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Abstract

This paper concerns the problem of 1-bit com-
pressed sensing, where the goal is to estimate
a sparse signal from a few of its binary mea-
surements. We study a non-convex sparsity-
constrained program and present a novel and
concise analysis that moves away from the
widely used notion of Gaussian width. We
show that with high probability a simple al-
gorithm is guaranteed to produce an accurate
approximation to the normalized signal of in-
terest under the `2-metric. On top of that, we
establish an ensemble of new results that ad-
dress norm estimation, support recovery, and
model misspecification. On the computational
side, it is shown that the non-convex program
can be solved via one-step hard thresholding
which is dramatically efficient in terms of time
complexity and memory footprint. On the sta-
tistical side, it is shown that our estimator en-
joys a near-optimal error rate under standard
conditions. The theoretical results are further
substantiated by numerical experiments.

1 INTRODUCTION

The last two decades have witnessed a large demand of
learning from high-dimensional data where the number of
attributes is of the same order of, or even greater than the
number of observations. Consider, for example, the Lou
Gehrig’s disease: there are millions of possible factors to
evaluate but the scientists have a very restricted number of
samples for research (each year 2 out of 100,000 individu-
als are affected by it). It thus turns out to be indispensable
to investigate and to resolve two fundamental problems
in this scenario: a) when is it possible to learn a useful
model from the small amount of data; and b) how can we
construct an accurate estimator with mild computational
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overhead. Answering these two questions has become a
central theme in the field of high-dimensional statistics,
and there have been a fruitful literature in a variety of ap-
plications such as linear regression [11, 33], classification
[16], principal component analysis [22], precision matrix
estimation [9], to name a few.

As a special instance of linear regression, compressed
sensing (CS) has attracted increasing attention owing to
its ease of implementation and the success in practical
problems [15]. To be more detailed, CS consists of two
phases: data acquisition and signal recovery. Suppose that
x̄ 2 Rd is the signal of interest. During the first phase,
the goal is to efficiently sample it and store the obtained
measurements in a device. In light of the fact that such a
device may not be computationally powerful, a common
paradigm is to adopt linear measurements which mitigate
hardware implementation and accelerate data collection.
That is, we specify the number of measurements n and the
sensing vectors {ai}

n
i=1 ⇢ Rd, and record in the device

the measurements {yi}ni=1 given by

yi = hai, x̄i , 8 i = 1, . . . , n. (1.1)

For the purpose of efficient sampling, it is required that
n ⌧ d, hence the name compressed sensing.

During the second phase, one has access to {(ai, yi)}ni=1

and the primary concern is to recover the underlying sig-
nal x̄ on a possibly powerful machine. While (1.1) is an
underdetermined linear system that might have infinite
number of feasible solutions, it has been well-understood
that with a careful design of the sensing vectors, a broad
range of algorithms are capable of producing accurate, or
even exact reconstruction of x̄ in polynomial time pro-
vided that it exhibits certain low-dimensional structure.
See, for example, [10, 34, 37, 7, 30].

Though elegant in theory and compelling in practice, [8]
pointed out that it is not always realistic to collect the
measurements as in (1.1) since they entail infinite-bit pre-
cision for the hardware. Alternatively, the measurements



are often quantized into finite bits and in the extreme case,
only the sign patterns are retained:

yi = sign (hai, x̄i) , 8 i = 1, . . . , n. (1.2)

The problem of recovering x̄ from its binary measure-
ments is referred to as 1-bit compressed sensing, and it
bears the potential of savings of physical storage as long
as accurate estimation in the 1-bit setting does not require
significantly more measurements [20]. Note that as the
sign function absorbs the magnitude of x̄, we can only
hope to reconstruct the direction x̄/ kx̄k in general. In
this light, the research lines can be roughly divided into
three spaces: (a) sparse approximation, i.e. identifying
the direction; (b) norm estimation, i.e. evaluating the
norm with extra information; and (c) support recovery, i.e.
determining the position of the non-zero entries of x̄.

