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Abstract

The goal of item response theoretic (IRT)
models is to provide estimates of latent traits
from binary observed indicators and at the
same time to learn the item response func-
tions (IRFs) that map from latent trait to ob-
served response. However, in many cases ob-
served behavior can deviate significantly from
the parametric assumptions of traditional IRT
models. Nonparametric IRT models over-
come these challenges by relaxing assump-
tions about the form of the IRFs, but stan-
dard tools are unable to simultaneously es-
timate flexible IRFs and recover ability esti-
mates for respondents. We propose a Bayesian
nonparametric model that solves this problem
by placing Gaussian process priors on the la-
tent functions defining the IRFs. This allows
us to simultaneously relax assumptions about
the shape of the IRFs while preserving the abil-
ity to estimate latent traits. This in turn allows
us to easily extend the model to further tasks
such as active learning. GPIRT therefore pro-
vides a simple and intuitive solution to several
longstanding problems in the IRT literature.

1 INTRODUCTION

Item response theory (IRT) (Rasch, 1960; Lord &
Novick, 1968) is a widely used framework for estimat-
ing latent traits across many application domains, in-
cluding educational testing (Lord, 1980), psychometrics
(Embretson & Reise, 2000), political science (Martin &
Quinn, 2002; Clinton et al., 2004), and more. Like other
dimensionality reduction techniques, the goal is to take
a large set of observed features and map them to a low-
dimensional representation maintaining latent structure.
A prototypical setting is assigning latent ability scores
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to students answering test questions. The observed re-
sponses are typically binary or categorical, making stan-
dard factor analysis inappropriate. Further, in addition
to estimating latent scores, we also seek to simultane-
ously estimate the mapping between latent positions and
observed outcomes. These mappings are themselves
of interest to applied scholars and enable downstream
tasks such as optimal test construction or active learn-
ing procedures like computerized adaptive testing (CAT)
(Weiss, 1982; van der Linden & Pashley, 2010). We re-
fer to these probabilistic mappings from latent ability to
predicted outcome as item response functions (IRFs).

Common IRT models are parametric, typically estimat-
ing a sigmoidal mapping between the latent space and
a binary outcome. Problems arise, however, when re-
spondent behavior deviates from the assumed parametric
representations. For instance, nearly all models assume a
monotonic relationship between a respondent’s position
on the latent scale θ and each observed response y, which
can be violated in settings such as personality measure-
ment (e.g., Meijer & Baneke, 2004). A further problem
is non-saturation, where the probability of observing ei-
ther outcome never fully approaches zero or one (e.g.,
guessing on multiple-choice tests). A more subtle prob-
lem occurs when there is asymmetry in the IRFs. Tests
for cognitive abilities require higher levels of complex
thinking for success such that the shape of the IRF for
respondents with low values of θ do not mirror the shape
for individuals with high values (Lee & Bolt, 2018).

Numerous parametric models have been proposed to ac-
commodate these and other irregularities. A complete in-
ventory of IRT-like models would be prohibitively long,
but notable examples include: (i) the generalized graded
unfolding model (GGUM) (Roberts et al., 2000), which
allows for (symmetric) non-monotonic IRFs; (ii) the
three- (3PL) (Birnbaum, 1968) and four-parameter (4PL)
(Barton & Lord, 1981) logistic models that relaxed sat-
uration assumptions by including “guessing” and “care-
lessness” parameters; and (iii) Samejima’s (2000) logis-



tic positive exponential family models (LPEF), which al-
low for asymmetric IRFs.

A related literature approaches these problems from a
nonparametric framework (see Sijtsma, 1998). Mokken
models (Mokken, 1971; Mokken & Lewis, 1982) relax
functional form assumptions for the IRFs but require
monotonicity (Sijtsma & Molenaar, 2002), which is also
required for other nonparametric techniques (e.g., Poole,
2000). Ramsay (1991) proposes a model based on kernel
smoothing. However, standard nonparametric methods
are unsatisfactory since the IRFs and θ parameters can-
not be estimated simultaneously. A standard approach
for kernel-based IRT models, for instance, is to smooth
over the rank ordering of respondents in terms of their
raw scores on the test. Thus, while the IRFs are flexible,
the smoothing occurs not over the latent parameters θ,
but over “reasonable estimates” of θ constructed from y
(Mazza et al., 2012, p. 4). Further, since inference is not
based on the true likelihood, these models extend poorly
to downstream tasks such as active learning.

