), where x1 2 ⇥X and y1 2 ⇥Y .
Let x0 2 ⇥X denote the vector that represents a � b

for all b 2 A. By Neyman-Pearson lemma (Lemma 1),
the deterministic distribution ⇤X = {x0} is a uniformly
least favorable distribution for x0 vs. x1. Therefore, by
Lemma 6, the deterministic distribution ⇤ = {(x0, y1)}
is uniformly least favorable for {x0} ⇥ ⇥Y vs. (x1, y1).
We note that (x0, y1) = h

⇤
0 and (x1, y1) = h1. It is not

hard to verify that g↵,a,B is equivalent to the likelihood
ratio test LR↵,⇤,h1 , which is most powerful. The theorem
follows after Lemma 2. ⇤
Subsequently, we have the following characterization of
UMP non-winner tests under Condorcet’s model (H0 =
Ra�others). For any B ⇢ A, we let RB�a ✓ B(A) denote
the set of all binary relations where the set of alternatives
that are preferred to a is B.

Theorem 7 (Characterization of UMP non-winner
tests for Condorcet) Let MCo denote a Condorcet’s
model with any m � 2 and n � 2. There exists a UMP
test for H0 = Ra�others vs. H1 for every 0 < ↵ < 1 if
and only if there exists B ✓ A such that H1 ✓ RB�a.



Moreover, when H1 ✓ RB�a, g↵,a,B defined in Theo-
rem 6 is a UMP test.

The proof is similar to the proof of Theorem 2 and is thus
omitted.

Winner Tests for Condorcet. Finally, we turn to UMP
winner tests for Condorcet’s model (H1 = Ra�others).

Theorem 8 (A UMP winner test for Condorcet) Let
MCo denote a Condorcet’s model with any m � 2,
any n � 2, and any '. For any ↵, g↵,a defined
below is a level-↵ UMP test for H0 = (B(A) \ H1)
vs. H1 = Ra�others. For any Pn,

g↵,a(Pn) =

8
<

:

1 if Ratio(Pn) > K↵

0 if Ratio(Pn) < K↵

�↵ if Ratio(Pn) = K↵

,

where Ratio(Pn) =
m� 1P

b 6=a
'wPn

(a�b)
, and K↵ and �↵

are chosen such that the level of g↵,a is ↵.

Proof: Let M1 denote Condorcet’s model with a single
sample. Let X1, . . . , Xm�1 denote the m � 1 pairwise
comparisons between a and other alternatives. Similarly
to the proof of Theorem 6, we let MX1 , . . . ,MXm�1

denote the restriction of M1 on the m�1 pairwise com-
parisons, and let MY denote the restriction of MCo on
other pairwise comparisons. In fact, MX1 , . . .MXm�1

are the same model. It follows that MCo = MX1 ⌦
MX2 ⌦ · · ·⌦MXm�1 ⌦MY .

In MX1 , let 1 represent that a is more preferred in
the pairwise comparison. Due to the Neyman-Pearson
lemma (Lemma 1), the deterministic distribution ⇤ =
{0} is a uniformly least favorable distribution for H0 =
{0} vs. h1 = 1. For any n 2 N, let MX1,n denote
MX1 with n i.i.d. samples. It follows from Lemma 4
that ⇤ is still a uniformly least favorable distribution for
MX1,n . By Lemma 7, Ext(⇤, h1,m� 1) is a uniformly
least favorable distribution for Ext(H0, h1,m � 1) =
({0, 1}m�1 \ {~1}) vs. h1 = ~1 under MX1,n ⌦ · · · ⌦
MXm�1,n .

Let MY,n denote the model obtained from MY by us-
ing n i.i.d. samples. For any y1 2 ⇥Y,n, let ⇤y1 denote
the distribution that is obtained from Ext(⇤, h1,m � 1)
by appending y1 to each parameter. By Lemma 4,
⇤y1 is a uniformly least favorable distribution for
Ext(H0, h1,m � 1) ⇥ ⇥Y,n vs. (~1, y1) under MX1,n ⌦
· · ·⌦MXm�1,n⌦MY,n, which is the Condorcet’s model
with n i.i.d. samples. We note that Ext(H0, h1,m�1)⇥
⇥Y,n = ({0, 1}m�1 \ {~1})⇥⇥Y = (B(A) \Ra�others).
This means that the likelihood ratio test LR

↵,⇤y1 ,(
~1,y1)

is a most powerful level-↵ test for (B(A) \ Ra�others)

vs. (~1, y1). We note that for all y1, LR
↵,⇤y1 ,(

~1,y1)
is the

same test, which means that it is also UMP. The theorem
is proved after noticing that g↵,a = LR

↵,⇤y1 ,(
~1,y1)

. ⇤

6 DISCUSSION: BEYOND BINARY
CHOICE

All UMP tests we have characterized so far are opti-
mal in making binary decisions, such as whether a given
alternative a is the winner. We propose two natural
procedures to choose the winner by combining multi-
ple winner tests (H1 = La�others for Mallows’ model
and H1 = Ra�others for Condorcet’ model) and non-
winner tests (H0 = La�others for Mallows’ model and
H0 = Ra�others for Condorcet’ model).

Procedure based on combining winner tests. We first
choose any winner test, such as a UMP test characterized
in Theorem 3, then find the alternative a with the mini-
mum ↵ such that H0 is rejected in the winner test, by
conducting binary search on ↵.3 This corresponds at a
high level to choosing the alternative that is most likely
to be the winner according to the tests.

Procedure based on combining non-winner tests.
Similarly, we use binary search on ↵ to find the alter-
native a with the maximum ↵ such that H0 is rejected
in the non-winner test. This corresponds to choosing the
alternative that is mostly unlikely to be a non-winner ac-
cording to the tests.

Interestingly, both procedures correspond to the Borda
voting rule when the proposed UMP tests for Mallows’
model are used: in the UMP winner test we let H0 =
Lothers�a vs. H1 = La�others as in Example 5, and in the
UMP non-winner test we let H0 = La�others vs. H1 =
Lothers�a as in Example 4. This provides a new theoret-
ical justification for the Borda rule; or vice versa, Borda
provides a justification of the proposed procedure.

7 FUTURE WORK

An immediate open question is how to use hypothesis
testing for choosing a winner beyond testing whether a
given alternative is a winner or not, following the initial
thoughts discussed in Section 6. Also, can we character-
ize UMP tests for other goals of social choice, such as
pairwise comparisons? Do UMP tests exist for other sta-
tistical models, such as random utility models? How can
we efficiently compute the results of the proposed tests?

3Co-winners exist if they all reject H0 for the same ↵.
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