Sparse Approximation. Perhaps surprisingly, it was
provably shown in [24] that by seeking a global optimum
of `1-norm constrained programs, it is possible to reliably
recover the underlying normalized signal with as many
observations as in the standard model (1.1). However, it
comes up with a computational issue when optimizing the
programs over large-scale data sets. From a technical per-
spective, since the programs are not strongly convex, only
a sublinear convergence rate is guaranteed for projected
gradient descent [23]. In other words, one has to run the
algorithm for a considerable number of iterations in order
to attain the optimum. Therefore, a large body of works
were dedicated to investigating alternative programs that
are endowed with closed-form solutions, which naturally
rules out the trouble of slow convergence. For instance,
[45] considered optimizing an `1-norm penalized function
which is exactly the Lagrangian function of the program
in [24]. Interestingly, with the slight modification, it was
shown that a simple element-wise thresholding on a cer-
tain vector gives even better error rate. Yet, for the sake
of accurate recovery, one has to search for a proper regu-
larization parameter which itself could be expensive. In
particular, specifying a large value for it will result in
trivial statistical guarantee whereas a small value will
lead to a trivial solution (i.e. a zero vector). [19] illus-
trated that one can derive closed-form solutions for other
sparsity-regularized programs such as smoothly clipped
absolute deviation penalty [17], minimax concave penalty
[44], and `0-norm (that counts the number of non-zeros
of a vector). Unfortunately, no statistical guarantee was
established in that work.

Norm Estimation. While it seems implausible to eval-
uate the norm of x̄ under the 1-bit setting, a number of
recent works asserted that the premise quickly changes
under extra conditions. For example, [21, 5] concurrently
showed that by manually adding Gaussian noise before
quantization, one may estimate the magnitude by solv-

ing an augmented program that incorporates the noise
information. This idea was further utilized to deal with
heavy-tailed sensing vectors in [14].

Support Recovery. Parallel to the line of estimating
the direction of the signal, a plethora of works examined
the problem of recovering the support set. In statistics,
it is also known as variable selection or feature selec-
tion [33, 38]. Note that support recovery sheds light on
sparse approximation in that once the support is identi-
fied, we can safely eliminate the irrelevant features and
apply standard tools from regression theory (that has a
rich literature). Unfortunately, it is typically more chal-
lenging to establish theoretical guarantee in this space
even under the standard CS model [41, 28, 29]. In the
regime of 1-bit CS, [18, 1] presented a set of impressive
results based on a new family of sensing vectors that move
away from the standard Gaussian. The data acquisition is
computationally more demanding though.

1.1 OUR CONTRIBUTIONS

In this paper, we propose to study a sparsity-constrained
non-convex program for the 1-bit CS problem. We first
demonstrate that the global optimum can be computed
by a simple hard thresholding operator (to be defined)
which is computationally efficient. More importantly, the
solution is proved to have a near-optimal approximation
error rate to the direction of x̄. We develop novel analysis
showing that the approximation error is controlled by
two factors: one is independent of the signal structure
while the other is entirely determined by it. On top of
that, we provide theoretical justification that our estimator
recovers the support set of x̄, can be tailored to offer an
accurate estimation of the magnitude of x̄, and is resilient
to model misspecification. Namely, even when we feed
an inappropriate parameter to the program, our estimate
still exhibits favorable performance.

1.2 RELATED WORKS

The 1-bit CS problem is closely related to learning halfs-
paces – a central object of study in learning theory [35].
In compressed sensing, there is an additional structural
assumption that the halfspace is embedded in a high-
dimensional space, and at the heart of CS is leveraging
such prior knowledge for improved sample complexity.
In view of the connection to learning theory, a surge of
recent works are devoted to understanding their interplay.
For example, active learning is a long-established research
field in learning theory, which attempts to mitigate the
human labor for data annotation by actively querying the
labels [4, 40, 42, 43, 31]. Similar ideas are also explored
in CS, known as adaptive sensing [3, 5].



It is also worth mentioning that one can expand the ob-
servation model (1.2) to 1-bit matrix completion that has
found successful applications in social networks. For
example, in recommender systems we can construct an
incomplete data matrix where each observed entry rep-
resents the preference (like or dislike) of a user to an
item [12, 39]. The goal is to predict the missing entries
and to recommend items that are potentially interesting for
the customers. The statistical guarantee for this problem
has been established in a series of appealing works [6, 27].

Notation. We use bold lowercase letters such as v to
denote a column vector. Its ith element is denoted by
vi. There are three norms that will be involved for a
vector v 2 Rd: the `2-norm kvk :=

p
v21 + · · ·+ v2d,

the `1-norm kvk1 := |v1|+ · · ·+ |vd|, and the `1-norm
kvk

1
:= max1id |vi|. We write the number of non-

zero elements in v as kvk0, and with a slight abuse of
terminology we call it `0-norm1.