In this article, we propose a Bayesian nonparametric IRT
model based on Gaussian process (GP) regression (Ras-
mussen & Williams, 2006). As we demonstrate, our
model has several clear advantages. First, similar to ex-
isting kernel smoothing methods, the Gaussian process
IRT model (GPIRT) can in principal recover any smooth
IRF with minimal assumptions. However, adopting the
Bayesian framework facilitates building smoothed IRFs
in a more coherent manner based on the actual latent pa-
rameters rather than proxies constructed from y. Second,
GPIRT is a direct extension of Bayesian parametric IRT
models (Albert, 1992; Albert & Chib, 1993). Indeed,
many parametric Bayesian models in the literature can
be viewed as a special case of our more general frame-
work. Finally, it is simple to extend the model for down-
stream tasks such as item diagnostics, test construction,
and computerized adaptive testing.

Below we use GPIRT to generate more accurate esti-
mates of latent ability parameters while simultaneously
capturing smooth IRFs that are non-monotonic, non-
saturating, and asymmetric. We demonstrate its flexibil-
ity with real-world data, including voting records from
the US Congress and responses to a personality inven-
tory measuring narcissism, and contrast the behavior of
GPIRT with parametric baselines. We also demonstrate
how to use GPIRT to implement seamless active learning
by maximizing mutual information to rapidly determine
a new respondent’s latent score from their responses to
adaptively chosen items. This enables dynamic test con-
struction in the tradition of CAT, and we will show it
performs admirably on real-world data.

2 OVERVIEW OF IRT

We start by presenting the groundwork for IRT mod-
els. We then introduce the GPIRT, describe an MCMC
sampling algorithm, extend the model for active learn-
ing, and contrast it with prominent nonparametric IRT
approaches in the literature. We conclude with two ap-
plications. We restrict our discussion to the unidimen-
sional case, where items are assumed to load on a single
underlying latent dimension; however, our model would
extend to the multidimensional setting. The multidimen-
sional case has been explored previously in the nonpara-
metric IRT setting (e.g., Bartolucci et al., 2017), but it
is not as common in practice. We will also focus on the
binary response case, which is the canonical IRT setting.
However, categorical responses can be handled via stan-
dard extensions to the model below.

2.1 OBSERVATION MODEL

Assume we have n binary-response items and m respon-
dents who have each answered some subset of items. We
will encode the response of respondent j on item i as
yij ∈ {−1, 1}, where 1 encodes a positive (or correct)
response and −1 denotes an negative (or incorrect) re-
sponse. This presentation is in keeping with GP classi-
fication models and deviates trivially from standard IRT
presentations where we typically take y ∈ {0, 1}.

IRT assumes a simple probabilistic model for y accord-
ing to (i) a latent score associated with each respondent
and (ii) an item-specific mapping between latent score
and the probability of observing yij = 1. Let Θ be some
latent space (here we take Θ = R) in which we wish to
embed respondents. We assume each respondent j has
some unknown location in this space, θj and that that
each item i has an associated latent function fi : Θ→ R
that gives rise to responses via a sigmoidal link function.
Namely, we assume the probability that respondent j an-
swers item i positively is

Pr(yij = 1 | θj , fi) = σ
(
fi(θj)

)
, (1)

where σ : R→ (0, 1) is a monotonic sigmoidal “squash-
ing” function such as the logistic or standard normal
CDF (inverse probit). We will further adopt the stan-
dard assumption that multiple responses across a set of
items/respondents are conditionally independent given
the latent scores and latent functions. For a set of ob-
served responses {yij}, this results in the likelihood:

Pr
(
{yij} | {fi}, {θj}

)
=
∏
i

∏
j

Pr(yij | θj , fi), (2)

where the product extends over the set of responses.
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(a) IRFs for standard IRT models
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(b) IRFs for GPIRT

Figure 1: Example IRFs for the 2PL, 4PL, GGUM, and LPEF
models compared to IRFs for GP latent functions.