For a finite set S, its cardinality is denoted by |S|. The
index set of the non-zero elements of a vector v 2 Rd is
called the support set, and is denoted by supp (v). We
write the index set of the top k elements (in magnitude)
as supp (v, k) with ties being broken lexicographically.

We reserve x̄ for the s-sparse target signal that we hope
to estimate. We also reserve the upright capital letter C
and its subscript variants such as C0 and C1 for absolute
constants, whose values may change from appearance to
appearance. For two scalars a and b, we write a = O(b)
if a  C · b; and we write a = ⌦(b) if a � C · b.

Overview. In Section 2, we elaborate the problem setup
of 1-bit compressed sensing. The primary theoretical re-
sults and the comparison to the prior works are developed
in Section 3, and Section 4 presents useful extensions
of our main results. In Section 5 we provide empirical
evidence to support our analysis. Section 6 concludes
the paper and all the proof details are deferred to the
Appendix (see the supplementary material).

2 PRELIMINARIES

Let x̄ 2 Rd be the s-sparse signal of interest. For now, we
presume without loss of generality that it has unit `2-norm.
While our concentration is on the 1-bit CS problem (1.2),
we begin our discussion with a more general observation
model: for each measurement yi 2 {�1, 1}, instead of
treating it as being generated from a deterministic map-
ping through the sign function, we consider

E[yi | ai] = ✓i (hai, x̄i) , 8 i = 1, . . . , n, (2.1)

1kvk0 is not a norm as it is not absolutely homogeneous.

where the mapping functions ✓i(·) 2 [�1,+1]. Note that
under the observation model (1.2), ✓i(·) is exactly the sign
function. It is worth mentioning that our model (2.1) is
more general than the one considered in prior works [24,
21, 25], since we allow different mapping function for
different sample, i.e. ✓i can be mutually distinct.

2.1 THE NON-CONVEX ESTIMATOR

In order to recover x̄, we consider the estimate x̂ that is a
global optimum of the following program:

max
x2Rd

y>Ax, s. t. kxk0  k, kxk = 1, (2.2)

where y = (y1, . . . , yn)> and A = (a1, . . . ,an)>. The
two constraints accommodate our prior knowledge on the
signal x̄, and the objective function seeks for a maximum
correlation between the input and output of ✓i(·). We
recall that x̄ is s-sparse. The integer k > 0 serves as the
only parameter in our estimator, and we need to tune it in
practice. Ideally, k plays as an upper bound on the true
sparsity s, which indicates that our estimator is unbiased,
i.e. the true signal is contained in the feasible set. Once
the condition is violated, we say the model is misspecified
which needs a particular treatment (see Section 4.3).

The optimal solution of the program (2.2) can be obtained
by simple algebraic calculation. Define the hard thresh-
olding operator as follows:

Hk (z) := argmin
u2Rd,kuk0k

ku� zk . (2.3)

We have the following computational result whose proof
is given in Appendix A.1.
Proposition 2.1. The global optimum x̂ of the pro-
gram (2.2) is given by

x̂ =
Hk (v)

kHk (v)k
, where v := A>y.

Computational Cost. The time complexity of calculat-
ing A>y is O(dn), and applying the hard thresholding
costs O(k log d) since the k-sparse vector Hk (z) can be
efficiently computed by first sorting the elements of z
in their magnitude, and then retaining the top k of them.
Therefore, the total running time is O(dn) given that n is
always greater than k log d in compressed sensing.

3 MAIN RESULTS

We now move on to present the statistical estimation error
under standard conditions [24]. We assume that each
observation yi depends on the measurement vector ai

only through hai, x̄i. Namely,



(A1) given the inner product hai, x̄i, yi and ai are con-
ditionally independent.

We will focus on the standard Gaussian design of the
sensing vectors. That is,

(A2) ai ⇠ N (0, Id⇥d) for all i = 1, . . . , n, and they
are mutually independent.

The above sensing scheme offers a clean picture of the-
oretical understanding. Furthermore, in the context of
compressed sensing, we indeed have the control of select-
ing the sensing vectors. Note that it is possible to relax the
assumption to correlated Gaussian design [24], or even
non-Gaussian measurements [2, 14].

In order to estimate the s-sparse signal x̄ from its non-
linear measurements, we have to confine ourselves to a
family of mapping functions. As a matter of fact, if all
functions ✓i output zero almost surely, then no algorithm
is able to recover the underlying signal. Mathematically,
the minimum requirement on the functions is that their
input and output are correlated. Let

�i := Eg⇠N(0,1)

⇥
g · ✓i(g)

⇤
, 8 i = 1, . . . , n. (3.1)

In light of (A1) and (A2), �i essentially characterizes
the correlation of interest [24]. While we do not impose
individual condition on �i, we need to assume

(A3) the average correlation � := 1
n

Pn
i=1 �i > 0.

Again, since we have the freedom to design ✓i(·), we can
always replace all ✓i(·) with �✓i(·) if we find � < 0. We
remark that a very recent work [32] studies the interesting
case � = 0 under extra assumptions.

We are now in the position to present performance guaran-
tee of our estimate x̂. We show that as soon as we collect
n = O(k log d) measurements, it is possible to accurately
approximate the direction of x̄ with high probability from
its non-linear measurements.
Theorem 3.1. Assume (A1), (A2) and (A3). Further
assume kx̄k = 1, kx̄k0 = s, and k � s. With probability
at least 1� d

�10, we have

kx̂� x̄k 
C

�

r
k log d

n
.

Remark 3.2. While our assumption on � is very mild, it
is important to note that in order to obtain near-optimal
sample complexity, � must act as a universal constant,
which translates into an implicit requirement that most
of the �i’s are positive constants. Otherwise, Theo-
rem 3.1 may offer trivial guarantee. Consider, for ex-
ample, �1 = �2 = . . .�n�1 = 0 and �n = 1. It cor-
responds to � = 1/n for which we have a trivial upper

bound O(
p
nk log d) on the estimation error. This is not

surprising since many zero correlations indicate that the
sampling power is wasted on the associated samples (and
thus recovery is impossible).

Fortunately, we can show that among many prevalent
statistical models, the parameter � acts as a universal non-
zero constant, which indicates that the sample complexity
of our estimator is near-optimal in light of the fact that
the information-theoretic lower bound for infinite-bit CS
is ⌦(k log(d/k)) [26].

3.1 NOISELESS 1-BIT CS

Consider the problem (1.2) where ✓i(g) = sign (g). With
some calculation,

�i = Eg⇠N(0,1)[g sign (g)] = E[|g|] =
p
2/⇡.

Thus, we obtain the following corollary regarding the
sample complexity of our estimator.

Corollary 3.3. Assume the same conditions as in Theo-
rem 3.1. Under the model (1.2),

Pr (kx̂� x̄k  ✏) � 1� d
�10

for any ✏ 2 (0, 1) provided that n = O
�
✏
�2

k log d
�
.

3.2 NOISY 1-BIT CS

In real-world applications, the observations are not only
highly quantized, but are also grossly corrupted. In fact,
owing to possible systematic errors or human mistakes,
the sign may be flipped with some probability. The noisy
model can thus be formulated as

yi = ⇠i sign (hai, x̄i) , 8 i = 1, . . . , n, (3.2)

where ⇠i is independent of ai and

Pr(⇠i = 1) = 1� pi, Pr(⇠i = �1) = pi

for some pi 2 [0, 0.5). This gives a new mapping function
and a new correlation parameter as follows:

✓i(g) = sign (g) · E[⇠i] = (1� 2pi) sign (g) ,

�i =
p
2/⇡(1� 2pi).

Corollary 3.4. Assume the same conditions as in Theo-
rem 3.1. Under the model (3.2), for any ✏ 2 (0, 1)

Pr (kx̂� x̄k  ✏) � 1� d
�10

provided that n = O

⇣
((1� 2p)✏)�2

k log d
⌘

where p =
1
n

Pn
i=1 pi.



3.3 PROOF SKETCH OF THEOREM 3.1

Here we sketch the proof and highlight our novelty for
the analysis. We defer all technical details to Appendix A.
Note that x̄ is a feasible solution to (2.2). Owing to the
optimality of x̂, it holds that

y>Ax̂ � y>Ax̄.

With some re-arrangement, we have

h��x̄, x̂� x̄i 

⌧
1

n
A>y � �x̄, x̂� x̄

�
.