Interpreted as a function of θj , the marginal probability
of a positive response to item i, Equation (1) is known
as the ith item response function (IRF). The goal of IRT
is to jointly estimate the respondents’ latent locations
{θj} and the IRFs from some set of training observations
{yij}. This may seem daunting since we are in essence
trying to simultaneously learn a latent embedding and
the mappings {fi} using only observed responses. The
problem is tractable if we assume that the latent functions
{fi} are smooth over Θ. In that case, the fact that each
respondent corresponds to a single latent location shared
by all the IRFs gives us hope that we can find an embed-
ding that places respondents with correlated responses in
neighboring regions of the latent space.

2.2 PARAMETRIC IRT MODELS AND CAT

In the two-parameter logistic model (2PL) (Birnbaum,
1968), σ is taken to be the logistic function and we as-
sume a linear parametric form for the latent functions:

fi(θj) = βi0 + βi1θj .

By convention, θj is referred to as the ability parame-
ter for respondent j. These parametric assumptions are
quite restrictive and fail in numerous settings. As a con-
sequence, a wide array of alternative parametric forms

for the {fi} have been proposed, including the GGUM,
3PL, 4PL, and LPEF models discussed above. Example
IRFs for each are shown in Figure 1(a).

Critically, the IRFs are themselves often of interest to
researchers. Sometimes, as in our analysis of the US
Congress below, the shape of the IRF provides im-
portant insights about a specific item. In other cases,
such as measuring personality traits, IRFs are used for
test construction where the goal is to choose a set of
items (i.e., a test in the sense of an examination) that
will reveal as much as possible about the target popula-
tion. This includes computerized adaptive testing, where
items are chosen dynamically during test administration
(Weiss, 1982). CAT is widely used in educational testing
(van der Linden & Pashley, 2010), psychology (Waller
& Reise, 1989), and survey research (Montgomery &
Rossiter, Forthcoming).

A number of CAT algorithms have been proposed in the
literature. Of particular relevance here are the maximum
expected Kullback–Leibler (MEKL) criterion (Chang &
Ying, 1996) and its Bayesian variant, the maximum pos-
terior weighted Kullback-Leibler (MPWKL) criterion
(van der Linden, 1998), which is equivalent to the mu-
tual information between an unknown response and the
latent ability score.1 These methods seek to accelerate
the convergence of our estimate of θ to the true unknown
posterior by maximizing the expected information gain
from each item selected from the larger inventory of po-
tential items. MPWKL can be directly extended to our
GPIRT model. It is worth noting that all of the above
approaches for CAT assume a pre-calibrated parametric
IRT model. To our knowledge Xu & Douglas (2006)
present the only nonparametric IRT CAT algorithm.

3 GPIRT

Our proposed model, the Gaussian process IRT (GPIRT)
model, extends standard models by placing Gaussian
process priors on the latent functions {f}. We then
perform joint inference over latent functions and ability
scores. This procedure allows us to quantify and prop-
agate our typical lack of certainty about the shape of
the IRFs, and allows us to readily adopt the advances in
Gaussian process modeling and inference seen over the
past decade for estimation and active learning.

Although constructing and performing inference in this
model will be straightforward with existing machinery,
GPIRT provides a simple and intuitive solution to sev-
eral longstanding problems in the IRT literature. The

1In the CAT literature the first appearance of MEKL, which
might sound equivalent to mutual information, was defined in
a somewhat idiosyncratic manner.



model makes no assumptions about the shape of IRFs
beyond smoothness over the latent score θ. In princi-
ple, this allows the resulting estimated IRFs to take the
shape of any smooth function (assuming suitable flex-
ibility in the choice of covariance function) and may
be non-monotonic, non-saturating, non-symmetric, or
all of the above. IRFs derived from draws from a GP
prior are shown in Figure 1(b). Further, adopting the
Bayesian framework allows us to simultaneously esti-
mate these flexible IRFs and the latent scores via a sam-
pling approach we will describe below. This removes
potential bias in IRF estimation from error in score es-
timation as well as relaxing the monotonicity assump-
tion of Mokken-like models. Finally, the construction
of the model facilitates item selection in either a manual
or adaptive testing setting by adopting established ideas
from Bayesian experimental design.