Since kx̄k = kx̂k = 1, it follows that h��x̄, x̂� x̄i =
�
2 kx̂� x̄k2. Thus, we obtain

�

2
kx̂� x̄k2 

⌧
1

n
A>y � �x̄, x̂� x̄

�



����
1

n
A>y � �x̄

����
1

· kx̂� x̄k1



����
1

n
A>y � �x̄

����
1

·

p

2k kx̂� x̄k ,

(3.3)

where the second inequality follows from Hölder’s in-
equality. For the third inequality, it follows from the
facts that kvk1 

p
kvk0 · kvk for all v 2 Rd and that

kx̂� x̄k0  2k. Dividing both sides by kx̂� x̄k gives

kx̂� x̄k 

p
2k

�

����
1

n
A>y � �x̄

����
1

. (3.4)

It remains to upper bound the infinity norm.
Lemma 3.5 ([45]). Assume (A1) and (A2). Then for all
i = 1, . . . , n, it holds that E[aiyi] = �ix̄.

In particular, Lemma 3.5 implies 1
nA

>y � �x̄ =
1
n

Pn
i=1(aiyi � E[aiyi]). Hence, we can apply Hoeffd-

ing’s inequality to show that the sum of independent ran-
dom variables concentrates around its mean with high
probability. This is formally stated below.
Lemma 3.6. Consider the observation model (2.1). As-
sume (A1), (A2) and (A3). With probability at least
1� d

�10 (over the random draw of A) it holds that
����
1

n
A>y � �x̄

����
1

 C

r
log d

n

for some absolute constant C > 0.

Applying the inequality of the above lemma, we obtain
Theorem 3.1.
Remark 3.7 (Decomposition of Estimation Error). As
can be seen from the proof, if x̄ belongs to a generic

constraint set K, then we can tailor our analysis as follows.
First, we will solve

max
x

y>Ax, s. t. x 2 K.

We present the closed-form solution for certain K (a solu-
tion for general K is hard to derive). Let v = A>y.

• K = {x 2 Rd : kxk0  k, kxk = 1,x � 0}. Let
S = {i : vi > 0} and m = |S|. If m > k, redefine
S as the index set of the k largest elements of v. The
global optimum x̂ for such K is given as follows: if
m = 0, then x̂ is the ith standard basis vector where
i is the index of the largest entry of v; otherwise
x̂ = vS/ kvSk where vS is obtained by setting all
elements of v outside S to zero.

• K = {x : kxk0  k,x 2 {�1, 0, 1}d}. Let S =
supp (v, k). Then x̂ = sign (vS).

Now suppose that we are able to obtain a global optimum
x̄. Then following the same reasoning, (3.3) becomes

�

2
kx̂� x̄k2 

����
1

n
A>y � �x̄

����
1

· ⇢
K
kx̂� x̄k , (3.5)

where
⇢
K
:= max

z2K�K

kzk1
kzk

(3.6)

is the restricted induced norm which is completely char-
acterized by the signal structure K. While ⇢

K


p
kzk0

for general K, it is possible to show an improved bound
for specific K. For instance, if K is the set of s-sparse
↵-strongly-decaying signals [13] for some ↵ � 2, then
⇢
K

acts as an absolute constant, which implies that the
sample complexity in Theorem 3.1 can be improved to
O(log d). On the other hand, Lemma 3.6 tells us that the
infinity norm in (3.5) is oblivious of K (but depends on
the distribution of A and observation model). Therefore,
if one is interested in a sensing matrix A with heavy-
tailed distributions, it suffices to derive a new bound as
what we did in Lemma 3.6.

3.4 COMPARISON TO PRIOR WORKS

We first compare with two of the most important works
on 1-bit CS [24, 25]. Both of them proposed to recover
a signal with a generic structure K. Regarding theoreti-
cal guarantee, [24, Theorem 1.1] implies that to obtain
kx̂� x̄k  ✏, the sample size n = O

�
✏
�4

k log(d/k)
�

which is worse than what we derived in Theorem 3.1
in terms of the dependence on ✏. Though [25, The-
orem 2.1] improved the sample complexity to n =
O
�
✏
�2

k log(d/k)
�
, their proof is technically involved

(e.g. they applied high-dimensional geometric arguments)



even specifying K as the sparsity constraint. In contrast,
we depart from their theoretical analysis and reach the
same guarantee with fundamental facts in probability the-
ory. Our analysis (Remark 3.7) shows the decomposition
of estimation error which is useful to develop new results
for different sensing schemes and signal structures.

In the seminal work of [20], a lower bound on the sta-
tistical error of sparse approximation was established,
and a non-convex program was proposed to achieve the
lower bound up to some logarithmic factor. Notably, their
guarantee is uniform, meaning that a single draw of the
sensing vectors ensures recovery of all sparse signals,
whereas our result is specified to a particular signal. Their
sample complexity is n = O(✏�1

k log d), which has a
better dependence on ✏ than this work. However, due to
the non-convex nature, it is not clear how to solve their
program in polynomial time. As a matter of fact, an itera-
tive algorithm was devised with compelling performance
in practical problems, but it lacks theoretical backend on
the convergence behavior.

It is worth noting that [46, Theorem 4.3] claimed a sample
complexity bound of O(s) for certain type of K. However,
this may not be the true sample complexity since in order
to fulfill their conditions, one needs O(s log d) samples.

4 EXTENSIONS

Theorem 3.1 offers near-optimal guarantee on recovering
the direction of the signal x̄. In this section, we discuss
when we can recover its support set, and even its magni-
tude under extra conditions. In this section, we focus on
the elementary case that x̄ is s-sparse.

4.1 SUPPORT RECOVERY

We first describe when our estimator reliably detects the
support of x̄. We would like point out that in some ap-
plications such as medical diagnosis, it is of crucial im-
portance to discover the determinants of a disease (i.e.
support recovery). Intuitively, a factor can be identified
only when it has “sufficient” impact on the disease. This
notion of significance is characterized by the following
mathematical quantity:

x̄min := min
i2supp(x̄)

|x̄i| . (4.1)

Throughout the paper, we consider x̄min 6= 0, i.e. the
signal of interest is non-zero. We utilize a well-known
fact to derive the guarantee of support set of x̄.
Lemma 4.1. For a given signal x̄, if

kx� x̄k < x̄min,

then it holds that supp (x̄) ⇢ supp (x).

The lemma can be proved by algebra (see Appendix A.5),
and has been widely used in the literature [37]. In allusion
to Theorem 3.1 (that is, let the right-hand side therein be
less than x̄min), we show that the support set of x̄ is
contained in that of our estimate.
Theorem 4.2. Assume the same conditions as in Theo-
rem 3.1. Then supp (x̄) ⇢ supp (x̂) provided that

x̄min >
C

�

r
k log d

n
.

In particular, if we know exactly the sparsity of x̄, we
have supp (x̄) = supp (x̂).
Remark 4.3. In the special case that x̄ is a binary vector,
the above theorem indicates exact signal recovery under
near-optimal sample complexity.
Remark 4.4. The proof of Lemma 4.1 essentially sug-
gests that the minimum condition for support recovery is
kx̂� x̄k

1
< x̄min. Yet we conjecture that even with

such condition Theorem 4.2 may not be significantly
improved. Suppose that N samples suffice for support
recovery of x̄. Consider a two-step scheme of sparse
approximation: 1) recover support; 2) linear regression
restricted on the obtained support set. Since the second
step needs k samples, the total sample size is N + k. As
lower bound of sparse approximation is k log(d/k) we
must have N � k log(d/k).

4.2 NORM ESTIMATION

In this section we consider kx̄k  R where R is known,
and we hope to estimate the norm of x̄. In general, this
is impossible in that the sign function will absorb the
magnitude information. Thus, we shall make a further
assumption for the data acquisition procedure:

yi = sign (hai, x̄i+ bi) , 8 i = 1, . . . , n, (4.2)

where bi are manually added noise which is known to us.
The above observation model is equivalent to

yi = sign (ha0

i, x̄
0
i) , 8 i = 1, . . . , n,

where

a0

i =

✓
ai

bi/R

◆
, x̄0 =

1q
kx̄k2 +R2

✓
x̄
R

◆
.

Note that the norm of x̄ has been encoded into x̄0 and yi

bears the information of bi, which together paves the way
for norm estimation. Also, all the a0

i are i.i.d. standard
Gaussian random vectors provided that

(A4) bi ⇠ N
�
0, R2

�
for all i = 1, . . . , n, they are mutu-

ally independent, and are independent from all ai.



Since x̄0 is an (s+1)-sparse signal, and has unit `2-norm,
the estimation of x̄0 from (4.2) can be reduced to that of
x̄ from (1.2) through the following augmented program:

max
x02Rd+1

y>A0x0
, s. t. kx0

k0  k, kx0
k = 1, (4.3)

where A0 = (a0

1, . . . ,a
0

n)
> and k � s + 1. Proposi-

tion 2.1 immediately gives the global optimum of (4.3):

x̂0 = Hk

�
(A0)>y

�
/
��Hk

�
(A0)>y

��� . (4.4)

With the optimal solution, we are able to evaluate the
magnitude of x̄, as presented in the following theorem.