The most critical innovation in the GPIRT model is that
rather than assuming that the functions {fi} belong to
a specific parametric family, we place an independent
Gaussian process prior distribution on each:

p(fi) = GP (fi;µ,K), (3)

where µ is a shared prior mean function that can be cho-
sen according to prior beliefs, and K is a covariance
function between respondents’ latent traits. We could
choose the covariance function as we see fit; however,
for this investigation we took the pervasive squared ex-
ponential covariance function with unit length scale:

K(θ, θ′) = exp
(
− 1

2 (θ − θ′)2
)
. (4)

Note that we will also be taking a standard normal prior
on the latent scores {θ} and thus the unit length scale is
compatible with our expected range of latent scores.

For the mean function, µ ≡ 0 is the most agnostic
(corresponding to a prior IRF assigning 50% probability
to a positive response regardless of location), but does
not leverage prior knowledge about IRF profiles. An-
other reasonable choice is a linear prior mean µ(θ) =
βi0 + βi1θ, which is most appropriate in a context where
monotonic IRFs are expected, but where we prefer not
to impose strict linearity. Note that with a linear mean
we can recover standard two-parameter IRT models by
selecting σ appropriately and taking K to be a linear
covariance. GPIRT therefore provides a nonparametric
generalization where each item is explained by a latent
linear trend with smooth nonlinear deviations.

To complete the model, we place an independent normal
prior over the respondents’ latent scores {θ}:

p
(
{θj}

)
=
∏
j φ(θj),

θ

fiβi yi

µθ = 0 Σθ = I

µβ

Σβ

` = 1 σf = 1

i = 1, . . . , n

Figure 2: Graphical representation of GPIRT.

where φ is the standard normal PDF. We also place inde-
pendent normal priors over the coefficients {β} for linear
or higher-order polynomial mean functions as necessary.

A graphical representation of the model is shown in Fig-
ure 2. Here, µθ and Σθ are the mean and covariance of
the prior on θ. Similarly, µβ and Σβ are the mean and
covariance of the prior on β. Finally, σf and ` are the
scale factor and length scale of K respectively.

3.1 ESTIMATION

Assume we have a set of responses D = {yij}. We wish
to estimate the posterior over the latent functions {f} and
latent scores {θ}, p

(
{f}, {θ} | D

)
. Since the posterior is

analytically intractable, we perform inference via Gibbs
sampling.2 We begin by initializing a Markov chain by
sampling initial latent scores {θ} and mean function co-
efficients {β} from their respective priors. Then, given
{θ} and {β}, we sample the latent function values cor-
responding to the observations {yij}. Let Dj represent
the responses from respondent j only, fi = {fi(θj)} rep-
resent the latent function values associated with all re-
sponses to item i, and θi be the latent scores of all re-
spondents who answered item i. We sample:

fi ∼ N
(
µ(θi; {β}),K(θi,θi)

)
.

Finally, we extend the sampled vectors fi to dense sam-
ples of each latent function. This is feasible since the la-
tent space Θ used in IRT is universally small; in the vast
majority of cases, this dimension is 1 or 2. In our imple-
mentation, we took a dense grid θ∗ spanning from −5
to 5 in increments of 0.01, which is sufficient to densely

2Variational inference with pseudopoints in θ-space for the
items would be possible for large-scale data. This would be a
relatively simple extension using existing approaches such as
Hensman et al. (2015). However, the exact sampling scheme
we outline is sufficient for the applications we investigate.



cover the support of the latent score prior. Now for each
item i, we can sample dense vectors f∗i on this set from
the posteriors induced by θi and fi, which is normal as
the posterior on fi is a Gaussian process:

p
(
f∗i | θ

∗,θ, fi, {β}
)

= N (f∗i ;m∗,C∗),

where

m∗ = µ(θ∗) +K(θ∗,θ)K(θ,θ)−1
(
fi − µ(θ)

)
;

C∗ = K(θ∗,θ∗)−K(θ∗,θ)K(θ,θ)−1K(θ,θ∗),

and the dependence of µ on {β} has been omitted.

With the Markov chain initialized, we proceed as fol-
lows. First we sample new latent function values at
the observations for each item {fi}, using elliptical slice
sampling (Murray et al., 2010). We then extend the {f}
to dense samples {f∗} as described above. Next we sam-
ple each of the latent scores θj from the posterior induced
given the latent function samples {f∗}. Extending these
samples onto a dense grid allows us to compute a dense
approximation of the exact posterior of θj on the grid.
The unnormalized posterior is:

p
(
θj | {f∗},Dj

)
∝ p(θj)

∏
i Pr
(
yij | f∗i (θj)

)
.