Theorem 4.5. Consider the statistical model (4.2). As-
sume (A1), (A2), (A3) and (A4). Further assume that
kx̄k  R, kx̄k0 = s, and k � s+ 1. Write x̂0 as

x̂0 =
(x0; t0)q
kx0k

2 + t20

.

With probability at least 1� d
�10 over the random draw

of A, we either have
����

R

kx0k
x0 � x̄

���� 
C ·R

�

r
k log d

n

in the case t0 = 0 (thus kx0k 6= 0); or have
����
R

t0
x0 � x̄

���� 
C ·R

�

r
k log d

n

in the case t0 6= 0.

Remark 4.6. Interestingly, our theorem implies that
when t0 = 0 (i.e. the manually added noise does not
play a role in estimation), R

kx0k
x0 is a good approxima-

tion to x̄. In other words, the norm of x̄ is extremely close
(or even equal) to R. This result can be interpreted from
another perspective: once we know the norm of x̄ in ad-
vance, say kx̄k = R, it is easy to see that x̄/R is feasible
to program (2.2), and Theorem 3.1 already implies

����x̂�
x̄

R

���� 
C

�

r
k log d

n
,

which is precisely the first inequality in Theorem 4.5 by
noticing x0 = x̂ when t0 = 0. Namely, there is no need
to consider model (4.2).

The analysis for t0 6= 0 follows from Theorem 4 in [21],
which showed that as soon as we have a good approx-
imation to the direction of x̄, it is possible to estimate
the magnitude if the conditions in Theorem 4.5 are ful-
filled. However, the scenario t0 = 0 was not addressed
therein, and we make efforts to draw a formal analysis.
See Appendix A.6 for a full proof.

4.3 MODEL MISSPECIFICATION

In our previous discussion, we always assume that the
sparsity k is equal to, or greater than the true sparsity s, i.e.
the true signal is contained in the feasible set. However,
sometimes we may choose k < s in that we are not aware
of s. As a result, recovery of x̄ is impossible but we can
still hope to approximate its k largest (i.e. most important)
components to a high precision.

We now elaborate the new results under the misspeci-
fied model. One notable fact is that even when k < s,
the normalized sparse vector Hk (x̄) is feasible to the
non-convex program (2.2). Therefore, for sparse approxi-
mation we may apply the same induction and obtain the
following.
Theorem 4.7. Assume the same conditions as in Theo-
rem 3.1 but k < s. With probability at least 1� d

�10,

kx̂� zk 
C

�

r
k log d

n
+
p

2k kz � x̄k
1

,

where z := Hk(x̄)
kHk(x̄)k

.

The proof can be found in Appendix A.4. The second
term on the right-hand side is the price we pay for model
misspecification, and it vanishes as soon as k � s. It
is worth mentioning that it depends exclusively on the
nature of the signal x̄ rather than on the data acquisition
procedure. If the s-sparse signal x̄ has a light tail, i.e.
the first k components dominate the magnitude, then x̂
behaves as a good estimate. To see this, let us write x̄ =
(x̄1, . . . , x̄s, 0, . . . , 0) in descending order (according to
the magnitude of the elements). In this way Hk (x̄) =
(x̄1, . . . , x̄k, 0, . . . , 0). Let us denote ↵ = kHk (x̄)k for
now. It follows that

kz � x̄k
1

= max

⇢✓
1

↵
� 1

◆
|x̄1| , |x̄k+1|

�
. (4.5)

If the k leading components dominate the remaining,
then ↵ ⇡ 1 and |x̄k+1| ⇡ 0 hold simultaneously. As
a consequence, kz � x̄k

1
is close to zero, under which

Theorem 4.7 implies that we can accurately identify the
principal direction of x̄ given sufficient measurements.

Now we move on to discuss the support recovery of the
top k elements. In light of Lemma 4.1, the support of x̂ is
consistent with that of Hk (x̄) as soon as the sample size
n = O

�
(� |x̄k|)�2

k log d
�

and
p

2k kz � x̄k
1

< |x̄k| .