We then use inverse transform sampling to sample a new
latent score for each respondent from their posterior. Fi-
nally, we sample new values for the mean function hyper-
parameters {β} using a Metropolis–Hastings step with
a Gaussian proposal distribution. We have implemented
this inference method in the R package gpirt. Once this
chain has mixed we can then estimate IRFs if desired by
pushing a chain of samples of the dense latent functions
through the chosen sigmoid and averaging.

The posterior distributions in all IRT models exhibit ro-
tational invariance where the sign on the latent parame-
ters {θj} and the shape of the functions {fi} can be al-
tered to produce an identical likelihood. In applications,
generally either the directionality of the latent space is
not interesting, in which case samples from either reflec-
tive mode are useful, or the directionality is known, and
posterior samples stuck in a substantively inappropriate
mode can be replaced or post-processed by imposing the
desired orientation (Stephens, 1997).

3.2 ACTIVE LEARNING

A major benefit of our fully Bayesian model is en-
abling a direct scheme for adaptive testing via sequential
Bayesian experimental design. We consider the follow-
ing task. Suppose we have estimated IRFs from data D,
for the ith item estimating:

πi(θ
∗) = Pr(y∗i = 1 | θ∗,D)

by marginalizing the latent function fi. We then seek to
adaptively present a series of items to some new respon-
dent so as to learn their latent score as quickly as possi-
ble. Here we propose a natural scheme based on maxi-
mizing the mutual information between the unknown re-
sponse to each item and the unknown latent score θ?.

Our proposed algorithm works as follows. Let D? rep-
resent a dataset augmenting our training data D by the
(initially empty) available responses from the new re-
spondent. We initialize our belief about θ? to the chosen
prior used during inference: p(θ? | D?) = p(θ). Now we
compute the mutual information between the response y?i
to item i and θ? given the available data:

I(y?i ; θ? | D?) = h(p?i )− Eθ?
[
h(πi(θ

?)) | D?]. (5)

Here h(p) is the binary entropy function and p?i is the
marginal probability of a positive response to item i:

p?i =

∫
πi(θ

∗) p(θ? | D?) dθ?.

We present the respondent with the item maximizing the
mutual information and augment D? with the response.
We then approximate the updated posterior distribution
on θ? by multiplying the current belief by the IRF for the
chosen item (for a positive response) or its complement
(for a negative response), e.g. if y?i = 1 we take:

p(θ? | D?, y?i ) ∝ p(θ? | D?)πi(θ?).

We repeat this process until a stopping condition is met.
This may be a pre-chosen number of items, but could
also be sufficient certainty in θ?. This procedure is both
computationally efficient and effective in practice. Al-
though we could refit the entire GPIRT model each time
we get a new response, the extra cost is not likely to be
worth it if the training dataset is reasonably sized.

4 RELATED WORK

Inference in parametric IRT models is often achieved via
some variant of maximum likelihood estimation (MLE),
maximizing (2) as a function of {βi} and {θj}. Unfortu-
nately, maximizing the full joint likelihood has proven to
be difficult and most parametric models therefore are es-
timated using the marginal maximum likelihood (MML)
framework (Bock & Aitkin, 1981). Here, we assume that
the marginal posterior distribution of the latent scores
{θj} is known a priori. We will denote this assumed
marginal distribution q(θ). In MML we estimate each re-
spondent’s contribution to the likelihood (2) by marginal-
izing her latent score under the assumed θ distribution:

Lj ≈
∫ ∏

i

Pr(yij | θj , fi) q(θj) dθj , (6)



where Lj represents the component of the likelihood as-
sociated with respondent j in (2). In this procedure, the
item-level parameters are estimated first, marginalizing
the latent scores as in (6). {θj} is then estimated af-
terwards via some procedure such as calculating the ex-
pected a posteriori (EAP) estimate (Rizopoulos, 2006).

Most nonparametric methods build from Equation 6. The
most relevant approaches here focus on relaxing assump-
tions about the link function σ (but see, e.g., Woods &
Thissen, 2006). However, problems arise since it is dif-
ficult to simultaneously estimate {fi} and {θj}. Indeed,
the entire idea of the MML approach is to marginalize
out {θj}. Therefore, standard nonparametric IRT mod-
els estimate the IRF not based on {θj} but instead based
on the observed data as a proxy.

For instance, in kernel-based IRT (Ramsay, 1991) we
first transform respondents’ scores (number correct) into
quantiles of a specified latent trait distribution q(θ). That
is, if respondent j is in the empirical sj th percentile in
raw average score across the items, we first estimate their
latent score with θ̂j = Q−1(sj), where Q−1 is the in-
verse CDF for q(θ). Fixing these proxies for the latent
scores, we can then use Nadaraya–Watson (Nadaraya,
1964; Watson, 1964) regression to estimate the IRFs by
kernel smoothing over the training data.

Due to the inherent difficulties associated with simulta-
neously estimating IRFs and {θj}, adopting a Bayesian
framework is an attractive option (Albert, 1992). Given
the likelihood in Equation (2), all that we need to com-
plete the model is a prior on θ and (optionally) on the pa-
rameters defining {fi}. Albert & Chib (1993) used nor-
mal priors in the context of the normal ogive model and
developed a complete Gibbs sampler for the resulting
model. Imai et al. (2016) estimates this same model us-
ing the expectation-maximization (EM) approach, which
is the method we use in the Congress application be-
low. Subsequent work has developed Bayesian versions
of nearly all of the common parametric models.

Previous research has also been done in the area of
Bayesian nonparametric IRT. Karabatsos & Sheu (2004)
considered Bayesian inference under the monotone non-
parametric framework of Mokken while Arenson &
Karabatsos (2018) approximated monotone IRFs using a
finite mixture of beta distributions. Duncan & MacEach-
ern (2008) places a Dirichlet process (DP) prior on the
q(θ) distribution while retaining the 2PL form for the la-
tent functions and further reported a variant that instead
models the IRFs as a DP as well (see also San Martı́n
et al., 2011). However, we are aware of no existing model
that adopts the GP approach we outline above.

The most closely related GP approach to our own might

be Gaussian process latent variable models, or GPLVM
(Lawrence, 2004). GPLVM is not particularly well-
suited for IRT as there is a fundamental mismatch in the
choice of likelihood, which is naturally binomial but nor-
mal in the GPLVM. A further issue is that GPLVM typi-
cally assumes that all “dimensions” (items) have a com-
mon/shared error term, which fits poorly in the measure-
ment model domain most closely related to IRT. More-
over, the mismatch in likelihood makes response predic-
tion less principled than the IRFs provided by GPIRT.
Nonetheless, we include GPLVM in our benchmarks.

5 APPLICATIONS

We illustrate the benefits of GPIRT with two applications
to real-world observational data. First we embed Mem-
bers of the US House of Representatives from the 116th
Congress (elected in 2018) from their roll-call records.
Here we focus on finding interesting attributes of the
IRFs that standard scaling cannot uncover due to their re-
strictive functional form assumptions. We then apply the
model to a survey dataset, where respondents were given
a narcissism battery. With this data we focus on improv-
ing predictive performance, and also illustrate that the
model performs strongly in an active learning task.

5.1 ROLL CALL VOTING IN THE HOUSE OF
REPRESENTATIVES

Members of the U.S. House of Representatives give
recorded “yea” and “nay” votes on the various propos-
als the House considers. There is a long history in po-
litical science of using these votes to embed the legisla-
tors in a latent space, with a one-dimensional left–right
ideological continuum being of interest in recent ses-
sions. The gold standard ideological scores for mem-
bers of Congress are the DW–NOMINATE scores (Poole
& Rosenthal, 1997) and Bayesian IRT models (Clinton
et al., 2004). Similarly to the 2PL model described
above, the NOMINATE procedure assumes a specific
(monotonic) functional form for IRFs.

The monotonicity assumption in 2PL and NOMINATE
often holds and these models are highly predictive both
in-sample and out-of-sample. In the Supplementary Ma-
terial, we show that GPIRT performs equally well and
sometimes better than the 2PL, although prediction is
rarely a task in this setting. However, the strong para-
metric assumptions can obscure important dynamics in
key roll-call votes, which can in turn result in embed-
dings that correspond poorly with other evidence about
members’ ideology.