Consider in (4.5) that the infinite norm is given by (1/↵�
1) |x̄1|. It follows that a sufficient condition for support
recovery is

|x̄k+1| 

✓
1

↵
� 1

◆
|x̄1| <

|x̄k|
p
2k

.



The first inequality, which upper bounds |x̄k+1|, indicates
that for our purpose, the elements outside of the support
of interest cannot be too large. The second inequality,
which lower bounds |x̄k|, tells that those inside of the
support need to have sufficient magnitude.

Lastly, as we discussed in Section 4.2, a good approxima-
tion to the direction of Hk (x̄) implies a good estimation
of the norm. We remark that this observation holds for a
misspecified model as well.

5 EXPERIMENTS

This section is dedicated to examining the statistical error
rate and robustness of the our estimator. We focus on the
noiseless model (1.2), and will compare with the Lasso es-
timator [25] which showed state-of-the-art performance.

Settings. We implement our algorithm and the one of
[25] in Matlab 2018, and perform all the experiments on
a single server which has two 3.2 GHz Intel Xeon pro-
cessors, each of which has 8 cores. The sensing vectors
are chosen as i.i.d. standard Gaussian. For the s-sparse
signal x̄, we first randomly choose the support set in a
uniform manner, and draw each non-zero element from an
i.i.d. uniform distribution over the interval [�1000, 1000].
For each experiment to be presented, we generate 100
i.i.d. copies of the true signal x̄ and report the averaged
performance. If not specified, we always set k = s.

Sparse Approximation. We study how the estimation
error kx̂� x̄k varies with the sample size n. We fix the
sparsity s = 20, and consider the dimension d = 2000
and d = 10, 000. For each d, we increase n from 10 to
10, 000, and for each configuration of (d, n) we generate
the sensing vectors as aforementioned. The error curves
are plotted in Figure 1. It shows that the reconstruction
error of our method decays much faster than [25], and
it turns out that their estimator incurs large error when
the dimension is increased. In contrast, our algorithm
consistently produces accurate estimate.
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Figure 1: Approximation error against sample size.

Support Recovery. We use the same setting as in sparse
approximation, but plot the cardinality of the symmetric
difference between supp (x̂) and supp (x̄). Since [25]
may output arbitrarily dense solution, for fair comparison
we apply hard thresholding with the true sparsity to their
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Figure 2: Support recovery error against sample size.
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Figure 3: Norm estimation error against sample size.

original estimate. Note that if their original estimate al-
ready recovers the support, our post-processing does not
hurt it. In this way, the maximum error of both methods is
40 (since s = 20), and zero error indicates perfect support
recovery. Again, we observe in Figure 2 that our estimator
outperforms the state-of-the-art.

Norm Estimation. We use the estimate presented in
Theorem 4.5 to approximate the signal x̄ with kx̄k  R.
We choose R = 2 kx̄k, and illustrate the absolute and
relative errors in Figure 3. Note that we did not compare
with [25] because norm estimation was not addressed
therein. The figure shows that once we have sufficient
samples, it is possible to accurately evaluate the norm
with the data collection scheme in Section 4.2.

Model Misspecification. In Figure 4 we record the es-
timation error (in logarithmic scale) of the direction of
Hk (x̄) when k < s. We observe that even in this chal-
lenging scenario our estimate possesses a small error. This
matches our theoretical guarantee that our estimator is
resilient to model misspecification. It is noticeable that
the curve of k = 1 bumps more often than others. The
reason is that when k = 1, the problem boils down to hit-
ting the unique non-zero position, and the estimation error
per signal is either 0 or 2 (which results in the bumping
phenomenon).
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Figure 4: Approximation error of the leading k com-
ponents of our method under model misspecification.
The true sparsity is 20.



6 CONCLUSION

In this paper, we have studied an efficient estimator for
recovering a sparse signal from its binary measurements.
On the computational side, the estimate can be obtained
by a one-step hard thresholding operator which enjoys
economic computational and memory cost. On the statisti-
cal side, we have shown that the estimation error matches
the information-theoretic lower bound up to some log-
arithmic factor. We have also extended our results to
support recovery and norm estimation, and have proved
near-optimal error rate in these scenarios. For the esti-
mation of all the three facets of a sparse signal, we have
offered rigorous theoretical evidence that our estimator is
robust to model misspecification. Finally, we have demon-
strated through a comprehensive set of experiments that
the practical performance of our estimator matches per-
fectly our analysis.
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