Our focus in this application, therefore, is on recover-
ing interesting aspects of IRFs and the qualitative value
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Figure 3: Ideology estimates for members of the 116th
House of Representatives for the GPIRT model and DW–
NOMINATE. Republicans’ estimates are plotted in red circles
and Democrats’ estimates are plotted in blue squares, except
Reps. Ocasio–Cortez, Omar, Pressley, and Tlaib (popularly
known as “The Squad”), who are noted with purple triangles.

of the resulting embeddings. For example, in the 2019
session several proposals drew “nay” votes from both
ends of the ideological spectrum, as Republicans voted
against bills for being too liberal, and liberal Democrats
voted against bills for not being liberal enough. In such a
case, standard parametric assumptions result in extreme
members to instead be scaled as moderates. Indeed,
DW–NOMINATE rates Rep. Alexandria Ocasio–Cortez,
a member of the Democratic Socialists of America, as
more conservative than 86% of Democrats in the House
of Representatives (Lewis et al., 2019). The proce-
dure similarly scales the other members of “The Squad,”
Reps. Ilhan Omar, Ayanna Pressley, and Rashida Tlaib,
as among the most conservative Democrats in the cham-
ber. The more flexible approach of the GPIRT model
does not force extreme members who vote against their
party to be scaled as moderates.

We estimate GPIRT latent traits and IRFs using all roll
call votes in the first session of the U.S. House of Rep-
resentatives for the 116th Congress. We use only votes
where the minority vote is at least 1% of the total with
a quadratic mean function as we anticipate some non-
monotonic IRFs. We include all members of the House
who voted on at least one bill, with the exception of Rep.
Justin Amash who left the Republican party.

Figure 3 compares GPIRT ideology estimates with their
DW–NOMINATE scores. We can see that GPIRT and
DW–NOMINATE largely agree on the relative ideologi-
cal placement of members. However, GPIRT finds The
Squad to be the most liberal members of the House as we
would substantively expect.

For most roll calls we observe the linear, monotonic
patterns that parametric IRT-like models require (Figure
3a). However, we also observe other patterns, such as

the non-monotonic IRFs depicted in Figures 4b and 4c.
Here, the traditional IRT model treats this as uninforma-
tive vote with a relatively flat IRF (Figure 4e), while the
GPIRT detects the more nuanced ideological structure of
the vote including non-saturation, non-monotonicity, and
asymmetry in θ (Figure 4b).

Sometimes the ability to account for non-monotonic vot-
ing patterns is necessary to catch an important legisla-
tive dynamic. For an example, consider the item re-
sponse functions for H.J. Res. 31, a funding bill to end
a partial government shutdown, depicted in Figures 4c
and 4f. Here, the vast majority of Democrats supported
the bill along with many moderate Republicans. Conser-
vative Republicans opposed the bill on the grounds that
it did not include funding for the border wall, while lib-
eral Democrats such as Ocasio–Cortez, Omar, Pressley,
and Tlaib argued it did not sufficiently reduce funding
for border detention facilities (McPherson, 2019). The
GPIRT is able to recover this non-monoticity as shown
in Figure 4c, while the 2PL IRF shown in Figure 4f treats
the item as largely not informative.

5.2 NARCISSISTIC PERSONALITY
INVENTORY

We also apply the GPIRT model to responses to a 40 item
narcissistic personality inventory (NPI) (Raskin & Terry,
1988), which measures one’s “grandiose yet fragile sense
of self and entitlement as well as a preoccupation with
success and demands for admiration” (Ames et al., 2006,
pp. 440–441). For each item on the NPI, respondents
are presented with two statements and asked to select
which one fits them best; an example item is “Modesty
doesn’t become me” (positive) vs. “I am essentially a
modest person” (negative). Responses to the complete
inventory were collected from the Open Source Psy-
chometrics Project (Open-Source Psychometrics Project,
2012) (n = 10, 440) and a convenience sample from the
Qualtrics panel (n = 2, 945). We estimate the 2PL IRT,
kernel-smoothed IRT, GPLVM, and GPIRT models on a
randomly selected sub-sample of 2,000 respondents. The
IRFs in the GPIRT showed deviations from the standard
2PL IRT model for several items.

Permitting flexibility in the IRFs allows the GPIRT to
perform better than the comparison models as measured
by predictive performance on held-out responses. To
show this, we performed the following experiment. We
randomly selected 20% of the available observations and
treated them as missing, then estimated the IRFs and the
respondents’ latent traits from the remaining data. We
then used the trained model to predict the missing re-
sponses and calculated the log likelihood, predictive ac-
curacy, and area under the receiver operating character-
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(a) IRF for HR2722, the “Securing
America’s Federal Elections Act”
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(b) IRF for an amendment to HR2500
ending the Cyprus arms embargo
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(c) IRF for HJRES31, a budgetary reso-
lution to avoid a government shutdown
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(d) 2PL IRF for HR2722
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(e) 2PL IRF for the Cyprus amendment

−3 −2 −1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

P
r(

y 
=

 1
)

(f) 2PL IRF for HJRES31

Figure 4: Example IRFs for three roll call votes in the U.S. House of Representatives’ first session of the 116th Congress. θ
estimates for members who voted “Yea” are displayed in a rug at the top of the plots, while θ estimates for members who voted
“Nay” are displayed in a rug at the bottom. Rug lines for members of the Squad are drawn in red.

Table 1: Fit for GPIRT, 2PL, GPLVM, and kernel-
smoothed IRT models on NPI responses with 20% of the
data held out. ε ≈ 2.2× 10−16 is machine epsilon.

Model L/N t-test vs. GPIRT AUC Accuracy

GPIRT -0.52 0.82 0.74
2PL -0.73 0.20 (p < ε) 0.66 0.63
GPVLM -1.39 0.87 (p < ε) 0.71 0.66
KS IRT -0.62 0.10 (p ≈ 10ε) 0.68 0.68

istic curve (AUC) for the the held out observations using
the trained model; we repeated this procedure 20 times.
The mean log likelihood for the held out observations is
reported in Table 1.

For the NPI dataset, the GPIRT outperformed the com-
parison models, with a higher mean log likelihood than
any model in the comparison set. A paired t-test con-
firms these are significant improvements in model fit, and
is also confirmed by comparing the mean accuracy and
AUC across the 20 simulations.

5.3 ACTIVE LEARNING

We also used these datasets to evaluate our adaptive test-
ing procedure. For the NPI dataset, we compare our pro-
cedure to a published reduced-form NPI battery (Ames
et al., 2006). The reduced-form battery contains 16 ques-
tions deemed by experts to be a suitable subset.

Table 2: RMSE for 1000 responses to 16 items

CAT Fixed Random

RMSE 0.257 0.338 0.321
Improvement vs. random 20% −5.5% —

For 1,000 randomly selected respondents that were not
included in our initial training sample, we estimated their
latent traits using their actual responses to the full 40-
item battery and our estimated GPIRT IRFs. For each
respondent, we then estimated their latent trait using the
16-item reduced-form battery from Ames et al. (2006),
16 items chosen using our adaptive testing scheme, and
16 randomly selected items. We calculated the root mean
squared error (RMSE) of these batteries’ θ estimates
with the full-battery estimates; the results are presented
in Table 2. Notably the RMSE for the adaptive bat-
tery gives a 20% improvement over randomly selected
items, whereas the reduced-form battery actually per-
forms worse than random selection.

6 CONCLUSION

In this article we provided a fully Bayesian nonparamet-
ric IRT model that allows for the simultaneous estima-
tion of ability parameters and IRFs while allowing for
high levels of flexibility in the IRF shapes. We showed
that this model performs better than standard parametric
models in terms of estimating unusual IRFs, predictive



accuracy, and in an active learning setting.

Trivial extensions include allowing for multiple dimen-
sions and categorical response functions. Additionally,
we could avoid the independence assumption on the
items and couple them together via a multi-task ker-
nel. For example if the items were parameterized by
some vector x we could take a product kernel such
as K(x, x′)K(θ, θ′). While a strength of the method
is avoiding potentially unfounded assumptions about
monotonicity, saturation, and symmetry, we could im-
pose monotonicity via EP to impose derivative con-
straints (e.g. Riihimäki & Vehtari, 2010), saturation via
a slightly modified likelihood, and symmetry via an ap-
propriately modified kernel (e.g. it would suffice to take
K(|x− c|, |x′− c|), where K is a desired base kernel, to
impose symmetry around c). Other potential extensions
are to include feature vectors in the learning kernel to al-
low, for instance, smooth changes in ability over time or
differential item functioning for subgroups.
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